首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sciatic nerve from streptozotocin-induced diabetic rats has previously been shown to incorporate more 32P into phosphatidylinositol-4,5-bisphosphate (PIP2) and the principal myelin proteins than normal nerve. In the present study, labeling of ATP and PIP2 was compared. Using nerve segments, [gamma-32P]ATP specific activity reached a plateau after incubation for 4 h with [32P]orthophosphate, whereas the specific activity of [32P]PIP2 rose much more slowly and was still increasing after 8 h. The rate of disappearance of radioactivity from prelabeled ATP was biphasic, with 75% being lost within 30 min and the remainder declining much more slowly for several hours thereafter. In contrast, no decrease in prelabeled PIP2 radioactivity could be detected for up to 4 h. The kinetics of ATP metabolism were not appreciably different for normal and diabetic nerve. However, after incubation with [32P]orthophosphate for 2 h, the specific activity of PIP2 was 50-120% higher in diabetic nerve. This phenomenon, therefore, cannot be ascribed to altered specific activity of the ATP precursor pool. Greater labeling of PIP2 in 32P-labeled diabetic nerve was present in purified myelin isolated using a simple discontinuous sucrose density gradient, but not in a "nonmyelin" fraction. When nerve homogenate was fractionated on a more complex gradient, three myelin-enriched subfractions were obtained which were heterogeneous as judged by morphological appearance, protein profile, and lipid metabolic activity. The proportion of total lipid radioactivity accounted for by PIP2 was elevated in all the subfractions relative to the homogenate. As compared to myelin subfractions from normal nerve, an increased percentage of 32P in PIP2 was obtained only in the major myelin subfraction from diabetic nerve. The phosphorylation of P0 relative to the other myelin proteins was also enhanced in this subfraction in nerve from diabetic animals.  相似文献   

2.
Role of magnesium in the plasma membrane ATPase of red beet   总被引:2,自引:2,他引:0       下载免费PDF全文
The phosphorylation technique was used to assess the role of Mg in the red beet (Beta vulgaris L.) plasma membrane ATPase. When an excess of ethylenediaminetetraacetate (Tris salt, pH 6.5) was added to phosphorylation reactions at steady-state, the phosphorylation level declined exponentially and the rate constant for dephosphorylation was similar to that observed when phosphorylation reactions were chased with unlabeled ATP. When KCl was included with the EDTA chase, a 2.4-fold increase in the turnover of the phosphoenzyme was observed. Thus, the formation of the phosphorylated intermediate but not its breakdown requires free Mg to be present. When an excess of unlabeled ATP containing MgSO4 was added to plasma membranes incubated for 20 seconds with [γ-32P]ATP in the absence of MgSO4, a burst of phosphorylation was observed that declined exponentially. The rate constant for this decline was similar to that observed for phosphoenzyme turnover after initial labeling in the presence of MgSO4. Extrapolation of this kinetic plot to zero time indicated that ATP binding can occur when MgSO4 is absent. It is proposed that Mg has a specific role in the transphosphorylation reaction of the terminal phosphate group of ATP to the enzyme.  相似文献   

3.
The requirement of inorganic phosphate (Pi) for oxidative phosphorylation in eukaryotic cells is fulfilled through specific Pi transport systems. The mitochondrial proton/phosphate symporter (Pic) is a membrane-embedded protein which translocates Pi from the cytosol into the mitochondrial matrix. Pic is responsible for the very rapid transport of most of the Pi used in ATP synthesis. During the past five years there have been advances on several fronts. Genomic and cDNA clones for yeast, bovine, rat, and human Pic have been isolated and sequenced. Functional expression of yeast Pic in yeast strains deficient in Pi transport and expression inEscherichia coli of a chimera protein involving Pic and ATP synthase subunit have been accomplished. Pic, in contrast to other members of the family of transporters involved in energy metabolism, was demonstrated to have a presequence, which optimizes the import of the precursor protein into mitochondria. Six transmembrane segments appear to be a structural feature shared between Pic and other mitochondrial anion carriers, and recent-site directed mutagenesis studies implicate structure-functional relationships to bacteriorhodopsin. These recent advances on Pic will be assessed in light of a more global interpretation of transport mechanism across the inner mitochondrial membrane.  相似文献   

4.
Summary Short-time experiments with 32P-labelled phosphate and chase experiments with equally labelled cells were carried out with synchronized algae under conditions of optimum phosphate uptake. In short-time experiments, in the presence as in the absence of CO2, orthophosphate and organic phosphates are rapidly labelled, but their time curves show saturation behaviour after 10 to 20 min. Labelling of polyphosphates proceeds at a constant rate after a short lag period of about 5 min. In equally labelled algae 32P-labelling correspondingly decreases in orthophosphate and in organic phosphates, but increases by about the same amount in the fraction of acid-insoluble polyphosphates. In the presence of external phosphate and in the light, polyphosphates show no visible decay within the 20 min of the chase experiments.A comparison of the two kinds of experiments suggests that polyphosphates are secondary products of photophosphorylation following only after orthophosphate and organic phosphates, probably after ATP. The rates of photophosphorylation are certainly much higher than the rates of labelling in organic phosphates because of the limiting phosphate uptake. Since the polyphosphates show no decay during the time of the experiments their turnover is low and the rates of polyphosphate labelling after a phosphate starvation period, and after the short lag period, can be regarded as approximate rates of polyphosphate synthesis. These rates are lower than the rates of phosphate uptake.In young cells of the synchronous culture phosphate replenishment after a 5-h starvation requires 2 to 3 h. After replenishment or in a culture undisturbed by phosphate starvation, the rates of polyphosphate accumulation, like the rates of phosphate uptake are much lower. In the presence of CO2 they are constant for several hours, if related to culture volume with constant cell number. Polyphosphate accumulation is proportional to phosphate uptake under these conditions amounting to about one third. In the absence of CO2, the rates decrease after 2 to 4 h of CO2-starvation and, like in short-time experiments a large proportion of the phosphate taken up is used for polyphosphate accumulation. The low rates of long-time experiments may represent a steady state between formation and decay of polyphosphates. Since the cells kept in the absence of CO2 are prevented from growing they actually accumulate more polyphosphates per cell volume, per chlorophyll, and per dry weight than the cells in the presence of CO2.The rates of polyphosphate formation are discussed with respect to their turnover in the light observed by other investigators. They are regarded to be a result of competition for ATP together with the orthophosphate pool of the cells, and of the compartmentation. The rates of polyphosphate formation are rather low compared with the probable rates of ATP formation under various conditions of photophosphorylation. Therefore, the formation of polyphosphates is regarded as a process of secondary order of magnitude in the energy metabolism of algal cells.
Im Text verwendete Abkürzungen P1 Trichloressigsäure lösliche Phosphate - davon Pi Orthophosphat - Po organisches Phosphat - Pul Hydrolyse-labiles TCE-unlösliches Phosphat - Pus Hydrolyse-stabiles TCE-unlösliches Phosphat - Pges Gesamtphosphat, bei kurzzeitiger 32P-Markierung Phosphataufnahme - Chl Chlorophyll  相似文献   

5.
The phosphorylated and non-phosphorylated forms of the ‘acidic’ 60S ribosomal phosphoprotein, Lγ, have been resolved using the recently devised method of two-dimensional “sweep” gel electrophoresis. This has enabled us to demonstrate that the previously reported decrease in the labelling of this protein with (32P)orthophosphate in ascites cells incubated in a medium lacking glucose reflects a real alteration in the extent of phosphorylation, rather than a change in the turnover of the phosphate. The method has also allowed comparison of the phosphorylation of Lγ in unlabelled ribosomes from the skeletal muscle of normal and diabetic rats, but here no alteration in the extent of phosphorylation was apparent.  相似文献   

6.
Confluent chick embryo fibroblasts were cultured in vitro in (i) medium which prevented the cells from dividing, (ii) medium which stimulated the cells to divide synchronously, (iii) medium without lysine in which the cells were blocked in G1.Chromosomal non histone proteins (NHP) were extracted from cells pulse labelled with 32P phosphate, and the radioactivity analyzed by acrylamide gel electrophoresis. Several radioactive peaks were found all along the gel in the NHP from confluent and stimulated cells. The highest phosphorylation was found in the fast moving proteins, but the stimulation of the cells increases the phosphorylation of the slower moving proteins. In the NHP from cells cultured in the medium without lysine only the slow migrating proteins were phosphorylated.NHP were extracted from unlabelled cell cultures in the three different media, incubated with [γ-32P] ATP and analyzed by acrylamide gel electrophoresis. Highly labelled peaks were observed in the fast moving proteins from stimulated cells and from cells cultured in a medium deprived from lysine.By comparing in vivo and in vitro phosphorylation, it can be concluded that in confluent cells the turnover of bound phosphate is slow. In stimulated cells there is a fast turnover of the phosphate bound to fast migrating proteins and a slow turnover of the phosphate bound to slow migrating proteins. In cells cultured in a medium without lysine there is a very fast turnover of the phosphate bound to a small group of fast migrating proteins and very little turnover of the phosphate bound to slow migrating proteins.The cells were incubated with labelled lysine and NHP analyzed by gel electrophoresis. The radioactivity of individual NHP varied with the culture conditions, but in all cases, there was little radioactivity in the fast moving proteins. The phosphate groups submitted to a fast turnover are bound to stable proteins.Phosvitin and casein kinase activities were measured in the NHP fractions. Nine-ten peaks of activities were observed with each substrate. Some variations were observed which apparently correlate with the culture conditions.  相似文献   

7.
(Na+ + K+)-ATPase can be phosphorylated by its substrate ATP as well as by its product inorganic phosphate. The maximal capacity for phosphorylation by either of these two substances is one mol phosphate per mol enzyme. In order to investigate whether the enzyme molecule possesses only one phosphorylation site common to ATP and Pi, or two phosphorylation sites, one for ATP and one for Pi, dual phosphorylation of the enzyme has been carried out. Under conditions, which are maximally favourable for each type of phosphorylation, successive phosphorylation by Pi and ATP leads to a maximal incorporation of only one mol phosphate per mol enzyme. The phosphorylation capacity for ATP decreases by the same amount as the Pi-phosphorylation level increases, without an effect on the apparent affinity for ATP.The results can be explained by assuming either a single common phosphorylation site for Pi and ATP, or a conformational change of the enzyme following phosphorylation by Pi, which excludes phosphorylation by ATP.  相似文献   

8.
The hypothesis that dopamine (DA) autoreceptors modulate the phosphorylation of tyrosine hydroxylase (TH; EC 1.14.16.2) was investigated in rat striatal slices. Tissue was prelabeled with 32P inorganic phosphate, and TH recovered by immunoprecipitation with anti-TH rabbit serum. The TH monomer was resolved on sodium dodecyl sulfate polyacrylamide gels, and the extent of phosphorylation was determined by scanning densitometry of autoradiographs. Depolarization of striatal slices with 55 mM K+ markedly increased the incorporation of 32P into several proteins, including the TH monomer (Mr = 60,000). A similar increase in TH phosphorylation occurred in response to the adenylate cyclase activator forskolin and the cyclic AMP analog dibutyryl cyclic AMP. An increase in TH phosphorylation was not observed in response to the D1-selective agonist SKF 38393. The D2-selective DA autoreceptor agonist pergolide decreased the phosphorylation of TH below basal levels and blocked the increase in phosphorylation elicited by 55 mM K+. The inhibitory effect of pergolide was antagonized by the D2-selective antagonist eticlopride. Changes observed in the phosphorylation of TH were mirrored by changes in tyrosine hydroxylation in situ. These observations support the hypothesis that a reduction in TH phosphorylation is the mechanism by which DA autoreceptors modulate tyrosine hydroxylation in nigrostriatal nerve terminals.  相似文献   

9.
Previous studies of the synthesis, phosphorylation, and processing of β-hexosaminidase in cultured fibroblasts from normal individuals and from patients with mucolipidosis II (I-cell disease) (A. Hasilik and E. F. Neufeld, 1980, J. Biol. Chem.225, 4937–4946) have been extended to fibroblasts derived from patients with a related genetic disorder, mucolipidosis III (pseudo-Hurler polydystrophy). The enzyme was biosynthetically labeled in pulse-chase experiments with [3H]leucine and 33Pi, and isolated from cells and medium by immunoprecipitation. The constitutent α and β chains of the enzyme were separated by polyacrylamide gel electrophoresis under reducing and denaturing conditions, visualized by autoradiography and fluorography, extracted from the gel, and quantitated by liquid scintillation spectrometry. Enzyme produced by fibroblasts from mucolipidosis III patients had a very low but detectable phosphate content; a high proportion of newly made enzyme was secreted, though some remained within the cells and was processed to mature enzyme; the presence of NH4Cl during the labeling and chase did not significantly increase the amount of enzyme secreted. The β-hexosaminidase produced by mucolipidosis III fibroblasts thus resembled more closely that produced by fibroblasts from patients with mucolipidosis II than the normal enzyme. β-Hexosaminidase made by fibroblasts from mucolipidosis II heterozygotes was similar to the normal enzyme with respect to phosphorylation, processing, and secretion. Mucolipidosis II and III fibroblasts could endocytose normal precursor β-hexosaminidase and process it to the mature form. The deficiency of mature enzyme in the patients' cells may therefore be attributed to failure of the unphosphorylated enzyme to be incorporated into lysosomes, where processing would normally occur.  相似文献   

10.
The turnover of nonhistone chromosomal proteins and their phosphate groups was compared in normal and in SV-40 virus transformed WI-38 human diploid fibroblasts. Cells were pulse labelled with tryptophan-3H and 32P for 30 minutes and the specific activities of tryptophan-3H and 32P in the various molecular weight classes of nonhistone chromosomal proteins were determined during the first four hours following termination of labelling. While a rapid turnover of high molecular weight nonhistone polypeptides (142, 000 to 200, 000 Daltons) is evident after one hour in SV_40 transformed cells, the specific activities of these nonhistone chromosomal polypeptides are not significantly decreased in normal cells. In contrast, a rapid turnover of low molecular weight (30, 000 to 51, 000 Daltons) nonhistone chromosomal proteins occurs during the first hour in normal WI-38 cells with no corresponding decrease in the specific activities of these proteins in SV-40 transformed cells. There is no apparent net turnover of phosphate groups on nonhistone chromosomal proteins in either normal or SV-40 transformed cells four hours following pulse labelling. Rather, during the first four hours significant fluctuations are observed in the 32P specific activities of defined molecular weight fractions. Taken together with previous reports of differences in the composition, synthesis and phosphorylation of nonhistone chromosomal proteins in normal and SV-40 transformed human diploid cells the present results further indicate the complex nature of the alterations in these proteins which accompany viral transformation.  相似文献   

11.
In Chinese hamster ovary cells expressing rabbit sodium‐dependent glucose transporter (rbSGLT1) protein kinase A (PKA) activators (forskolin and 8‐Br‐cAMP) stimulated α‐methyl D ‐glucopyranoside uptake. Kinetic analysis revealed an increase in both Vmax and affinity of the transport. Immunohistochemistry and biotinylation experiments showed that this stimulation was accompanied by an increased amount of SGLT1 localized into the plasma membrane, which explains the higher Vmax of the transport. Cytochalasin D only partly attenuated the effect of forskolin as did deletion of the PKA phosphorylation site of SGLT1 in transient transfection studies. Experiments using an anti‐phosphopeptide antibody revealed that forskolin also increased the extent of phosphorylation of SGLT1 in the membrane fraction. These results suggested that regulation of SGLT1 mediated glucose transport involves an additional direct effect on SGLT1 by phosphorylation. To evaluate this assumption further, phosphorylation studies of recombinant human SGLT1 (hSGLT1) in vitro were performed. In the presence of the catalytic subunit PKA and [32P] ATP 1.05 mol of phosphate were incorporated/mol of hSGLT1. Additionally, phosphorylated hSGLT1 demonstrated a reduction in tryptophan fluorescence intensity and a higher quenching by the hydrophilic Trp quencher acrylamide, particularly in the presence of D ‐glucose. These results indicate that PKA‐mediated phosphorylation of SGLT1 changes the conformation of the empty carrier and the glucose carrier complex, probably causing the increase in transport affinity. Thus, PKA‐mediated phosphorylation of the transporter represents a further mechanism in the regulation of SGLT1‐mediated glucose transport in epithelial cells, in addition to a change in surface membrane expression. J. Cell. Biochem. 106: 444–452, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Summary The phosphorylation of proteins in the synaptic plasma membrane is a rather slow reaction taking several minutes to saturate all the phosphate acceptor sites. (The time for half the protein bound phosphate groups to turnover is about 1 min). A divalent cation is needed as a cofactor for the reaction. At high (0.5 mm) ATP concentrations Mg2+ is more effective than Mn2+ but at low (10 m) ATP concentrations the reverse is the case. Zn2+ and Ca2+ support very little phosphorylation.  相似文献   

13.
The mechanism(s) of force development in vascular smooth muscle following pharmacological activation of protein kinase C by phorbol esters are not known. In this study, we examined the myosin light chain phosphorylation response following stimulation by phorbol 12,13-dibutyrate (PDB) or phenylephrine in rabbit aorta which had been incubated with 32PO4 in order to label ATP pools. Through tryptic phosphopeptide mapping of myosin light chain from intact tissue and comparison to controls using purified components, we inferred that Ca2+-dependent force stimulated by PDB was associated with small increases in serine-19 phosphorylation, consistent with a contractile mechanism involving indirect activation of myosin light chain kinase. Additional residues, consistent with the in vitro substrate specificity of protein kinase C, were also observed to be phosphorylated in response to PDB and represented proportionately a larger fraction of the total phosphorylated myosin light chain in Ca2+-depleted tissues. Stimulation by an alpha 1-adrenergic agonist (phenylephrine) resulted in phosphorylation of residues which were consistent with an activation mechanism involving myosin light chain kinase only. These results indicate that in rabbit aorta the contractile effects of PDB may be partially mediated by Ca2+-dependent activation of myosin light chain kinase. However, the data do not rule out a component of the PDB-stimulated contractile response which is independent of myosin light chain phosphorylation on the serine-19 residue. In addition, activation by a more physiological stimulus, phenylephrine, does not result in protein kinase C-mediated myosin light chain phosphorylation.  相似文献   

14.
The aim of this study was to determine the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in streptozotocin (STZ)-induced diabetic mice. BDSW was prepared by mixing DSW mineral extracts and desalinated water to yield a final hardness of 1000–4000 ppm. Male ICR mice were assigned to 6 groups; mice in each group were given tap water (normal and STZ diabetic groups) or STZ with BDSW of varying hardness (0, 1000, 2000, and 4000 ppm) for 4 weeks. The STZ with BDSW group exhibited lowered fasting plasma glucose levels than the STZ-induced diabetic group. Oral glucose tolerance tests showed that BDSW improves impaired glucose tolerance in STZ-induced diabetic mice. Histopathological evaluation of the pancreas showed that BDSW restores the morphology of the pancreatic islets of Langerhans and increases the secretion of insulin in STZ-induced diabetic mice. Quantitative real-time PCR assay revealed that the expression of hepatic genes involved in gluconeogenesis, glucose oxidation, and glycogenolysis was suppressed, while the expression of the genes involved in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in the STZ with BDSW group. BDSW stimulated PI3-K, AMPK, and mTOR pathway-mediated glucose uptake in C2C12 myotubes. BDSW increased AMPK phosphorylation in C2C12 myotubes and improved impaired AMPK phosphorylation in the muscles of STZ-induced diabetic mice. Taken together, these results suggest that BDSW is a potential anti-diabetic agent, owing to its ability to suppress hyperglycemia and improve glucose intolerance by modulating glucose metabolism, recovering pancreatic islets of Langerhans and increasing glucose uptake.  相似文献   

15.
We have previously shown that a major phosphorylated 25-kDa glycoprotein of the human peripheral nerve binds to Mycobacterium leprae. In the present study, we confirm that the 25-kDa glycoprotein of the human peripheral nerve is myelin P zero (P0) by immunoprecipitation and Western blot experiments using monoclonal antibodies to myelin P0. Immunohistochemical studies on human nerve using these antibodies to myelin P0 exhibited a strong immunoreactivity to the myelin and Schwann cells. Myelin P0 is a peripheral nerve specific protein; therefore it could likely be one of the key target molecules for M. leprae binding/internalization or even contact-dependent demyelination. This finding of M. leprae binding to myelin P0 adds to the present understanding on neural predilection of M. leprae.  相似文献   

16.
Short segments of desheathed rat peripheral nerve were immersed in phosphate, tris-HCl and cacodylate buffers containing varying concentrations and admixtures of CaCl2, AgCl, MgCl2, PbCl2, and AlCl3 before fixation. These tissues were subsequently processed for electron microscopic examination.  相似文献   

17.
Bovine heart mitochondria which have been allowed to swell in isotonic NH 4 + phosphate contract in response to initiation of oxidative phosphorylation. The contraction occurs optimally at pH 6.0 and appears from inhibition studies to result from Pi uptake being slower than removal of internal Pi via phosphorylation of external ADP. Similar results are obtained when K+ + nigericin is substituted for NH 4 + . Mersalyl inhibition of Pi transport in respiring, nonphosphorylating mitochondria which have been allowed to swell in NH 4 + phosphate reveals a contractile process having an alkaline pH optimum. This contraction resembles closely the contraction observed in salts of strong acids and presumably occurs by electrophoretic ejection of Pi anions driven by electrogenic H+ ejection.  相似文献   

18.
Thymidylate synthase (TS) was found to be a substrate for both catalytic subunits of human CK2, with phosphorylation by CK2α and CK2α′ characterized by similar Km values, 4.6 μM and 4.2 μM, respectively, but different efficiencies, the apparent turnover number with CK2α being 10-fold higher. With both catalytic subunits, phosphorylation of human TS, like calmodulin and BID, was strongly inhibited in the presence of the regulatory subunit CK2β, the holoenzyme being activated by polylysine. Phosphorylation of recombinant human, rat, mouse and Trichinella spiralis TSs proteins was compared, with the human enzyme being apparently a much better substrate than the others. Following hydrolysis and TLC, phosphoserine was detected in human and rat, and phosphotyrosine in T. spiralis, TS, used as substrates for CK2α. MALDI-TOF MS analysis led to identification of phosphorylated Ser124 in human TS, within a sequence LGFS124TREEGD, atypical for a CK2 substrate recognition site. The phosphorylation site is located in a region considered important for the catalytic mechanism or regulation of human TS, corresponding to the loop 107-128. Following phosphorylation by CK2α, resulting in incorporation of 0.4 mol of phosphate per mol of dimeric TS, human TS exhibits unaltered Km values for dUMP and N5,10-methylenetetrahydrofolate, but a 50% lower turnover number, pointing to a strong influence of Ser124 phosphorylation on its catalytic efficiency.  相似文献   

19.
Phosphorus absorbed in the form of phosphate (H2PO4) is an essential but limiting macronutrient for plant growth and agricultural productivity. A comprehensive understanding of how plants respond to phosphate starvation is essential for the development of more phosphate-efficient crops. Here we employed label-free proteomics and phosphoproteomics to quantify protein-level responses to 48 h of phosphate versus phosphite (H2PO3) resupply to phosphate-deprived Arabidopsis thaliana suspension cells. Phosphite is similarly sensed, taken up and transported by plant cells as phosphate, but cannot be metabolized or used as a nutrient. Phosphite is thus a useful tool for differentiating between non-specific processes related to phosphate sensing and transport and specific responses to phosphorus nutrition. We found that responses to phosphate versus phosphite resupply occurred mainly at the level of protein phosphorylation, complemented by limited changes in protein abundance, primarily in protein translation, phosphate transport and scavenging, and central metabolism proteins. Altered phosphorylation of proteins involved in core processes such as translation, RNA splicing and kinase signaling was especially important. We also found differential phosphorylation in response to phosphate and phosphite in 69 proteins, including splicing factors, translation factors, the PHT1;4 phosphate transporter and the HAT1 histone acetyltransferase – potential phospho-switches signaling changes in phosphorus nutrition. Our study illuminates several new aspects of the phosphate starvation response and identifies important targets for further investigation and potential crop improvement.  相似文献   

20.
The interaction of inorganic pyrophosphatase from E. coli with inorganic phosphate (P i) was studied in a wide concentration range of phosphate. The apoenzyme gives two inactive compounds with P i, a product of phosphorylation of the carboxylic group of the active site and a stable complex, which can be detected in the presence of the substrate. The phosphorylation occurs when P i is added on a millimole concentration scale, and micromole concentrations are sufficient for the formation of the complex. The formation of the phosphorylated enzyme was confirmed by its sensitivity to hydroxylamine and a change in the properties of the inactive enzyme upon its incubation in alkaline medium. The phosphorylation of pyrophosphatase and the formation of the inactive complex occur upon interaction of inorganic phosphate with different subsites of the enzyme active sites, which are connected by cooperative interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号