首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this study, tree hydraulic conductance (K tree) was experimentally manipulated to study effects on short-term regulation of stomatal conductance (g s), net photosynthesis (A) and bulk leaf water potential (Ψleaf) in well watered 5–6 years old and 1.2 m tall maritime pine seedlings (Pinus pinaster Ait.). K tree was decreased by notching the stem and increased by progressively excising the root system and stem. Gas exchange was measured in a chamber at constant irradiance, vapour pressure deficit, leaf temperature and ambient CO2 concentration. As expected, we found a strong and positive relationship between g s and K tree (r = 0.92, P = 0.0001) and between A and K tree (r = 0.9, P = 0.0001). In contrast, however, we found that the response of Ψleaf to K tree depended on the direction of change in K tree: increases in K tree caused Ψleaf to decrease from around −1.0 to −0.6 MPa, but reductions in K tree were accompanied by homeostasis in Ψleaf (at −1 MPa). Both of these observations could be explained by an adaptative feedback loop between g s and Ψleaf, with Ψleaf prevented from declining below the cavitation threshold by stomatal closure. Our results are consistent with the hypothesis that the observed stomatal responses were mediated by leaf water status, but they also suggest that the stomatal sensitivity to water status increased dramatically as Ψleaf approached −1 MPa.  相似文献   

2.
Influence of drought (D) on changes of leaf water potential (Ψ) and parameters of gas exchange in D-resistant and D-sensitive genotypes of triticale and maize was compared. Soil D (from −0.01 to −2.45 MPa) was simulated by mannitol solutions. At −0.013 MPa significant differences in Ψ, net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and internal CO2 concentration (C i) of D-resistant and D-sensitive triticale and maize genotypes were not found. Together with the increase in concentration of the mannitol solution the impact of D on E and g s for D-sensitive genotypes (CHD-12, Ankora) became lower than for the D-resistant ones (CHD-247, Tina). Inversely, impact of D on Ψ was higher in D-sensitive than D-resistant genotypes. From 1 to 3 d of D, a higher decrease in P N was observed in D-resistant genotypes than in the D-sensitive ones. Under prolonged D (5–14 d) and simultaneous more severe D the decrease in P N was lower in D-resistant than in D-sensitive genotypes. Changes in Ψ, P N, E, and g s caused by D in genotypes differing in the drought susceptibility were similar for triticale and maize. Compared to control plants, increase of C i was different for triticale and maize genotypes. Hence one of the physiological reasons of different susceptibility to D between sensitive and resistant genotypes is more efficient protection of tissue water status in resistant genotypes reflected in higher decrease in g s and limiting E compared to the sensitive ones. Other reason, observed in D-resistant genotypes during the recovery from D-stress, was more efficient removal of detrimental effects of D.  相似文献   

3.
Augé RM  Toler HD  Sams CE  Nasim G 《Mycorrhiza》2008,18(3):115-121
Stomatal conductance (g s) and transpiration rates vary widely across plant species. Leaf hydraulic conductance (k leaf) tends to change with g s, to maintain hydraulic homeostasis and prevent wide and potentially harmful fluctuations in transpiration-induced water potential gradients across the leaf (ΔΨ leaf). Because arbuscular mycorrhizal (AM) symbiosis often increases g s in the plant host, we tested whether the symbiosis affects leaf hydraulic homeostasis. Specifically, we tested whether k leaf changes with g s to maintain ΔΨ leaf or whether ΔΨ leaf differs when g s differs in AM and non-AM plants. Colonization of squash plants with Glomus intraradices resulted in increased g s relative to non-AM controls, by an average of 27% under amply watered, unstressed conditions. Stomatal conductance was similar in AM and non-AM plants with exposure to NaCl stress. Across all AM and NaCl treatments, k leaf did change in synchrony with g s (positive correlation of g s and k leaf), corroborating leaf tendency toward hydraulic homeostasis under varying rates of transpirational water loss. However, k leaf did not increase in AM plants to compensate for the higher g s of unstressed AM plants relative to non-AM plants. Consequently, ΔΨ leaf did tend to be higher in AM leaves. A trend toward slightly higher ΔΨ leaf has been observed recently in more highly evolved plant taxa having higher productivity. Higher ΔΨ leaf in leaves of mycorrhizal plants would therefore be consistent with the higher rates of gas exchange that often accompany mycorrhizal symbiosis and that are presumed to be necessary to supply the carbon needs of the fungal symbiont.  相似文献   

4.
The responses of water relations, stomatal conductance (gs) and growth parameters of tomato (Lycopersicon esculentum Mill. cv. Royesta) plants to nitrogen fertilisation and drought were studied. The plants were subjected to a long-term, moderate and progressive water stress by adding 80 % of the water evapotranspirated by the plant the preceding day. Well-watered plants received 100 % of the water evapotranspirated. Two weeks before starting the drought period, the plants were fertilised with Hoagland’s solution with 14, 60 and 110 mM NO3 (N14, N60 and N110, respectively). Plants of the N110 treatment had the highest leaf area. However, gs was higher for N60 plants and lower for N110 plants. At the end of the drought period, N60 plants showed the lowest values of water potential (Ψw) and osmotic potential (Ψs), and the highest values of pressure potential (Ψp). N60 plants showed the highest Ψs at maximum Ψp and the highest bulk modulus of elasticity.  相似文献   

5.
We examined the responses of two tree fern species (Dicksonia antarctica and Cyathea australis) growing under moderate and high light regimes to short-term water deficit followed by rewatering. Under adequate water supply, morphological and photosynthetic characteristics differed between species. D. antarctica, although putatively the more shade and less drought adapted species, had greater chlorophyll a/b ratio, and greater water use efficiency and less negative δ13C. Both species were susceptible to water deficit regardless of the light regime showing significant decreases in photosynthetic parameters (A max, V cmax, J max) and stomatal conductance (g s ) in conjunction with decreased relative frond water content (RWC) and predawn frond water potential (Ψpredawn). During the water deficit period, decreases in g s in both species started one day later, and were at lower soil water content, under moderate light compared with high light. D. antarctica under moderate light was more vulnerable to drought than all other plants as was indicated by greater decreases in Ψpredawn, lowest stomatal conductance, and photosynthetic rates. Both tree fern species were able to recover after a short but severe water stress.  相似文献   

6.
In sunflower (Helianthus annuus L.) grown under controlled conditions and subjected to drought by withholding watering, net photosynthetic rate (P N) and stomatal conductance (g s) of attached leaves decreased as leaf water potential (Ψw) declined from −0.3 to −2.9 MPa. Although g s decreased over the whole range of Ψw, nearly constant values in the intercellular CO2 concentrations (C i) were observed as Ψw decreased to −1.8 MPa, but C i increased as Ψw decreased further. Relative quantum yield, photochemical quenching, and the apparent quantum yield of photosynthesis decreased with water deficit, whereas non-photochemical quenching (qNP) increased progressively. A highly significant negative relationship between qNP and ATP content was observed. Water deficit did not alter the pyridine nucleotide concentration but decreased ATP content suggesting metabolic impairment. At a photon flux density of 550 μmol m−2 s−1, the allocation of electrons from photosystem (PS) 2 to O2 reduction was increased by 51 %, while the allocation to CO2 assimilation was diminished by 32 %, as Ψw declined from −0.3 to −2.9 MPa. A significant linear relationship between mean P N and the rate of total linear electron transport was observed in well watered plants, the correlation becoming curvilinear when water deficit increased. The maximum quantum yield of PS2 was not affected by water deficit, whereas qP declined only at very severe stress and the excess photon energy was dissipated by increasing qNP indicating that a greater proportion of the energy was thermally dissipated. This accounted for the apparent down-regulation of PS2 and supported the protective role of qNP against photoinhibition in sunflower.  相似文献   

7.
Sap flow rate (Qw) and leaf water potential (Ψw.leaf) in adult specimens of birch (Betula) and oak (Quercus) were measured under contrasting soil moisture conditions (Ψw.sofl). With sufficient soil moisture Qw reached about 250 cm3h−1 calculated per unit tree-trunk segment as given by 1 cm length of its circumference. In soil water-stress conditions (when Ψw.leaf = = −15 × 105Pa), birch stopped transpiration and wilted. Oak transpired even when Ψw.leaf fell below −20 × 105Pa. The relation between Qw and Ψw.leaf was always linear and with various Ψw.soil differed in the slopes of regression lines only. Hydraulic conductance (Kwcu) with nonlimiting moisture conditions reached about 6 × 10−9m3 10−5Pa−1s−1 and “conductivity” (“kwa”) when calculated per leaf area unit reached about 23 m 10−5Pa−1s−1. Kwcu and “kwa” were of about one half to nine times greater in birch than in oak. On the basis of relations between Ψw.soil at various depths, Ψw.leaf and Qw (resp. Kw) it is possible to assess the maximal rooting depth and the effective depth where the maximum of absorption of roots occurs. It is to be seen that the root system macrostructure substantially participates in the drought avoidance of adult trees in a forest stand.  相似文献   

8.
Stomatal closure and metabolic impairment under drought stress limits photosynthesis. The objective of this study was to determine major stomatal and metabolic factors involved in photosynthetic responses to drought and recovery upon re‐watering in a C3 perennial grass species, Kentucky bluegrass (Poa pratensis L.). Two genotypes differing in drought resistance, ‘Midnight’ (tolerant) and ‘Brilliant’ (sensitive), were subjected to drought stress for 15 days and then re‐watered for 10 days in growth chambers. Single‐leaf net photosynthetic rate (A), stomatal conductance (gs) and transpiration rate (Tr) decreased during drought, with a less rapid decline in ‘Midnight’ than in ‘Brilliant’. Photochemical efficiency, Rubisco activity and activation state declined during drought, but were significantly higher in ‘Midnight’ than in ‘Brilliant’. The relationship between A and internal leaf CO2 concentration (A/Ci curve) during drought and re‐watering was analyzed to estimate the relative influence of stomatal and non‐stomatal components on photosynthesis. Stomatal limitation (Ls %), non‐stomatal limitation (Lns %), CO2 compensation point (CP) and dark respiration (Rd) increased with stress duration in both genotypes, but to a lesser extent in ‘Midnight’. Maximum CO2 assimilation rate (Amax), carboxylation efficiency (CE) and mesophyll conductance (gm) declined, but ‘Midnight’ had significantly higher levels of Amax, CE and gm than ‘Brilliant’. Maximum carboxylation rate of Rubisco (Vcmax) and ribulose‐1,5‐bisphospate (RuBP) regeneration capacity mediated by maximum electron transport rate (Jmax) decreased from moderate to severe drought stress in both genotypes, but to a greater extent in ‘Brilliant’ than in ‘Midnight’. After re‐watering, RWC restored to about 90% of the control levels in both genotypes, whereas A, gs, Tr and Fv/Fm was only partially recovered, with a higher recovery level in ‘Midnight’ than in ‘Brilliant’. Rubisco activity and activation state restored to the control level after re‐watering, with more rapid increase in ‘Midnight’ than in ‘Brilliant’. The values of Ls, Lns, CP and Rd declined, and Amax, CE, Vcmax, Jmax and gm increased after re‐watering, with more rapid change in all parameters in ‘Midnight’ than in ‘Brilliant’. These results indicated that the maintenance of higher A and Amax under drought stress in drought‐tolerant Kentucky bluegrass could be attributed to higher Rubico activation state, higher CE and less stomatal limitation. The ability to resume metabolic activity (Amax, CE, Fv/Fm and Rubisco) was observed in the drought‐tolerant genotype and is the most likely cause for the increased recuperative ability of photosynthesis. Incomplete recovery of photosynthesis upon re‐watering could be attributable to lasting stomatal limitations caused by severe drought damage in both genotypes. Promoting rapid stomatal recovery from drought stress may be critical for plants to resume full photosynthetic capacity in C3 perennial grass species.  相似文献   

9.
Three- and four-year-old potted, greenhouse-grown cedar seedlings were subjected to two different watering regimes: half received full water supply and the other half was submitted to moderate drought (50% of the full water supply). Height growth was the greatest for C. atlantica and the most-limited for C. brevifolia in the well-watered set. However, in the dry set, height growth was less affected by drought conditions for C. brevifolia than for C. atlantica. Cedrus libani gave intermediate results for both watering regimes. Moderate drought provoked a decrease in osmotic potential at full leaf turgor and a long-lasting osmotic adjustment. When irrigation was withheld completely to induce severe soil drying, gas exchange decreased and then stopped at predawn water potentials of −3.0 MPa for C. brevifolia, between −2.6 and −2.8 MPa for C. libani, and at −2.4 MPa for C. atlantica, irrespective of watering regime. For all species, the dry set showed lower net photosynthesis (A) and stomatal conductance (g s) than the plants in the well-watered set. A and g s responded to variations in atmospheric water-vapour pressure deficit (VPD). As VPD increased, A and g s decreased, and this trend was proportionate to initial values at low VPD, but remained independent of previous watering treatments, plant water status or species. To conclude, C. brevifolia appears to be a species with limited growth potential but strong soil drought tolerance whereas C. atlantica has strong growth potential when an adequate water supply is available but is more sensitive to soil drought. C. libani shows an intermediate behaviour for growth and drought tolerance.  相似文献   

10.
Differences in abscisic acid (ABA) accumulation between two olive cultivars were studied by enzyme-linked immunosorbent assay in roots and leaves, leaf water potential (Ψl), stomatal conductance (g s) as well as photosynthetic rate (A) were also determined in well-watered (WW) and water-stressed (WS) plants of two olive cultivars ‘Chemlali’ and ‘Chetoui’. ‘Chemlali’ was able to maintain higher leaf CO2 assimilation rate and leaf stomatal conductance throughout the drought cycle when compared with ‘Chetoui’. Furthermore, leaf water potential of ‘Chemlali’ decreased in lower extent than in Chetoui in response to water deficit. Interestingly, significant differences in water-stress-induced ABA accumulation were observed between the two olive cultivars and reflect the degree of stress experienced. Chemlali, a drought tolerant cultivar, accumulated lower levels of ABA in their leaves to regulate stomatal control in response to water stress compared to the drought sensitive olive cultivar ‘Chetoui’ which accumulated ABA in large amount.  相似文献   

11.
Leaf water characteristics and drought acclimation in sunflower genotypes   总被引:1,自引:0,他引:1  
Maury  P.  Berger  M.  Mojayad  F.  Planchon  C. 《Plant and Soil》2000,223(1-2):155-162
The responses of leaf water parameters to drought were examined using three sunflower (Helianthus annuus L.) genotypes. Osmotic potential at full water saturation (π100), apoplastic water fraction (AWF) and bulk elastic modulus (BEM) were determined by pressure-volume curve analysis on well watered or on water-stressed plants (−1.0 MPa Ψ1 < −1.5 MPa) previously drought-pretreated or not. The drought-pretreated plants were subjected to a 7-day drought period (predawn leaf water potential reached −0.9 MPa) followed by 8 days of rewatering. In well watered plants, all genotypes in response to drought acclimation displayed a significantly decreased π100 associated with a decrease in the leaf water potential at the turgor-loss point (decrease in Ψtlp was between 0.15 and 0.21 MPa, depending on the genotype). In two genotypes, drought acclimation affected the partitioning of water between the apoplastic and symplastic fractions without any effect on the total amount of water in the leaves. As a third genotype displayed no modification of AWF and BEM after drought acclimation, the decreased π100 was only due to the net accumulation of solutes and was consistent with the adjustment of the photochemical efficiency observed previously in this genotype in response to drought acclimation. In water-stressed plants, the osmotic adjustment (OA) can increase further beyond that observed in response to the drought pretreatment. However, the maintenance of photosynthetic rate and stomatal conductance at low leaf water potentials not only depends on the extent of osmotic adjustment, but also on the interaction between OA and AWF or BEM. Adaptative responses of leaf water parameters to drought are thus quite contrasted in sunflower genotypes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in three Pinus radiata clones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction in Kroot‐r caused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease in Kplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery of Kroot‐r and gs. Our results demonstrated that the reduction in Kplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleaf as water stress started. We concluded that higher Kplant‐l is associated with water stress resistance by sustaining a less negative Ψleaf and delaying stomatal closure.  相似文献   

13.
A comparative study on stomatal control under water deficit was conducted on grapevines of the cultivars Grenache, of Mediterranean origin, and Syrah of mesic origin, grown near Montpellier, France and Geisenheim, Germany. Syrah maintained similar maximum stomatal conductance (gmax) and maximum leaf photosynthesis (Amax) values than Grenache at lower predawn leaf water potentials, Ψleaf, throughout the season. The Ψleaf of Syrah decreased strongly during the day and was lower in stressed than in watered plants, showing anisohydric stomatal behaviour. In contrast, Grenache showed isohydric stomatal behaviour in which Ψleaf did not drop significantly below the minimum Ψleaf of watered plants. When g was plotted versus leaf specific hydraulic conductance, Kl, incorporating leaf transpiration rate and whole‐plant water potential gradients, previous differences between varieties disappeared both on a seasonal and diurnal scale. This suggested that isohydric and anisohydric behaviour could be regulated by hydraulic conductance. Pressure‐flow measurements on excised organs from plants not previously stressed revealed that Grenache had a two‐ to three‐fold larger hydraulic conductance per unit path length (Kh) and a four‐ to six‐fold larger leaf area specific conductivity (LSC) in leaf petioles than Syrah. Differences between internodes were only apparent for LSC and were much smaller. Cavitation detected as ultrasound acoustic emissions on air‐dried shoots showed higher rates for Grenache than Syrah during the early phases of the dry‐down. It is hypothesized that the differences in water‐conducting capacity of stems and especially petioles may be at the origin of the near‐isohydric and anisohydric behaviour of g.  相似文献   

14.
 Light saturated photosynthesis (A) in field saplings of shade tolerant, intermediate, and intolerant tree species was analyzed for stomatal and nonstomatal limitations to test differences between species and sun and shade phenotypes during drought. Throughout the study, photosynthesis was highest and mesophyll limitations of A (Lm) lowest in the intolerant species in both open and understory habitats. The shade tolerant species exhibited the only drought-related decreased A and increased Lm in the open, and the greatest drought-related decreased A and increased Lm in the understory. Few species exhibited significant habitat or drought-related differences in stomatal conductance to CO2 (gc), but even slight decreases in gc during drought were associated with large increases in stomatal limitations to A (Lg). Combined changes in Lm and Lg resulted in increased relative stomatal limitation to A (l g) in several species during drought. Nevertheless, the overall lack of stomatal closure allowed for nonstomatal limitations to play a major role in reduced A during drought. Higher leaf N was associated with shallower slope of the l g versus gc relationship, an indication of greater A capacity. Photosynthetic capacity tended to be greater in the intolerant species than the tolerant species, and it tended to decrease during drought primarily in the shade tolerant species in the understory. Findings in the literature suggest that carbon reduction reactions may be more susceptible to drought than photosynthetic light reactions. If so, reduced carbon reduction capacity of shade tolerant species or shade phenotypes may predispose them to drought conditions, which suggests a mechanism behind the well-recognized tradeoff between drought tolerance and shade tolerance of temperate tree species. Received: 20 October 1995 / Accepted: 20 February 1996  相似文献   

15.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

16.
The water potential at turgor loss point (Ψtlp) has been suggested as a key functional trait for determining plant drought tolerance, because of its close relationship with stomatal closure. Ψtlp may indicate drought tolerance as plants, which maintain gas exchange at lower midday water potentials as soil water availability declines also have lower Ψtlp. We evaluated 17 species from seasonally dry habitats, representing a range of life‐forms, under well‐watered and drought conditions, to determine how Ψtlp relates to stomatal sensitivity (pre‐dawn water potential at stomatal closure: Ψgs0) and drought strategy (degree of isohydry or anisohydry; ΔΨMD between well‐watered conditions and stomatal closure). Although Ψgs0 was related to Ψtlp, Ψgs0 was better related to drought strategy (ΔΨMD). Drought avoiders (isohydric) closed stomata at water potentials higher than their Ψtlp; whereas, drought tolerant (anisohydric) species maintained stomatal conductance at lower water potentials than their Ψtlp and were more dehydration tolerant. There was no significant relationship between Ψtlp and ΔΨMD. While Ψtlp has been related to biome water availability, we found that Ψtlp did not relate strongly to stomatal closure or drought strategy, for either drought avoiders or tolerators. We therefore suggest caution in using Ψtlp to predict vulnerability to drought.  相似文献   

17.
In summer seasons of 1991 and 1992 the gas exchange and leaf water relations were analysed in two peanut cultivars: drought tolerant cv. GG 2 (DT) and drought sensitive cv. JL 24 (DS). Soil moisture stress was imposed by withholding irrigation at pod development phase. The decrease in photosynthesis (PN) under stress was associated with a decrease in stomatal conductance (gs) and relative water content (RWC). The PN and RWC were significantly higher under stress in DT than DS. On relief of stress the gs and RWC recovered more quickly in DT than DS. The maintenance of higher RWC (>80 %), gs and PN under stress appears to be imparting drought tolerance in peanut.  相似文献   

18.
Spatial and daily variation in photosynthetic water-use efficiency was examined in leaves of Betula pendula Roth with respect to distribution of hydraulic conductance within the crown, morphological properties of stomata, and water availability. Intrinsic water-use efficiency (A n/g s) was determined from gas-exchange measurements performed both in situ in a natural forest stand and on detached shoots under laboratory conditions. In intact foliage, sun leaves demonstrated significantly higher (P < 0.001) A n/g s than shade leaves, as photosynthesis in the lower canopy was chronically limited by low light availability. However, this difference reversed in the mid-day period under sufficient irradiance (I > 800 μmol m−2 s−1): A n/g s averaged 28.8 and 24.0 μmol mol−1 (P < 0.01) for shade and sun leaves, respectively. This last finding coincided with the data obtained in laboratory conditions: under equivalent leaf water supply and light, A n/g s in shade foliage was greater (P < 0.001) than in sun foliage across a wide range of irradiance. Thus, shade foliage of B. pendula is characterized by inherently higher A n/g s than sun foliage, associated with more conservative stomatal behavior, and lower soil-to-leaf (K T) and leaf hydraulic conductances. Under unlimited light conditions, a within-crown trade-off between A n/g s and K T becomes apparent. Differences in stomatal conductance between the detached shoots from sunlit and shaded canopy layers were largely attributable to the variation in stomatal morphology; significant relationships were established with characteristics combining stomatal size and density (relative stomatal surface, stomatal pore area index). Stomatal morphology is very likely involved in long-term adjustment of photosynthetic WUE.  相似文献   

19.
A gradual reduction in leaf water potential (Ψleaf), net photosynthetic rate (P N), stomatal conductance, and transpiration rate was observed in two drought tolerant (C 306 and K 8027) and two susceptible (RW 893 and 899) genotypes subjected to water stress. The extent of reduction was lower in K 8027 and C 306 and higher in RW 893 and RW 899. Rewatering the plants after 5 d of stress restored P N and other gas exchange traits in all four cultivars. Water stress had no significant effect on variable to maximum fluorescence ratio (Fv/Fm) indicating that water stress had no effect on primary photochemistry of photosystem 2 (PS2). However, water stress reduced the efficiency of excitation energy transfer (F′v/F′m) and the quantum yield of electron transport (ΦPS2). The reduction was more pronounced in susceptible cultivars. Water stress had no significant effect on photochemical quenching, however, the non-photochemical quenching increased by water stress.  相似文献   

20.
The effects of drought on photochemical efficiency of PSII in leaves of 22 hybrids of Festuca pratensis × Lolium multiflorum and Festuca pratensis × Lolium perenne and of Festuca pratensis cv. Skra were investigated. A significant decrease of electron transport efficiency (about 25%) in PSII (ΦPSII) was not found before 9 days of seedling growth in hydroponics with water potential (Ψw) equal to −0.8 MPa (simulated “soil drought”). The decrease of ΦPSII was similarly related to that of excitation energy capture by open PSII reaction centre (Fv’/Fm’) and also to the decrease of the proportion of oxidized to reduced QA (photochemical fluorescence quenching, qp). According to the drought prolongation, variation of all parameters of fluorescence between genotypes significantly increased. The seedlings of some genotypes were able to recover electron transport efficiency in PSII after increasing water potential in nutrient solution (removing the “soil drought”). When plants grew in containers with soil and 4 genotypes with the highest sensitivity of electron transport to drought (S) as well as 4 genotypes with the highest tolerance (T) were compared 17 days after watering ceased, Ψw in leaves considerably decreased, but the differences between S and T genotypes were often not significant in this respect. The differences between S and T genotypes, as values of Fv/Fm were concerned, also appeared small (about 5%), similarly as that of Fv’/Fm’ (5%), qp (12%) and ΦPSII (about 15%). Drought stress increased non-photochemical quenching of chlorophyll fluorescence (NPQ) 15 to 47% and this could protect the PSII reaction centres from damages because of energy excess. The increase of NPQ was not closely connected with drought resistance of plants because it was similar in some genotypes tolerant to dehydration as well as in sensitive ones. The results of the experiments suggest that resources of genetic variability in Festulolium may be sufficient for revealing differences between genotypes on the basis of measurement of chlorophyll a fluorescence, as far as their tolerance to soil drought is concerned. As the tolerance of PSII against drought is high, the determinations of fluorescence should be performed rather under severe stress. Such methods seem to be useful for selection of genotypes with high drought tolerance as well as with the ability to at least partial repairing of PSII after drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号