首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mitogen-activated protein kinase (MAPK) was originally identified as a serine/threonine protein kinase that is rapidly activated in response to various growth factors and tumor promoters in mammalian cultured cells. The kinase cascade including MAPK and its direct activator, MAPK kinase (MAPKK), is now believed to transmit various extracellular signals into their intracellular targets in eukaryotic cells. It has been reported that activation of MAPKK and MAPK occurs during the meiotic maturation of oocytes in several species, including Xenopus laevis . Studies with neutralizing antibodies against MAPKK, MAPK phosphatases and constitutively active MAPKK or MAPK have revealed a crucial role of the MAPKK/MAPK cascade in a number of developmental processes in Xenopus oocytes and embryos.  相似文献   

2.
Exposure of yeast cells to increases in extracellular osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK). Activation of Hog1 MAPK results in induction of a set of osmoadaptive responses, which allow cells to survive in high-osmolarity environments. Little is known about how the MAPK activation results in induction of these responses, mainly because no direct substrates for Hog1 have been reported. We conducted a two-hybrid screening using Hog1 as a bait to identify substrates for the MAPK, and the Rck2 protein kinase was identified as an interactor for Hog1. Both two-hybrid analyses and coprecipitation assays demonstrated that Hog1 binds strongly to the C-terminal region of Rck2. Upon osmotic stress, Rck2 was phosphorylated in vivo in a Hog1-dependent manner. Furthermore, purified Hog1 was able to phosphorylate Rck2 when activated both in vivo and in vitro. Rck2 phosphorylation occurred specifically at Ser519, a residue located within the C-terminal putative autoinhibitory domain. Interestingly, phosphorylation at Ser519 by Hog1 resulted in an increase of Rck2 kinase activity. Overexpression of Rck2 partially suppressed the osmosensitive phenotype of hog1Delta and pbs2Delta cells, suggesting that Rck2 is acting downstream of Hog1. Consistently, growth arrest caused by hyperactivation of the Hog1 MAPK was abolished by deletion of the RCK2 gene. Furthermore, overexpression of a catalytically impaired (presumably dominant inhibitory) Rck2 kinase resulted in a decrease of osmotolerance in wild-type cells but not in hog1Delta cells. Taken together, our data suggest that Rck2 acts downstream of Hog1, controlling a subset of the responses induced by the MAPK upon osmotic stress.  相似文献   

3.
4.
When glucose-repressed, Saccharomyces cerevisiae cannot use acetic acid as a carbon source and is inhibited in growth by high levels of this compound, especially at low pH. Cultures exposed to a 100 mM acetate stress activate both the Hog1p and Slt2p stress-activated MAP kinases. Nevertheless, only active Hog1p, not Slt2p, is needed for the acquisition of acetate resistance. Hog1p undergoes more rapid activation by acetate in pH 4.5, than in pH 6.8 cultures, an indication that the acid may have to enter the cells in order to generate the Hog1p activatory signal. Acetate activation of Hog1p is absent in the ssk1Delta and pbs2Delta mutants, but is present in sho1Delta and ste11Delta, showing that it involves the Sln1p branch of the high-osmolarity glycerol (HOG) pathway signaling to Pbs2p. In low-pH (pH 4.5) cultures, the acetate-activated Hog1p, although conferring acetate resistance, does not generate the GPD1 gene or intracellular glycerol inductions that are hallmarks of activation of the HOG pathway by hyperosmotic stress.  相似文献   

5.
The yeast Torulaspora delbrueckii IFO 1255 was selected as the strain fermenting melibiose from 35 strains of Torulaspora species. The strain IFO 1255 produced extracellular and cell-associated forms of α-galactosidase when grown on either melibiose or galactose as the sole carbon source. Most of the enzyme was located outside of the cell membrane: the periplasmic space, or cell walls, or both. α-Galactosidase was purified to homogeneity from the cell-free extract of the strain IFO 1255 by acid treatment and column chromatography on DEAE-Toyopearl 650M and Butyl-Toyopearl 650M. The molecular weight of the purified enzyme was estimated to be 88 000 by SDS-polyacrylamide gel electrophoresis and 530 000 by gel filtration. The enzyme contained 50% of its molecular weight as carbohydrate. Optimum pH and temperature were 4.5–5.5 and 55°C, respectively. The enzyme was inhibited strongly by Ag2+, Hg2+ and Cu2+ each at 1 mmol 1-1. The K m (μmol 1-1) for p -, o -, m -nitrophenyl α-D-galactopyranoside, melibiose, raffinose and stachyose were 2.8, 1.3, 2.8, 4.2, 170 and 230, respectively, and V max (μmol min-1 mg protein-1) for those substrates were 310, 140, 21, 22, 30 and 44, respectively. The properties of α-galactosidase from T. delbrueckii IFO 1255 were similar to those from the related species, Saccharomyces cerevisiae.  相似文献   

6.
Aquaporins and aquaglyceroporins form the membrane channels that mediate fluxes of water and small solute molecules into and out of cells. Eukaryotes often use mitogen-activated protein kinase (MAPK) cascades for the intracellular signaling of stress. This study reveals an aquaglyceroporin being destabilized by direct MAPK phosphorylation and also a stress resistance being acquired through this channel loss. Hog1 MAPK is transiently activated in yeast exposed to high, toxic levels of acetic acid. This Hog1 then phosphorylates the plasma membrane aquaglyceroporin, Fps1, a phosphorylation that results in Fps1 becoming ubiquitinated and endocytosed and then degraded in the vacuole. As Fps1 is the membrane channel that facilitates passive diffusional flux of undissociated acetic acid into the cell, this loss downregulates such influx in low-pH cultures, where acetic acid (pKa, 4.75) is substantially undissociated. Consistent with this downregulation of the acid entry generating resistance, sensitivity to acetic acid is seen with diverse mutational defects that abolish endocytic removal of Fps1 from the plasma membrane (loss of Hog1, loss of the soluble domains of Fps1, a T231A S537A double mutation of Fps1 that prevents its in vivo phosphorylation, or mutations generating a general loss of endocytosis of cell surface proteins [doa4Delta and end3Delta]). Remarkably, targetting of Fps1 for degradation may be the major requirement for an active Hog1 in acetic acid resistance, since Hog1 is largely dispensable for such resistance when the cells lack Fps1. Evidence is presented that in unstressed cells, Hog1 exists in physical association with the N-terminal cytosolic domain of Fps1.  相似文献   

7.
8.
Budding yeast adjusts to increases in external osmolarity via a specific mitogen-activated protein kinase signal pathway, the high-osmolarity glycerol response (HOG) pathway. Studies with a functional Hog1-green fluorescent protein (GFP) fusion reveal that even under nonstress conditions the mitogen-activated protein kinase Hog1 cycles between cytoplasmic and nuclear compartments. The basal distribution of the protein seems independent of its activator, Pbs2, and independent of its phosphorylation status. Upon osmotic challenge, the Hog1-GFP fusion becomes rapidly concentrated in the nucleus from which it is reexported after return to an iso-osmotic environment or after adaptation to high osmolarity. The preconditions and kinetics of increased nuclear localization correlate with those found for the dual phosphorylation of Hog1-GFP. The duration of Hog1 nuclear residence is modulated by the presence of the general stress activators Msn2 and Msn4. Reexport of Hog1 to the cytoplasm does not require de novo protein synthesis but depends on Hog1 kinase activity. Thus, at least three different mechanisms contribute to the intracellular distribution pattern of Hog1: phosphorylation-dependent nuclear accumulation, retention by nuclear targets, and a kinase-induced export.  相似文献   

9.
The relevance of the mitogen-activated protein (MAP) kinase Hog1p in Candida albicans was addressed through the characterization of C. albicans strains without a functional HOG1 gene. Analysis of the phenotype of hog1 mutants under osmostressing conditions revealed that this mutant displays a set of morphological alterations as the result of a failure to complete the final stages of cytokinesis, with parallel defects in the budding pattern. Even under permissive conditions, hog1 mutants displayed a different susceptibility to some compounds such as nikkomycin Z or Congo red, which interfere with cell wall functionality. In addition, the hog1 mutant displayed a colony morphology different from that of the wild-type strain on some media which promote morphological transitions in C. albicans. We show that C. albicans hog1 mutants are derepressed in the serum-induced hyphal formation and, consistently with this behavior, that HOG1 overexpression in Saccharomyces cerevisiae represses the pseudodimorphic transition. Most interestingly, deletion of HOG1 resulted in a drastic increase in the mean survival time of systemically infected mice, supporting a role for this MAP kinase pathway in virulence of pathogenic fungi. This finding has potential implications in antifungal therapy.  相似文献   

10.
Functional interactions between a mitogen-activated protein kinase (MAPK) and its regulators require specific docking interactions. Here, we investigated the mechanism by which the yeast osmoregulatory Hog1 MAPK specifically interacts with its activator, the MAPK kinase Pbs2, and its major inactivator, the protein phosphatase Ptp2. We found, in the N-terminal noncatalytic region of Pbs2, a specific Hog1-binding domain, termed HBD-1. We also defined two adjacent Pbs2-binding sites in Hog1, namely, the common docking (CD) domain and Pbs2-binding domain 2 (PBD-2). The PBD-2 docking site appears to be sterically blocked in the intact Hog1 molecule, but its affinity to Pbs2 is apparent in shorter fragments of Hog1. Both the CD and the PBD-2 docking sites are required for the optimal activation of Hog1 by Pbs2, and in the absence of both sites, Hog1 cannot be activated by Pbs2. These data suggest that the initial interaction of Pbs2 with the CD site might induce a conformational change in Hog1 so that the PBD-2 site becomes accessible. The CD and PBD-2 docking sites are also involved in the specific interaction between Hog1 and Ptp2 and govern the dynamic dephosphorylation of activated Hog1. Thus, the CD and the PBD-2 docking sites play critical roles in both the activation and inactivation of Hog1.  相似文献   

11.
12.
The stress-activated p38/Hog1 mitogen-activated protein kinase (MAPK) pathway is structurally conserved in many diverse organisms, including fungi and mammals, and modulates myriad cellular functions. The Hog1 pathway is uniquely specialized to control differentiation and virulence factors in a majority of clinical Cryptococcus neoformans serotype A and D strains. Here, we identified and characterized the Ssk2 MAPKKK that functions upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for the difference in Hog1 phosphorylation between the serotype D f1 sibling strains B-3501 and B-3502 through comparative analysis of meiotic maps showing their meiotic segregation patterns of Hog1-dependent sensitivity to the antifungal drug fludioxonil. Ssk2 is the only component of the Hog1 MAPK cascade that is polymorphic between the two strains, and the B-3501 and B-3502 SSK2 alleles were distinguished by two coding sequence changes. Supporting this finding, SSK2 allele exchange completely interchanged the Hog1-controlled signaling patterns, related phenotypes, and virulence levels of strains B-3501 and JEC21. In the serotype A strain H99, disruption of the SSK2 gene enhanced capsule and melanin biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2Δ, pbs2Δ, and hog1Δ mutants were hypersensitive to a variety of stresses and resistant to fludioxonil. In agreement with these results, Hog1 phosphorylation was abolished in the ssk2Δ mutant, similar to what occurred in the pbs2Δ mutant. Taken together, these findings indicate that Ssk2 is a critical interface connecting the two-component system and the Pbs2-Hog1 MAPK pathway in C. neoformans.  相似文献   

13.
We previously reported that the group III histidine kinase Dic1p in the maize pathogen Cochliobolus heterostrophus is involved in resistance to dicarboximide and phenylpyrrole fungicides and in osmotic adaptation. In addition, exposure to the phenylpyrrole fungicide fludioxonil led to improper activation of Hog1-type mitogen-activated protein kinases (MAPKs) in some phytopathogenic fungi, including C. heterostrophus. Here we report, for the first time, the relationship between the group III histidine kinase and Hog1-related MAPK: group III histidine kinase is a positive regulator of Hog1-related MAPK in filamentous fungi. The phosphorylation pattern of C. heterostrophus BmHog1p (Hog1-type MAPK) was analyzed in wild-type and dic1-deficient strains by Western blotting. In the wild-type strain, phosphorylated BmHog1p was detected after exposure to both iprodione and fludioxonil at a concentration of 1 microg/ml. In the dic1-deficient strains, phosphorylated BmHog1p was not detected after exposure to 10 microg/ml of the fungicides. In response to osmotic stress (0.4 M KCl), a trace of phosphorylated BmHog1p was found in the dic1-deficient strains, whereas the band representing active BmHog1p was clearly detected in the wild-type strain. Similar results were obtained for Neurospora crassa Os-2p MAPK phosphorylation in the mutant of the group III histidine kinase gene os-1. These results indicate that group III histidine kinase positively regulates the activation of Hog1-type MAPKs in filamentous fungi. Notably, the Hog1-type MAPKs were activated at high fungicide (100 microg/ml) and osmotic stress (0.8 M KCl) levels in the histidine kinase mutants of both fungi, suggesting that another signaling pathway activates Hog1-type MAPKs in these conditions.  相似文献   

14.
Saccharomyces cerevisiae was fused with heat-treated protoplasts of an osmotolerant yeast, Torulaspora delbrueckii, to obtain hybrids having increased tolerance to increased glucose concentrations (up to 700 gl–1). The production of glycerol and arabitol by the hybrids was within the range of those of the parental strains, but the production of ethanol was higher.  相似文献   

15.
16.
Our previous work has shown that the membrane microdomain-associated flotillin proteins are potentially involved in epidermal growth factor (EGF) receptor signaling. Here we show that knockdown of flotillin-1/reggie-2 results in reduced EGF-induced phosphorylation of specific tyrosines in the EGF receptor (EGFR) and in inefficient activation of the downstream mitogen-activated protein (MAP) kinase and Akt signaling. Although flotillin-1 has been implicated in endocytosis, its depletion affects neither the endocytosis nor the ubiquitination of the EGFR. However, EGF-induced clustering of EGFR at the cell surface is altered in cells lacking flotillin-1. Furthermore, we show that flotillins form molecular complexes with EGFR in an EGF/EGFR kinase-independent manner. However, knockdown of flotillin-1 appears to affect the activation of the downstream MAP kinase signaling more directly. We here show that flotillin-1 forms a complex with CRAF, MEK1, ERK, and KSR1 (kinase suppressor of RAS) and that flotillin-1 knockdown leads to a direct inactivation of ERK1/2. Thus, flotillin-1 plays a direct role during both the early phase (activation of the receptor) and late (activation of MAP kinases) phase of growth factor signaling. Our results here unveil a novel role for flotillin-1 as a scaffolding factor in the regulation of classical MAP kinase signaling. Furthermore, our results imply that other receptor-tyrosine kinases may also rely on flotillin-1 upon activation, thus suggesting a general role for flotillin-1 as a novel factor in receptor-tyrosine kinase/MAP kinase signaling.  相似文献   

17.
18.
Plants respond to biotic and abiotic stresses by inducing overlapping sets of mitogen-activated protein kinases (MAPKs) and response genes. To define the mechanisms of how different signals can activate a common signaling pathway, upstream activators of SIMK, a salt stress- and pathogen-induced alfalfa MAPK, were identified. Here, we compare the properties of SIMKK, a MAPK kinase (MAPKK) that mediates the activation of SIMK by salt stress, with those of PRKK, a distantly related novel MAPKK. Although both SIMKK and PRKK show strongest interaction with SIMK, SIMKK can activate SIMK without stimulation by upstream factors. In contrast, PRKK requires activation by an upstream activated MAPKK kinase. SIMKK mediates pathogen elicitor signaling and salt stress, but PRKK transmits only elicitor-induced MAPK activation. Of four tested MAPKs, PRKK activates three of them (SIMK, MMK3, and SAMK) upon elicitor treatment of cells. However, PRKK is unable to activate any MAPK upon salt stress. In contrast, SIMKK activates SIMK and MMK3 in response to elicitor, but it activates only SIMK upon salt stress. These data show that (1) MAPKKs function as convergence points for stress signals, (2) MAPKKs activate multiple MAPKs, and (3) signaling specificity is obtained not only through the inherent affinities of MAPKK-MAPK combinations but also through stress signal-dependent intracellular mechanisms.  相似文献   

19.
AU-rich-element (ARE)-mediated mRNA regulation occurs in Saccharomyces cerevisiae in response to external and internal stimuli through the p38 mitogen-activated protein kinase (MAPK)/Hog1p pathway. We demonstrate that the ARE-bearing MFA2 3' untranslated region (UTR) controls translation efficiency in a p38 MAPK/Hog1p-dependent manner in response to carbon source growth conditions. The carbon source-regulated effect on MFA2 3'-UTR-controlled translation involves the role of conserved ARE binding proteins, the ELAV/TIA-1-like Pub1p, which can interact with the cap/eIF4G complex, and the translation/mRNA stability factor poly(A) binding protein (Pab1p). Pub1p binds the MFA2 3'-UTR in a p38 MAPK/Hog1p-regulated manner in response to carbon source growth conditions. Significantly, the p38 MAPK/Hog1p is also required to modulate Pab1p in response to carbon source. We find that Pab1p can bind the MFA2 3'-UTR in a regulated manner to control MFA2 3'-UTR reporter translation. Binding of full-length Pab1p to the MFA2 3'-UTR correlates with translation repression. Importantly, Pab1p binds the MFA2 3'-UTR only in a PUB1 strain, and correlating with this requirement, Pub1p controls translation repression of MFA2 in a carbon source/Hog1p-regulated manner. These results suggest that the p38 MAPK/Hog1p pathway regulates 3'-UTR-mediated translation by modulating recruitment of Pab1p and Pub1p, which can interact with the translation machinery.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号