首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
A method for quantifying bacterial populations introduced into an activated-sludge microbial community is described. The method involves extraction of DNA from activated sludge, appropriate dilution of the extracted DNA with DNA extracted from nonintroduced activated sludge, PCR amplification of a gyrB gene fragment from the introduced strain with a set of strain-specific primers, and quantification of the electrophoresed PCR product by densitometry. The adequacy of the method was examined by analyzing the population dynamics of two phenol-degrading bacteria, Pseudomonas putida BH and Comamonas sp. strain E6, that had been introduced into phenol-digesting activated sludge. The density of each of the two populations determined by the PCR method immediately after the introduction was consistent with the density estimated from a plate count of the inoculum. This quantitative PCR method revealed different population dynamics for the two strains in the activated sludge under different phenol-loading conditions. The behavior of both of these strains in the activated sludge reflected the growth kinetics of the strains determined in laboratory axenic cultures.  相似文献   

2.
AIMS: To investigate the molecular characterization of Bacillus anthracis strains by multiplex PCR, enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) and random amplification of polymorphic DNA (RAPD). METHODS AND RESULTS: Three primers were used to amplify the cya, cap and cereolysinAB genes in the multiplex PCR. Two distinct ERIC-PCR and RAPD fragments, which separated B. anthracis into two groups, were used as probes in Southern hybridization experiments. The probes hybridized only to the cya+ B. anthracis strains identified by the multiplex PCR. Nucleotide sequence analysis of the two cloned fragments showed they were from the pXO1 plasmid of B. anthracis. CONCLUSION: Multiplex PCR simultaneously identified isolates of the Bacillus cereus group and the B. anthracis virulence factors. ERIC-PCR and RAPD, combined with the Southern hybridization analyses, differentiated B. anthracis strains and separated them from the closely related B. cereus group bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: ERIC-PCR and RAPD assay could be effective in differentiating virulent from avirulent B. anthracis. Our results also show that the amplification of the large plasmids was allowed in the ERIC-PCR and RAPD assay.  相似文献   

3.
Aims:  To use real-time PCR for the detection of bacterial bioterror agents in a liquid air sample containing potential airborne interferences, including bacteria, without the need for DNA extraction.
Methods and Results:  Bacteria in air were isolated after passive sedimentation onto R2A agar plates and characterized by 16S rRNA sequencing. Real-time PCR was used to identify different bacterial bioterror agents in an artificial air sample consisting of a liquid air sample and a mixture of miscellaneous airborne bacteria showing different colony morphology on R2A agar plates. No time-consuming DNA extraction was performed. Specifically designed fluorescent hybridization probes were used for identification.
Conclusions:  Fourteen different bacterial genera were classified by 16S rRNA gene sequencing of selected bacterial colonies showing growth on R2A agar plates. Real-time PCR amplification of all the bacterial bioterror agents was successfully obtained in the artificial air sample containing commonly found airborne bacteria and other potential airborne PCR interferences.
Significance and Impact of the Study:  Bacterial bioterror agents can be detected within 1 h in a liquid air sample containing a variety of commonly found airborne bacteria using real-time PCR. Airborne viable bacteria at Kjeller (Norway) were classified to the genera level using 16S rRNA gene sequencing.  相似文献   

4.
T C Reif  M Johns  S D Pillai    M Carl 《Applied microbiology》1994,60(5):1622-1625
Anthrax is a fatal infection of humans and livestock that is caused by the gram-positive bacterium Bacillus anthracis. The virulent strains of B. anthracis are encapsulated and toxigenic. In this paper we describe the development of a PCR technique for identifying spores of B. anthracis. Two 20-mer oligonucleotide primers specific for the capB region of 60-MDa plasmid pXO2 were used for amplification. The amplification products were detected by using biotin- and fluorescein-labeled probes in a novel dual-probe hybridization format. Using the combination of PCR amplification and dual-probe hybridization, we detected two copies of the bacterial genome. Because the PCR assay could detect a minimum of 100 unprocessed spores per PCR mixture, we attempted to facilitate the release of DNA by comparing the effect of limited spore germination with the effect of mechanical spore disruption prior to PCR amplification. The two methods were equally effective and allowed us to identify single spores of B. anthracis in PCR mixtures.  相似文献   

5.
We describe a quantitative analysis of the genetic diversity of phenol-degrading potential in bacterial communities from laboratory-scale activated sludge. Genomic DNA extracted from activated sludge from two sequential batch reactors fed with synthetic sewage plus phenol was amplified using conserved primers for the major subunit of the phenol hydroxylase (LmPH) gene and used to generate clone libraries. Following phylogenetic analysis, 59 sequences containing a 470-bp fragment clustered into six distinct subgroups with a genetic distance of 8%, most likely representing ecologically relevant variants of the enzyme. Seven sets of primers were designed to target the six clusters and used to obtain quantitative information on the dynamics of LmPH gene diversity using real-time PCR assays throughout 9 months of bioreactors operation. Total LmPH gene copy number remained approximately steady in phenol-amended and control reactors. However, a significant increase in phenol-degrading activity in the phenol-amended sludge was accompanied by a parallel increase in LmPH gene diversity, suggesting that phenol degradation in the activated sludge depends on the combined activity of a number of redundant species.  相似文献   

6.
Aims:  To detect and quantify Lactobacillus buchneri in plant samples with the aid of polymerase chain reaction (PCR) methods.
Methods and Results:  DNA from silage samples spiked with different amounts of L. buchneri cells was isolated using a lysozyme/sodium dodecyl sulfate lysis and phenol/chloroform extraction method. The DNA served as a template for PCR amplification with primers specific for the bacterium. The primers were developed by comparison of 16S rDNA sequences from different lactic acid bacteria (LAB) and testing for specificity with 11 different strains of LAB. As few as 100 L. buchneri colony-forming units per gram of silage could be detected. Additionally, the technique was successfully applied to quantify the population of L. buchneri in two cultivars of corn with or without inoculation.
Conclusions:  The PCR assay provided a specific and rapid tool for identifying and enumerating L. buchneri in silage samples.
Significance and Impact of the Study:  The use of microbial inoculants for silage production is a safe and environment friendly practice, but the full potential of such additives can only be achieved with a better understanding of the fate and activity of the microbes involved. The current study describes a methodology to detect and enumerate L. buchneri , a micro-organism used as an inoculant.  相似文献   

7.
PCR-based genomic fingerprinting by use of enterobacterial repetitive intergenic consensus primers (ERIC-PCR) was evaluated for its use in fingerprinting DNA of mixed Gram-negative bacterial strains and BIOLOG Gram-negative (GN) microplate substrate communities. ERIC-PCR fingerprints of six different pure bacterial strains and a combined mixture of the strains were compared with fingerprints obtained by two more established methods: amplified ribosomal DNA restriction analysis (ARDRA) and random amplified polymorphic DNA analysis (RAPD-PCR). The ERIC-PCR fingerprint of the mixed strains was highly reproducible and was more species-specific and representative of the individual strain fingerprints than the ARDRA and RAPD-PCR fingerprints, respectively. ERIC-PCR fingerprinting of model and rhizosphere BIOLOG GN substrate communities also provided clearly distinguishable fingerprints. Results of this study suggest that ERIC-PCR represents a rapid and highly discriminating method for fingerprinting DNA of mixed Gram-negative bacterial strains and BIOLOG GN substrate communities. Received: 11 September 1998 / Accepted: 29 October 1998  相似文献   

8.
Conjugative plasmids in multi-resistant bacterial isolates from Indian soil   总被引:2,自引:0,他引:2  
Aims:  Determination of heavy metal and antibiotic resistance and presence of conjugative plasmids in bacteria isolated from soil irrigated with wastewater.
Methods and Results:  Composite soil samples were collected from Ghaziabad, Uttar Pradesh, India. Forty different bacteria were selected from nutrient agar and characterized by morphological, cultural and biochemical tests. All the isolates were tested for their resistance to different heavy metals and antibiotics. The DNA derived from multiple metal and antibiotic-resistant bacterial isolates was PCR amplified and plasmid-specific sequences (IncP, IncN, IncW, IncQ and pMV158-type) were analysed by dot blot hybridization. All isolates gave PCR products with trfA2 and oriT primers of the IncP group. These PCR products also hybridized with the RP4-derived probes. However, the samples were negative for all the other investigated plasmids as proved by PCR and dot blots.
Conclusions:  The presence of conjugative/mobilizable IncP plasmids in the isolates indicates that these bacteria have gene-mobilizing capacity with implications for potential dissemination of introduced recombinant DNA.
Significance and Impact of the Study:  The detection of IncP plasmids in all the bacterial isolates is another proof for the prevalence of these plasmids. We propose that IncP plasmids are mainly responsible for the spread of multi-resistant bacteria in these soils.  相似文献   

9.
建立一种不依赖纯培养 ,可以在废水处理工业现场使用的监测微生物群落结构变化的分子技术。以处理焦化工业废水(A2 /O生物膜工艺 )不同构筑物中的悬浮污泥的微生物群落为研究对象 ,每周采样 1次 ,连续 4周。获得悬浮污泥总 DNA的ERIC- PCR指纹图谱 ,结合分子杂交进一步区分相同条带间的不同序列信息。结果表明 ,在缺氧池 (A2池 )和好氧池 (O池 )之间 ,各个采样点的 ERIC- PCR图谱差异不大 ,悬浮污泥在各构筑物之间交流充分 ;同一采样点的图谱在不同采样时期具有明显差异 ,显示了在此期间微生物群落的连续动态变化过程。通过对生物膜系统中悬浮污泥的微生物群落结构的指纹图谱分析 ,可开发出对该系统微生物群落结构动态变化进行检测的技术  相似文献   

10.
采用苯酚羟化酶基因特异引物检测苯酚降解菌   总被引:18,自引:2,他引:16  
根据苯酚羟化酶基因高度保守序列设计了一对该基因的特异PCR引物。采用该特异引物从苯酚降解菌醋酸钙不动杆菌 (Acinetobactercalcoaceticus)PHEA 2的总DNA中扩增到唯一一条大小为 684bp的片段。该DNA片段与已知的A .calcoaceticusNCIB82 50的苯酚羟化酶基因具有高度的同源性 ,其核苷酸序列的同源性为 84% ,推导的氨基酸序列的同源性为 98%。对苯酚和非苯酚降解菌株的PCR扩增结果表明 :所有苯酚降解菌均能扩增出 684bp的特征片段 ,而非苯酚降解菌则无PCR条带。对炼焦废水中的细菌群落进行PCR扩增和生化特性检测表明 :显示 684bp特征片段的菌株均具有苯酚降解特性。上述结果表明 ,利用苯酚羟化酶基因的特异引物可对环境中的苯酚降解菌株进行准确快速的PCR检测。  相似文献   

11.
Aims:  The focus of this study was to identify a bacterial 16S rRNA gene sequence, unique to microbiota in the human gut, for use in development of a dependable PCR assay to detect human faecal pollution in water.
Methods and Results:  Suppression subtractive hybridization (SSH) and bioinformatics were used to identify a genetic marker, within the 16S rRNA gene of Faecalibacterium , for the detection of human faeces. DNA sequencing analysis demonstrated that a majority (16) of 74 clones of the SSH library contained insertion sequences identified as Faecalibacterium 16S rRNA genes . Human faeces-specific sequences were derived and six PCR primer sets designed and tested against faecal DNA samples from human and nonhuman sources. One PCR primer set, HFB-F3 and HFB-R5, was exclusively associated with human faeces. These primers generated a human faeces-specific amplicon of 399 bp from 60·2% of human faecal samples and 100% of sewage samples.
Conclusions:  The subject Faecalibacterium marker is specific for sewage.
Significance and Impact of the Study:  This study represents the initial report of a Faecalibacterium marker for human faeces, which may prove useful for microbial source tracking.  相似文献   

12.
Aims:  To develop a scanning electron microscopic approach using in situ hybridization (SEM–ISH) for gaining both genetic and morphological information about target bacteria.
Methods and Results:  Target cells were hybridized with DNA-targeted polynucleotide probes, and a tyramide signal amplification system was used to increase the sensitivity. The protocol of SEM–ISH enabled to detect low copy number target DNA sequences in individual cells.
Conclusions:  SEM–ISH allowed the in situ detection of bacteria carrying a specific gene.
Significance and Impact of the Study:  Combining morphological study with SEM and ISH techniques appears to be a valuable tool to understand the spatial distribution of target cells in complex microbial communities on various materials.  相似文献   

13.
Aims:  A PCR technique was developed as a reliable and rapid identification method for the Bacillus cereus group species, based on a unique conserved sequence of the motB gene (encoding flagellar motor protein) from B. cereus , Bacillus thuringiensis and Bacillus anthracis .
Methods and Results:  Primer locations were identified against eight strains of the B. cereus group spp. from nucleotide sequences available in the National Centre for Biotechnology Information database. The PCR assay was applied for the identification of 117 strains of the B. cereus group spp. and 19 strains from other microbial species, with special emphasis on foodborne pathogens.
Conclusion:  The designed cross-species primers are group specific and did not react with DNA from other Bacillus and non- Bacillus species either motile or not. The primers system enabled us to detect 103 CFU of B. cereus cells per millilitre of sample.
Significance and Impact of the Study:  Bacillus cereus group spp. belongs to one of the most prevalent foodborne pathogens. Bacterial growth results in production of different toxins; therefore, consumption of food containing >106 bacteria per gram may result in emetic and diarrhoeal syndromes. A rapid and sensitive bacterial detection method is significant for food safety.  相似文献   

14.
Activated sludge was fed phenol as the sole carbon source, and the phenol-loading rate was increased stepwise from 0.5 to 1.0 g liter-1 day-1 and then to 1.5 g liter-1 day-1. After the loading rate was increased to 1.5 g liter-1 day-1, nonflocculating bacteria outgrew the sludge, and the activated-sludge process broke down within 1 week. The bacterial population structure of the activated sludge was analyzed by temperature gradient gel electrophoresis (TGGE) of PCR-amplified 16S ribosomal DNA (rDNA) fragments. We found that the population diversity decreased as the phenol-loading rate increased and that two populations (designated populations R6 and R10) predominated in the sludge during the last several days before breakdown. The R6 population was present under the low-phenol-loading-rate conditions, while the R10 population was present only after the loading rate was increased to 1.5 g liter-1 day-1. A total of 41 bacterial strains with different repetitive extragenic palindromic sequence PCR patterns were isolated from the activated sludge under different phenol-loading conditions, and the 16S rDNA and gyrB fragments of these strains were PCR amplified and sequenced. Some bacterial isolates could be associated with major TGGE bands by comparing the 16S rDNA sequences. All of the bacterial strains affiliated with the R6 population had almost identical 16S rDNA sequences, while the gyrB phylogenetic analysis divided these strains into two physiologically divergent groups; both of these groups of strains could grow on phenol, while one group (designated the R6F group) flocculated in laboratory media and the other group (the R6T group) did not. A competitive PCR analysis in which specific gyrB sequences were used as the primers showed that a population shift from R6F to R6T occurred following the increase in the phenol-loading rate to 1.5 g liter-1 day-1. The R10 population corresponded to nonflocculating phenol-degrading bacteria. Our results suggest that an outbreak of nonflocculating catabolic populations caused the breakdown of the activated-sludge process. This study also demonstrated the usefulness of gyrB-targeted fine population analyses in microbial ecology.  相似文献   

15.
Aims:  The aim of this study was to determine the genetic variability in Aspergillus flavus populations from Brazil nut and cashew and develop a polymerase chain reaction (PCR) detection method.
Methods and Results:  Chomatography analysis of 48 isolates identified 36 as aflatoxigenic (75%). One hundred and forty-one DNA bands were generated with 11 random amplified polymorphic DNA (RAPD) primers and analysed via unweighted pair group analysis, using arithmetic means (UPGMA). Isolates grouped according to host, with differentiation of those from A. occidentale also according to geographical origin. Aspergillus flavus -specific PCR primers ASPITSF2 and ASPITSR3 were designed from ribosomal DNA internal transcribed spacers (ITS 1 and 2), and an internal amplification control was developed, to prevent false negative results. Specificity to only A. flavus was confirmed against DNA from additional aspergilli and other fungi.
Conclusions:  RAPD-based characterization differentiated isolates according to plant host. The PCR primer pair developed showed specificity to A. flavus , with a detection limit of 10 fg.
Significance and Impact of the Study:  Genetic variability observed in A. flavus isolates from two Brazilian agroecosystems suggested reproductive isolation. The PCR detection method developed for A. flavus represents progress towards multiplex PCR detection of aflatoxigenic and nonaflatoxigenic strains in Hazard Analysis Critical Control Point systems.  相似文献   

16.
Abstract:  Three specific DNA probes were used for the detection of the nuclear polyhedrosis (NPV) virus of Lymantria dispar ( Ld NPV) genome. Two of these probes, H2 and H3 were obtained by classical cloning method and one (TR6) by polymerase chain reaction (PCR). These probes, used individually or in a pool in the standard slot–blot hybridizations, were able to detect 109 genome copies. By performing 35 cycles of PCR amplification before hybridization with primers specific to Ld NPV genome on DNA extracted from infected larvae, the sensitivity of the hybridization technique was increased, so that as little as 10 copies of the Ld NPV genome could be detected. Using these methods, L. dispar naturally infected by Ld NPV were identified among field populations in Canada and in the United States near the eastern Canadian border. Using a combination of PCR and hybridization, Ld NPV contamination of egg masses were also detected. By disinfecting the eggs with sodium hypochlorite prior to PCR amplification and hybridization, it was also demonstrated that transmission of viral infection in the natural populations is mainly caused by external contamination of the egg and is unlikely to occur through the transovarial route.  相似文献   

17.
A 1 kb DNA band from strains of Brenneria nigrifluens, as shown by amplification of their genomic DNA by polymerase chain reaction (PCR) using minisatellite primer designed on the minisatellite sequence of the M13 phage, was isolated, cloned and sequenced. Specific oligonucleotides (F1–C3) were selected into this 1 kb DNA sequence and used in a PCR assay to detect and identify strains of B. nigrifluens . Several strains of B. nigrifluens were assessed with F1–C3 primers producing a specific band of approximately 250 bp pairs in length. This target was successfully amplified from purified genomic DNA, from bacterial culture and directly from infected walnut bark tissue. No amplification was obtained when the PCR assay was performed on other plant-pathogenic species from the following genera Brenneria, Erwinia, Agrobacterium, Pseudomonas, Ralstonia, Pectobacterium, Xanthomonas and from walnut-associated bacteria, indicating the specificity of these primers. The PCR assay with the primers described here provides a rapid, specific and sensitive diagnostic method for B. nigrifluens and a useful tool for epidemiological studies.  相似文献   

18.
Dispersed repetitive DNA sequences have been described recently in eubacteria. To assess the distribution and evolutionary conservation of two distinct prokaryotic repetitive elements, consensus oligonucleotides were used in polymerase chain reaction [PCR] amplification and slot blot hybridization experiments with genomic DNA from diverse eubacterial species. Oligonucleotides matching Repetitive Extragenic Palindromic [REP] elements and Enterobacterial Repetitive Intergenic Consensus [ERIC] sequences were synthesized and tested as opposing PCR primers in the amplification of eubacterial genomic DNA. REP and ERIC consensus oligonucleotides produced clearly resolvable bands by agarose gel electrophoresis following PCR amplification. These band patterns provided unambiguous DNA fingerprints of different eubacterial species and strains. Both REP and ERIC probes hybridized preferentially to genomic DNA from Gram-negative enteric bacteria and related species. Widespread distribution of these repetitive DNA elements in the genomes of various microorganisms should enable rapid identification of bacterial species and strains, and be useful for the analysis of prokaryotic genomes.  相似文献   

19.
Aims:  To assess the applicability of the 16S–23S rDNA internal spacer regions (ISR) as targets for PCR detection of Azospirillum ssp. and the phytostimulatory plant growth-promoting rhizobacteria seed inoculant Azospirillum lipoferum CRT1 in soil.
Methods and Results:  Primer sets were designed after sequence analysis of the ISR of A. lipoferum CRT1 and Azospirillum brasilense Sp245. The primers fAZO/rAZO targeting the Azospirillum genus successfully yielded PCR amplicons (400–550 bp) from Azospirillum strains but also from certain non- Azospirillum strains in vitro , therefore they were not appropriate to monitor indigenous Azospirillum soil populations. The primers fCRT1/rCRT1 targeting A. lipoferum CRT1 generated a single 249-bp PCR product but could also amplify other strains from the same species. However, with DNA extracts from the rhizosphere of field-grown maize, both fAZO/rAZO and fCRT1/rCRT1 primer sets could be used to evidence strain CRT1 in inoculated plants by nested PCR, after a first ISR amplification with universal ribosomal primers. In soil, a 7-log dynamic range of detection (102–108 CFU g−1 soil) was obtained.
Conclusions:  The PCR primers targeting 16S–23S rDNA ISR sequences enabled detection of the inoculant A. lipoferum CRT1 in field soil.
Significance and Impact of the Study:  Convenient methods to monitor Azospirillum phytostimulators in the soil are lacking. The PCR protocols designed based on ISR sequences will be useful for detection of the crop inoculant A. lipoferum CRT1 under field conditions.  相似文献   

20.

Background  

During the course of a bacterial infection, the rapid identification of the causative agent(s) is necessary for the determination of effective treatment options. We have developed a method based on a modified broad-range PCR and an oligonucleotide microarray for the simultaneous detection and identification of 12 bacterial pathogens at the species level. The broad-range PCR primer mixture was designed using conserved regions of the bacterial topoisomerase genes gyrB and parE. The primer design allowed the use of a novel DNA amplification method, which produced labeled, single-stranded DNA suitable for microarray hybridization. The probes on the microarray were designed from the alignments of species- or genus-specific variable regions of the gyrB and parE genes flanked by the primers. We included mecA-specific primers and probes in the same assay to indicate the presence of methicillin resistance in the bacterial species. The feasibility of this assay in routine diagnostic testing was evaluated using 146 blood culture positive and 40 blood culture negative samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号