首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute myocardial infarction (AMI) is one of the most severe cardiovascular diseases in humans, often resulting in unexpected death. Early detection is critical for patient survival. Sandwich ELISA is a common method for the detection of AMI. However, ELISA kits from different manufacturers can give different results, in part because of the lack of standardized epitopes. Therefore, the purpose of this study was to find two standardized epitopes. We predicted two antigen epitopes and respectively immunize mice to manufacture standardized monoclonal antibodies. Eight monoclonal antibodies were prepared. Monoclonal antibodies 7D2 and 2C3 were selected with high affinity, and their characteristics were explored. The results show that monoclonal antibodies 7D2 and 2C3 can both bind to various modified forms and complexes of cardiac troponin I (cTnI), were not cross‐reaction with related antigens of normal human serum and can be paired. Therefore, we deem epitopes 30 to 42 and 77 to 89 standardized epitopes.  相似文献   

2.
Troponin I switching in the developing heart   总被引:9,自引:0,他引:9  
Monoclonal antibodies identify two distinct isoforms of troponin I in rat cardiac muscle, one predominant in the embryonic and fetal heart and one predominant in the adult heart. The two isoforms can be resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with apparent molecular weights of 27,000 and 31,500, respectively. The adult isoform is specifically recognized by a monoclonal antibody that is unreactive with the embryonic variant, while two other monoclonal antibodies recognize both isoforms. A monoclonal antibody to cardiac troponin T was used to isolate by affinity chromatography the troponin complex from adult and neonatal rat heart. Affinity purified troponin from neonatal heart was found to contain both the embryonic and adult isoforms of troponin I. Comparative immunoblotting analysis with different muscle tissues shows that embryonic troponin I is identical with respect to electrophoretic mobility and pattern of immunoreactivity to the major troponin I isoform found in adult slow skeletal muscle. Troponin I switching may be implicated in developmental changes involving Ca2+ and pH sensitivity of the contractile system and response to beta-adrenergic stimulation.  相似文献   

3.

Background

Norwalk virus causes outbreaks of acute non-bacterial gastroenteritis in humans. The virus capsid is composed of a single 60 kDa protein. In a previous study, the capsid protein of recombinant Norwalk virus genogroup II was expressed in an E. coli system and monoclonal antibodies were generated against it. The analysis of the reactivity of those monoclonal antibodies suggested that the N-terminal domain might contain more antigenic epitopes than the C-terminal domain. In the same study, two broadly reactive monoclonal antibodies were observed to react with genogroup I recombinant protein.

Results

In the present study, we used the recombinant capsid protein of genogroup I and characterized the obtained 17 monoclonal antibodies by using 19 overlapping fragments. Sixteen monoclonal antibodies recognized sequential epitopes on three antigenic regions, and the only exceptional monoclonal antibody recognized a conformational epitope. As for the two broadly reactive monoclonal antibodies generated against genogroup II, we indicated that they recognized fragment 2 of genogroup I. Furthermore, genogroup I antigen from a patient's stool was detected by sandwich enzyme-linked immunosorbent assay using genogroup I specific monoclonal antibody and biotinated broadly reactive monoclonal antibody.

Conclusion

The reactivity analysis of above monoclonal antibodies suggests that the N-terminal domain may contain more antigenic epitopes than the C-terminal domain as suggested in our previous study. The detection of genogroup I antigen from a patient's stool by our system suggested that the monoclonal antibodies generated against E. coli expressed capsid protein can be used to detect genogroup I antigens in clinical material.  相似文献   

4.
Antigen specific llama VHH antibody fragments were compared to antigen specific mouse monoclonal antibodies with respect to specificity, affinity and stability. The llama VHH antibody fragments and the mouse monoclonal antibodies investigated were shown to be highly specific for the protein antigen hCG or the hapten antigen RR-6. The affinity of the interaction between monovalent llama VHH antibody fragments and their antigen is close to the nanomolar range, similar to the bivalent mouse monoclonal antibodies studied. Llama VHH antibody fragments are similar to mouse monoclonal antibodies with respect to antigen binding in the presence of ammonium thiocyanate and ethanol. The results show that relative to antigen specific mouse monoclonal antibodies, antigen specific llama VHH fragments are extremely temperature stable. Two out of six llama VHHs are able to bind antigen specifically at temperatures as high as 90 degrees C, whereas four out of four mouse monoclonal antibodies are not functional at this temperature. Together with the finding that llama VHH fragments can be produced at high yield in Saccharomyces cerevisiae, these findings indicate that in the near future antigen specific llama VHH fragments can be used in for antibodies unexpected products and processes.  相似文献   

5.
A panel of ten monoclonal antibodies against aflatoxins B1, B2, and G2 was produced and comprehensively characterized. The affinity and cross reactivity of these antibodies were determined using the methods of direct, indirect, and competitive ELISA. The structures of monoclonal antibody genes were comprehensively studied and the variable and constant regions of the antibody genes were cloned and sequenced. Sequencing analysis confirmed the results of isotyping the light and heavy antibody chains obtained by ELISA. Variable and constant fragments of the antibody genes were cloned into a bicistron expression vector for the recombinant Fab-fragment for one of the antibodies expressed in Escherichia coli and purified. Thus, data were obtained that can be useful for the development of an aflatoxin detection system on the basis of the described monoclonal antibodies and the creation of recombinant antibodies with changed parameters of specificity using protein engineering methods.  相似文献   

6.
Antibody engineering represents a promising area in biotechnology. Recombinant antibodies can be easily manipulated generating new ligand and effector activities that can be used as prototype magic bullets. On the other hand, an extensive knowledge of recombinant antibody binding and stability features are essential for an efficient substitution. In this study, we compared the stability and protein binding properties of two recombinant antibody fragments with their parental monoclonal antibody. The recombinant fragments were a monomeric scFv and a dimeric one, harboring human IgG1 CH2-CH3 domains. We have used fluorescence titration quenching to determine the thermodynamics of the interaction between an anti-Z-DNA monoclonal antibody and its recombinant antibody fragments with Z-DNA. All the antibody fragments seemed to bind DNA similarly, in peculiar two-affinity states. Enthalpy-entropy compensation was observed for both affinity states, but a marked entropy difference was observed for the monomeric scFv antibody fragment, mainly for the high affinity binding. In addition, we compared the stability of the dimeric antibody fragment and found differences favoring the monoclonal antibody. These differences seem to derive from the heterologous expression system used.  相似文献   

7.
The transporter associated with antigen processing (TAP) plays a pivotal role in the major histocompatibility complex (MHC) class I mediated immune response against infected or malignantly transformed cells. It belongs to the ATP-binding cassette (ABC) superfamily and consists of TAP1 (ABCB2) and TAP2 (ABCB3), each of which possesses a transmembrane and a nucleotide-binding domain (NBD). Here we describe the generation of recombinant Fv and Fab antibody fragments to human TAP from a hybridoma cell line expressing the TAP1-specific monoclonal antibody mAb148.3. The epitope of the antibody was mapped to the very last five C-terminal amino acid residues of TAP1 on solid-supported peptide arrays. The recombinant antibody fragments were heterologously expressed in Escherichia coli and purified to homogeneity from periplasmic extracts by affinity chromatography. The monoclonal and recombinant antibodies bind with nanomolar affinity to the last five C-terminal amino acid residues of TAP1 as demonstrated by ELISA and surface plasmon resonance. Strikingly, the recombinant antibody fragments confer thermal stability to the heterodimeric TAP complex. At the same time TAP is arrested in a peptide transport incompetent conformation, although ATP and peptide binding to TAP are not affected. Based on our results we suggest that the C terminus of TAP1 modulates TAP function presumably as part of the dimer interface of the NBDs.  相似文献   

8.
The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

9.
Regulated secretion and purification of recombinant antibodies in E. coli.   总被引:1,自引:0,他引:1  
A plasmid for optimized protein expression of recombinant Fv antibodies (pOPE) in E. coli was used to express the variable domains of the murine monoclonal antibody HD39 specific for the human B-cell surface antigen CD22. The production of Fv antibodies by pOPE can be regulated over a wide range by varying the IPTG concentration. Antibodies that can discriminate between secreted and nonsecreted Fv antibody fragments were used to show that secretion is the limiting step for the production of functional Fv antibodies. IPTG concentrations above 20 microM increased the total antibody production, but did not yield larger amounts of secreted Fv antibodies. The addition of five histidines to the C terminus facilitates an easy single-step enrichment procedure based on immobilized metal affinity chromatography.  相似文献   

10.
In order to improve antibody purification methods, recombinant proteins L and LG were tested in the purification of murine monoclonal immunoglobulin G (IgG) and its fragments. After affinity constant evaluation in different buffer systems, high-performance affinity chromatographic columns were prepared by coupling the proteins to Affi-prep 10 resin and tested with eight different murine monoclonal antibodies and their fragments of different isotypes. Affinity chromatographic experiments confirmed radioimmunoassay results showing that protein L bound 75% of the tested antibody fragments whereas protein LG had affinity for all the tested fragments. These results demonstrate that protein LG is the most powerful Ig-binding tool so far described.  相似文献   

11.
Protein microarray technology facilitates the detection and quantification of hundreds of binding reactions in one reaction from a minute amount of sample. Proof-of-concept studies have shown that the set-up of sensitive assay systems based on protein arrays is possible, however, the lack of specific capture reagents limits their use. Therefore, the generation and characterisation of capture molecules is one of the key topics for the development of protein array based systems. Recombinant antibody technologies, such as HuCAL (human combinatorial antibody library; MorphoSys, Munich, Germany), allow the fast generation of highly specific binders to nearly any given target molecule. Although antibody libraries comprise billions of members, it is not the selection process, but the detailed characterisation of the pre-selected monoclonal antibodies that presents the bottleneck for the production of high numbers of specific binders. In order to obtain detailed information on the properties of such antibodies, a microarray-based method has been developed. We show that it is possible to define the specificity of recombinant Fab fragments by protein and peptide microarrays and that antibodies can be classified by binding patterns. Since the assay uses a miniaturised system for the detection of antibody-antigen interactions, the observed binding occurs under ambient analyte conditions as defined by Ekins (J. Pharm. Biomed. Anal. 1989, 7, 155-168). This allows the determination of a relative affinity value for each binding event, and a ranking according to affinity is possible. The new microarray based approach has an extraordinary potential to speed up the screening process for the generation of recombinant antibodies with pre-defined selection criteria, since it is intrinsically a high-throughput technology.  相似文献   

12.
Staphylococcal food poisoning (SFP) is one of the most prevalent causes of food-borne illness throughout the world. SFP is caused by 21 different types of staphylococcal enterotoxins produced by Staphylococcus aureus. Among these, staphylococcal enterotoxin B (SEB) is the most potent toxin and is a listed biological warfare (BW) agent. Therefore, development of immunological reagents for detection of SEB is of the utmost importance. High-affinity and specific monoclonal antibodies are being used for detection of SEB, but hybridoma clones tend to lose their antibody-secreting ability over time. This problem can be overcome by the use of recombinant antibodies produced in a bacterial system. In the present investigation, genes from a hybridoma clone encoding monoclonal antibody against SEB were immortalized using antibody phage display technology. A murine phage display library containing single-chain variable-fragment (ScFv) antibody genes was constructed in a pCANTAB 5E phagemid vector. Phage particles displaying ScFv were rescued by reinfection of helper phage followed by four rounds of biopanning for selection of SEB binding ScFv antibody fragments by using phage enzyme-linked immunosorbent assay (ELISA). Soluble SEB-ScFv antibodies were characterized from one of the clones showing high affinity for SEB. The anti-SEB ScFv antibody was highly specific, and its affinity constant was 3.16 nM as determined by surface plasmon resonance (SPR). These results demonstrate that the recombinant antibody constructed by immortalizing the antibody genes from a hybridoma clone is useful for immunodetection of SEB.  相似文献   

13.
Keratin intermediate filaments are heteropolymers of type I and type II polypeptides that constitute the bulk of the epithelial cytoskeleton. We microinjected seven keratin monoclonal antibodies into human epithelial cells, and two of them, only A45-B/B3 and LP3K, caused the formation of keratin aggregates. The keratin filaments in human epithelial cells were also disrupted by a monovalent A45-B/B3 Fab fragment, suggesting that the binding of the antibody, rather than cross-linking, collapses the filaments. Immunoblotting and ELISA experiments suggested that the antibody reacted weakly with recombinant K8 but did not react with recombinant K18 at all. However, the antibody reactivity increased substantially when a mixture of the two keratin polypeptides, either recombinant or derived from MCF-7, was used. The epitopes of 15 monoclonal antibodies recognizing human K8 were characterized by their reactivity with recombinant fragments of K8. Reactivity of antibody A45-B/B3 with fragments of K8 in the presence of K18 revealed that the antibody recognizes an epitope in the rod domain of K8, between residues 313 and 332, on the amino-terminal side of the stutter in helix 2B, which is involved in heterotypic association. The data suggest that this region of K8 undergoes a conformational change following interaction with the complementary K18 either to expose the epitope or to increase its affinity for the antibody. Taken together, the data highlight the role of this epitope in heterotypic association and in filament stabilization.  相似文献   

14.
N P Gerard  C Gerard 《Biochemistry》1990,29(39):9274-9281
We have constructed a novel recombinant C5a anaphylatoxin (C5a-N19) containing a 19-residue amino-terminal extension peptide, using a plasmid vector which secretes the nascent polypeptide to the Escherichia coli periplasmic space. C5a-N19 was purified from cell lysates by immunoaffinity chromatography using a monoclonal antibody which recognizes a portion of the amino-terminal extension peptide. C5a-N19 was characterized as biologically indistinguishable from the unmodified recombinant anaphylatoxin for release of lysosomal enzymes from dibutyryl-cAMP-differentiated U937 cells. In contrast to unmodified C5a, which is not recognized by anti-C5a antibodies following binding to its cellular receptor, receptor-bound C5a-N19 is recognized by the monoclonal antibody directed against the amino-terminal extension sequence. Because the monoclonal antibody recognizes the C5a-receptor complex on cells, this methodology is useful in fluorescence sorting of C5a receptor-positive cells. A C5a receptor affinity column was constructed by saturating monoclonal antibody bound to agarose with C5a-N19. Digitonin-solubilized C5a receptor from dibutyryl-cAMP-induced U937 cells was adsorbed to the matrix and eluted by dissociation of the ligand-receptor complex from the antibody. Analysis by SDS-polyacrylamide gel electrophoresis revealed a unique protein band at 41K, consistent with the molecular weight predicted from cross-linking experiments when the contribution of C5a is subtracted. Development of this recombinant C5a derivative provides a useful probe previously unavailable for the C5a receptor molecule.  相似文献   

15.
High-precision tumor targeting with conventional therapeutics is based on the concept of the ideal drug as a "magic bullet"; this became possible after techniques were developed for production of monoclonal antibodies (mAbs). Innovative DNA technologies have revolutionized this area and enhanced clinical efficiency of mAbs. The experience of applying small-size recombinant antibodies (monovalent binding fragments and their derivatives) to cancer targeting showed that even high-affinity monovalent interactions provide fast blood clearance but only modest retention time on the target antigen. Conversion of recombinant antibodies into multivalent format increases their functional affinity, decreases dissociation rates for cell-surface and optimizes biodistribution. In addition, it allows the creation of bispecific antibody molecules that can target two different antigens simultaneously and do not exist in nature. Different multimerization strategies used now in antibody engineering make it possible to optimize biodistribution and tumor targeting of recombinant antibody constructs for cancer diagnostics and therapy.  相似文献   

16.
Highly specific interaction with foreign molecules is a unique feature of antibodies. Since 1975, when Keller and Milstein proposed the method of hybridoma technology and prepared mouse monoclonal antibodies, many antibodies specific to various antigens have been obtained. Recent development of methods for preparation of recombinant DNA libraries and in silico bioinformatics approaches for protein structure analysis makes possible antibody preparation using gene engineering approaches. The development of gene engineering methods allowed creating recombinant antibodies and improving characteristics of existing antibodies; this significantly extends the applicability of antibodies. By modifying biochemical and immunochemical properties of antibodies by changing their amino acid sequences it is possible to create antibodies with properties optimal for certain tasks. For example, application of recombinant technologies resulted in antibody preparation of high affinity significantly exceeding the initial affinity of natural antibodies. In this review we summarize information about the structure, modes of preparation, and application of recombinant antibodies and their fragments and also consider the main approaches used to increase antibody affinity.  相似文献   

17.
Intracellular expression of recombinant antibodies (intrabodies) allows to interfere with the functions of oncogenic or viral molecules expressed in different cell compartments and has therefore a vast clinical potential in therapy. Although the use of phage-display libraries has made it possible to select Fab or single chain Fv (scFv) antibody fragments usable for intracellular targeting, a major source of recombinant antibodies for therapeutic use still remains hybridoma B cells producing well-characterized monoclonal antibodies (mAbs). However, the cloning and the intracellular expression of antibody fragments derived from mAbs can be markedly hampered by a number of technical difficulties that include failure of cloning functional variable regions as well as lack of binding of the antibody fragments to the targeted molecule in an intracellular environment. We discuss herein various molecular methods that have been developed to generate functional recombinant antibody fragments usable as anti-tumor triggering agents when expressed in tumor cells. Such antibodies can neutralize or modify the activity of oncogenic molecules when addressed in specific subcellular compartments and/or they can be used to trigger anti-tumor immunity when expressed on tumor cell surface.  相似文献   

18.
Control of microorganisms such as Bacillus cereus spores is critical to ensure the safety and a long shelf life of foods. A bifunctional single chain antibody has been developed for detection and binding of B. cereus T spores. The genes that encode B. cereus T spore single-chain antibody and streptavidin were connected for use in immunoassays and immobilization of the recombinant antibodies. A truncated streptavidin, which is smaller than but has biotin binding ability similar to that of streptavidin, was used as the affinity domain because of its high and specific affinity with biotin. The fusion protein gene was expressed in Escherichia coli BL21 (DE3) with the T7 RNA polymerase-T7 promoter expression system. Immunoblotting revealed an antigen specificity similar to that of its parent native monoclonal antibody. The single-chain antibody-streptavidin fusion protein can be used in an immunoassay of B. cereus spores by applying a biotinylated enzyme detection system. The recombinant antibodies were immobilized on biotinylated magnetic beads by taking advantage of the strong biotin-streptavidin affinity. Various liquids were artificially contaminated with 5 × 104 B. cereus spores per ml. Greater than 90% of the B. cereus spores in phosphate buffer or 37% of the spores in whole milk were tightly bound and removed from the liquid phase by the immunomagnetic beads.  相似文献   

19.
A plasmid foroptimizedproteinexpression of recombinant Fv antibodies (pOPE) inE. coli was used to express the variable domains of the murine monoclonal antibody HD39 specific for the human B-cell surface antigen CD22. The production of Fv antibodies by pOPE can be regulated over a wide range by varying the IPTG concentration. Antibodies that can discriminate between secreted and nonsecreted Fv antibody fragments were used to show that secretion is the limiting step for the production of functional Fv antibodies. IPTG concentrations above 20 μM increased the total antibody production, but did not yield larger amounts of secreted Fv antibodies. The addition of five histidines to the C terminus facilitates an easy single-step enrichment procedure based on immobilized metal affinity chromatography.  相似文献   

20.
Selecting and screening recombinant antibody libraries   总被引:25,自引:0,他引:25  
During the past decade several display methods and other library screening techniques have been developed for isolating monoclonal antibodies (mAbs) from large collections of recombinant antibody fragments. These technologies are now widely exploited to build human antibodies with high affinity and specificity. Clever antibody library designs and selection concepts are now able to identify mAb leads with virtually any specificity. Innovative strategies enable directed evolution of binding sites with ultra-high affinity, high stability and increased potency, sometimes to a level that cannot be achieved by immunization. Automation of the technology is making it possible to identify hundreds of different antibody leads to a single therapeutic target. With the first antibody of this new generation, adalimumab (Humira, a human IgG1 specific for human tumor necrosis factor (TNF)), already approved for therapy and with many more in clinical trials, these recombinant antibody technologies will provide a solid basis for the discovery of antibody-based biopharmaceuticals, diagnostics and research reagents for decades to come.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号