首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B. Oliver  N. Perrimon    A. P. Mahowald 《Genetics》1988,120(1):159-171
Females homozygous for sans fille1621 (= fs(1)1621) have an abnormal germ line. Instead of producing eggs, the germ-line cells proliferate forming ovarian tumors or excessive numbers of nurse cells. The Sex-lethal gene product(s) regulate the branch point of the dosage compensation and sex determination pathways in the soma. The role of Sex-lethal in the germ line is not clear but the germ line of females homozygous for female sterile Sex-lethal alleles or germ-line clones of loss-of-function alleles are characterized by ovarian tumors. Females heterozygous for sans fille1621 or Sex-lethal are phenotypically wild type with respect to viability and fertility but females trans-heterozygous for sans fille1621 and Sex-lethal show ovarian tumors, somatic sexual transformations, and greatly reduced viability.  相似文献   

2.
We have analyzed the mechanism of sex determination in the germ line of Drosophila by manipulating three parameters: (1) the ratio of X-chromosomes to sets of autosomes (X:A); (2) the state of activity of the gene Sex-lethal (Sxl), and (3) the sex of the gonadal soma. To this end, animals with a ratio of 2X:2A and 2X:3A were sexually transformed into pseudomales by mutations at the sex-determining genes Sxl (Sex-lethal), tra (transformer), tra-2 (transformer-2), or dsx (double-sex). Animals with the karyotype 2X;3A were also transformed into pseudofemales by the constitutive mutation SxlM1. The sexual phenotype of the gonads and of the germ cells was assessed by phase-contrast microscopy. Confirming the conclusions of Steinmann-Zwicky et al. (Cell 57, 157, 1989), we found that all three parameters affect sex determination in germ cells. In contrast to the soma in which sex determination is completely cell-autonomous, sex determination in the germ line has a non-autonomous component inasmuch as the sex of the soma can influence the sexual pathway of the germ cells. Somatic induction has a clear effect on 2X;2A germ cells that carry a Sxl+ allele. These cells, which form eggs in an ovary, can enter spermatogenesis in testes. Mutations that cause partial loss of function or gain of function of Sxl thwart somatic induction and, independently of the sex of the soma, dictate spermatogenesis or oogenesis, respectively. Somatic induction has a much weaker effect on 2X;3A germ cells. This ratio is essentially a male signal for germ cells which consistently enter spermatogenesis in testes, even when they carry SxlM1. In a female soma, however, SxlM1 enables the 2X;3A germ cells to form almost normal eggs. Our results show that sex determination in the germ line is more complex than in the soma. They provide further evidence that the state of Sxl, the key gene for sex determination and dosage compensation in the soma, also determines the sex of the germ cells, and that, in the germ line, the state of activity of Sxl is regulated not only by the X:A ratio, but also by somatic inductive stimuli.  相似文献   

3.
D. Pauli  B. Oliver    A. P. Mahowald 《Genetics》1995,139(2):713-732
Only a few Drosophila melanogaster germline sex determination genes are known, and there have been no systematic screens to identify new genes involved in this important biological process. The ovarian phenotypes produced by females mutant for dominant alleles of the ovo gene are modified in flies with altered doses of other loci involved in germline sex determination in Drosophila (Sex-lethal(+), sans fille(+) and ovarian tumor(+)). This observation constitutes the basis for a screen to identify additional genes required for proper establishment of germline sexual identity. We tested 300 deletions, which together cover ~58% of the euchromatic portion of the genome, for genetic interactions with ovo(D). Hemizygosity for more than a dozen small regions show interactions that either partially suppress or enhance the ovarian phenotypes of females mutant for one or more of the three dominant ovo mutations. These regions probably contain genes whose products act in developmental hierarchies that include ovo(+) protein.  相似文献   

4.
5.
G. Wei  B. Oliver    A. P. Mahowald 《Genetics》1991,129(1):203-210
In hybrid dysgenesis, sterility can occur in both males and females. At 27.5 degrees, however, we found that P element-induced germline death was restricted to females. This sex-specific gonadal dysgenesis (GD) is complete by the first larval instar stage. As such, GD at 27.5 degrees reveals the sexually dimorphic character of the embryonic germline. The only other known dimorphic trait of the embryonic germline is the requirement for ovo. ovo is required for germline development in females only and has been implicated in germline sex determination. Dominant mutations of ovo partially suppressed female GD. Although embryonic germ cells are undifferentiated and morphologically indistinguishable between males and females, the functional dimorphism seen in ovo requirement and GD at 27.5 degrees indicates that sexual identity in Drosophila germ cells is established in embryogenesis.  相似文献   

6.
J. I. Horabin  D. Bopp  J. Waterbury    P. Schedl 《Genetics》1995,141(4):1521-1535
Unlike sex determination in the soma, which is an autonomous process, sex determination in the germline of Drosophila has both inductive and autonomous components. In this paper, we examined how sexual identity is selected and maintained in the Drosophila germline. We show that female-specific expression of genes in the germline is dependent on a somatic signaling pathway. This signaling pathway requires the sex-non-specific transformer 2 gene but, surprisingly, does not appear to require the sex-specific genes, transformer and doublesex. Moreover, in contrast to the soma where pathway initiation and maintenance are independent processes, the somatic signaling pathway appears to function continuously from embryogenesis to the larval stages to select and sustain female germline identity. We also show that the primary target for the somatic signaling pathway in germ cells can not be the Sex-lethal gene.  相似文献   

7.
In Drosophila, sex is determined by the relative number of X chromosomes to autosomal sets (X:A ratio). The amount of products from several X-linked genes, called sisterless elements, is used to indicate to Sex-lethal the relative number of X chromosomes present in the cell. In response to the X:A signal, Sex-lethal is activated in females but remains inactive in males, being responsible for the control of both sex determination and dosage compensation. Here we find that the X-linked segmentation gene runt plays a role in this process. Reduced function of runt results in female-specific lethality and sexual transformation of XX animals that are heterozygous for Sxl or sis loss-of-function mutations. These interactions are suppressed by SxlM1, a mutation that constitutively expresses female Sex-lethal functions, and occur at the time when the X:A signal determines Sex-lethal activity. Moreover, the presence of a loss-of-function runt mutation masculinizes triploid intersexes. On the other hand, runt duplications cause a reduction in male viability by ectopic activation of Sex-lethal. We conclude that runt is needed for the initial step of Sex-lethal activation, but does not have a major role as an X-counting element.  相似文献   

8.
9.
G. Pennetta  D. Pauli 《Genetics》1997,145(4):975-987
We identified a new gene, stand still (stil), required in the female germline for proper survival, sex determination and differentiation. Three strong loss-of-function alleles were isolated. The strongest phenotype exhibited by ovaries dissected from adult females is the complete absence of germ cells. In other ovaries, the few surviving germ cells frequently show a morphology typical of primary spermatocytes. still is not required either for fly viability or for male germline development. The gene was cloned and found to encode a novel protein. still is strongly expressed in the female germ cells. Using P[stil(+)] transgenes, we show that stil and a closely localized gene are involved in the modification of the ovarian phenotypes of the dominant alleles of ovo caused by heterozygosity of region 49 A-D. The similarity of the mutant phenotypes of stil to that of otu and ovo suggests that the three genes function in a common or in parallel pathways necessary in the female germline for its survival, sex determination and differentiation.  相似文献   

10.
The Drosophila snf gene encodes a protein with functional homology to the mammalian U1A and U2B" snRNP proteins. Studies, based on the analysis of three viable alleles, have suggested a role for snf in establishing the female-specific splicing pattern of the sex determination switch gene, Sex-lethal. Here, we show that the non-sex-specific lethal null allele is required for female sex determination, arguing against the formal possibility that the viable alleles disrupt a function unrelated to snf's wild-type function. Moreover, we find snf is required for normal cell growth and/or survival, as expected for a protein involved in a cell-vital process such as RNA splicing. We also show that of the three viable alleles only one, snf(JA2), is a partial loss-of-function mutation. The other two viable alleles, snf(1621) and snf(e8H), encode antimorphic proteins. We find the antimorphic proteins are mislocalized and correlate their mislocalization with their molecular lesions and mutant phenotypes. Finally, we provide genetic evidence that the antimorphic alleles interfere with the autoregulatory splicing function of the Sex-lethal protein. Based on these studies we suggest a model in which the snRNP protein, Snf, functions with Sex-lethal to block recognition of the regulated male-specific exon.  相似文献   

11.
We have isolated nine gain-of-function (gf) alleles of the sex-determination gene fem-3 as suppressors of feminizing mutations in fem-1 and fem-2. The wild-type fem-3 gene is needed for spermatogenesis in XX self-fertilizing hermaphrodites and for male development in both soma and germ line of XO animals. Loss-of-function alleles of fem-3 transform XX and XO animals into females (spermless hermaphrodites). In contrast, fem-3(gf) alleles masculinize only one tissue, the hermaphrodite germ line. Thus, XX fem-3(gf) mutant animals have a normal hermaphrodite soma, but the germ line produces a vast excess of sperm and no oocytes. All nine fem-3(gf) alleles are temperature sensitive. The temperature-sensitive period is from late L4 to early adult, a period just preceding the first signs of oogenesis. The finding of gain-of-function alleles which confer a phenotype opposite to that of loss-of-function alleles supports the idea that fem-3 plays a critical role in germ-line sex determination. Furthermore, the germ-line specificity of the fem-3(gf) mutant phenotype and the late temperature-sensitive period suggest that, in the wild-type XX hermaphrodite, fem-3 is negatively regulated so that the hermaphrodite stops making sperm and starts making oocytes. Temperature shift experiments also show that, in the germ line, sexual commitment appears to be a continuing process. Spermatogenesis can resume even after oogenesis has begun, and oogenesis can be initiated much later than normal.  相似文献   

12.
The dunce gene of Drosophila melanogaster encodes a cAMP-specific phosphodiesterase (form II). Mutant dunce flies have elevated levels of cAMP and exhibit a number of defects including learning deficiencies and female sterility. Two partial suppressors of the female sterility phenotype have been selected in an X chromosome containing a dunce null mutation. Both suppressors are associated with reduced AC2 activity. Complementation analyses suggest that both are alleles of the learning mutant rutabaga. Females homozygous for dunce null mutations that abolish PDE activity do not deposit eggs. The suppressors exhibit differential effects on egg deposition and production of progeny; double-mutant females deposit many eggs that fail to hatch, but some develop to adults. These adult progeny exhibit morphological defects that are confined mostly to the second and third thoracic segments or to the first five abdominal segments. These observations demonstrate that the dunce gene is required in adult females for egg laying and that the dunce gene provides an essential maternal function required for normal development of the zygote. Clonal analysis, employing the dominant female-sterile mutation ovoD1, demonstrates that the former requirement for PDE activity resides in somatic cells and that the latter requirement resides in germ line cells. Female germ line cells homozygous for a dunce null mutation produce oocytes that fail to develop. Thus, homozygous dunce null-mutant zygotes develop to adults solely because of the enzyme or mRNA present in the oocytes of heterozygous mothers. Mutant alleles of rutabaga act in the germ line cells to partially suppress the developmental defects caused by dunce mutations. Thus the rutabaga gene, as well as the dunce gene, functions in both somatic and germ line cells.  相似文献   

13.
C. Trent  W. B. Wood    H. R. Horvitz 《Genetics》1988,120(1):145-157
We have characterized a novel dominant allele of the sex-determining gene her-1 of Caenorhabditis elegans. This allele, called n695, results in the incomplete transformation of XX animals into phenotypic males. Previously characterized recessive her-1 alleles transform XO animals into phenotypic hermaphrodites. We have identified five new recessive her-1 mutations as intragenic suppressors of n695. Three of these suppressors are weak, temperature-sensitive alleles. We show that the recessive her-1 mutations are loss-of-function alleles, and that the her-1(n695) mutation results in a gain-of-function at the her-1 locus. The existence of dominant and recessive alleles that cause opposite phenotypic transformations demonstrates that the her-1 gene acts to control sexual identity in C. elegans.  相似文献   

14.
15.
Sex determination is regulated very differently in the soma vs. the germline, yet both processes are critical for the creation of the male and female gametes. In general, the soma plays an essential role in regulating sexual identity of the germline. However, in some species, such as Drosophila and mouse, the sex chromosome constitution of the germ cells makes an autonomous contribution to germline sexual development. Here we review how the soma and germline cooperate to determine germline sexual identity for some important model systems, the fly, the worm and the mouse, and discuss some of the implications of 'dual control' (soma plus germline) as compared to species where germline sex is dictated only by the surrounding soma.  相似文献   

16.
The sex determination master switch, Sex-lethal, has been shown to regulate the mitosis of early germ cells in Drosophila melanogaster. Sex-lethal is an RNA binding protein that regulates splicing and translation of specific targets in the soma, but the germline targets are unknown. In an experiment aimed at identifying targets of Sex-lethal in early germ cells, the RNA encoded by gutfeeling, the Drosophila homolog of Ornithine Decarboxylase Antizyme, was isolated. gutfeeling interacts genetically with Sex-lethal. It is not only a target of Sex-lethal, but also appears to regulate the nuclear entry and overall levels of Sex-lethal in early germ cells. This regulation of Sex-lethal by gutfeeling appears to occur downstream of the Hedgehog signal. We also show that Hedgehog, Gutfeeling, and Sex-lethal function to regulate Cyclin B, providing a link between Sex-lethal and mitosis.  相似文献   

17.
18.
19.
M Labrador  V G Corces 《Genetics》2001,158(3):1101-1110
The gypsy retrovirus invades the germ line of Drosophila females, inserting with a high frequency into the ovo locus. Gypsy insertion sites in ovo are clustered within a region in the promoter of the ovo gene that contains multiple binding sites for the OvoA and OvoB proteins. We found that a 1.3-kb DNA fragment containing this region is able to confer gypsy insertional specificity independent of its genomic location. The frequency of gypsy insertions into the ovo gene is significantly lower in wild-type females than in ovoD1 females. In addition, gypsy insertions in ovoD1 females occur during most stages of germ-line development whereas insertions in wild-type females occur only in late stages. This pattern of temporally specific insertions, as well as the higher frequency of insertion in ovoD1 females, correlates with the presence of the OvoA or OvoD1 proteins. The results suggest that gypsy insertional specificity might be determined by the binding of the OvoA repressor isoform to the promoter region of the gene.  相似文献   

20.
Gypsy is an endogenous retrovirus of Drosophila melanogaster. It is stable and does not transpose with detectable frequencies in most Drosophila strains. However, we have characterized unstable strains, known as MG, in which it transposes at high frequency. These stocks contain more copies of gypsy than usual stocks. Transposition results in mutations in several genes such as ovo and cut. They are stable and are due to gypsy insertions. Integrations into the ovo(D1) female sterile-dominant mutation result in a null allele of the gene and occurrence of fertile females. This phenomenon, known as the ovo(D1) reversion assay, can be used to quantitate gypsy activity. We have shown that the properties of MG strains result from mutation of a host gene that we called flamenco (flam). It has a strict maternal effect on gypsy mobilization: transposition occurs at high frequency only in the germ line of the progeny of females homozygous for mutations of the gene. It is located at position 65.9 (20A1-3) on the X chromosome. The mutant allele present in MG strains is essentially recessive. Flamenco seems to control the infective properties of gypsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号