首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Palaeoworld》2022,31(1):69-85
The Devonian/Carboniferous (D/C) transition is characterized by a major transgressive/regressive cycle which led to a widespread ocean anoxia known as the Hangenberg Black Shale Event (HBSE), as well to a major sea-level fall (Hangenberg Sandstone Event, HSSE), recognized around the world. Both events are known as the Hangenberg Crisis. In order to examine the D/C transition in shallow water environment, the Mighan section in eastern Alborz was studied in terms of conodont biostratigraphy and stable isotope geochemistry. Twenty-five conodont species belonging to seven genera were identified and 5 conodont zones discriminated; namely, the Bispathodus aculeatus aculeatus Zone, Bispathodus costatus Zone, Bispathodus ultimus Zone, Siphonodella praesulcata Zone, costatus-kockeli Interregnum, and the sulcata Zone. Below the Devonian–Carboniferous boundary (DCB), the Hangenberg Black Shale and Hangenberg Sandstone equivalents were recognized, representing the Hangenberg Crisis that highly affected trilobite, ammonoid, brachiopod and conodont faunas at Mighan and worldwide. The kockeli Zone of the latest Famennian is missing at Mighan due to the lack of conodonts, probably related with the major environmental changes linked with the Hangenberg Crisis recognizable worldwide. Carbon isotopes measured of micrites from Mighan indicate a proximal depositional environment of a shallow shelf with terrestrial input and the oxygen isotope values from conodont apatite suggest warm seawater temperatures of tropical and subtropical setting in the study area.  相似文献   

2.
A co-occurrence of the clymeniid Postclymenia evoluta Schmidt, 1924 and the goniatite Acutimitoceras hilarum Korn, 2002 is reported from the Anti-Atlas of Morocco. Both species occur in the same limestone horizon within the Acutimitoceras prorsum Zone, that has yielded an exclusive conodont fauna of the Upper praesulcata Zone (latest Devonian, above the Hangenberg Black Shale). This record is firm evidence that some clymeniids survived the global Hangenberg Event, but soon later became extinct without descendants.  相似文献   

3.
It is widely accepted that the effects of global sea‐level changes at the transition from the Devonian to the Carboniferous are recorded in deposits on the shelf of northern Gondwana. These latest Devonian strata had been thought to be poor in fossils due to the Hangenberg mass extinction. In the Ma'der (eastern Anti‐Atlas), however, the Hangenberg Black Shale claystones (latest Famennian) are rich in exceptionally preserved fossils displaying the remains of non‐mineralized structures. The diversity in animal species of these strata is, however, low. Remarkably, the organic‐rich claystones have yielded abundant remains of Ammonoidea preserved with their jaws, both in situ and isolated. This is important because previously, the jaws of only one of the main Devonian ammonoid clades had been found (Frasnian Gephuroceratina). Here, we describe four types of jaws of which two could be assigned confidently to the Order Clymeniida and to the Suborder Tornoceratina. These findings imply that chitinous normal‐type jaws were likely to have already been present at the origin of the whole clade Ammonoidea, i.e. in the early Emsian (or earlier). Vertebrate jaws evolved prior to the Early Devonian origin of ammonoids. The temporal succession of evolutionary events suggests that it could have been the indirect positive selection pressure towards strong (and thus preservable) jaws since defensive structures of potential prey animals would otherwise have made them inaccessible to jawless predators in the course of the mid‐Palaeozoic marine revolution. In this respect, our findings reflect the macroecological changes that occurred in the Devonian. [Correction added on 28 July 2016 after first online publication: In the Abstract, the sentence “Vertebrate jaws probably … in the Early Devonian” was amended]  相似文献   

4.
Mid‐Devonian to end‐Late Devonian trilobites of different taxonomic categories are updated as to their actual stratigraphical range with respect to the internationally defined stage boundaries. The main palaeogeographical and ecological occurrences are summarized. Numerical analyses emphasize the clear relationship between fluctuations in diversity and global eustatic events. Already declining in diversity from the early mid‐Devonian, shallow‐water communities became most restricted during the mid‐Givetian Taghanic transgression. After a phase of adaptive radiation, off‐shore trilobite communities were severely affected during the mid‐ and end‐Late Devonian crises. From an initial 5 orders 3 were lost at the end‐Frasnian Kellwasser crisis while only 1 from the remaining 2 orders survived the Devonian‐Carboniferous boundary Hangenberg event. In both cases extinction was preceded by a unidirectional evolutionary trend in eye reduction accompanied by impoverishment of lower rank taxa. This phenomenon is obviously a result of selective adaptation under constant long‐lasting environmental influences. Specialization to obligate epi‐ or even endo‐benthic life habit, however, led fatally to extinction when stable conditions became substantially perturbed. Sudden sea‐level changes with subsequent break in the REDOX‐equilibrium took place at the Kellwasser and Hangenberg events, which were most probably responsible for trilobite mass extinctions.  相似文献   

5.
During the Devonian Nekton Revolution, ammonoids show a progressive coiling of their shell just like many other pelagic mollusk groups. These now extinct, externally shelled cephalopods derived from bactritoid cephalopods with a straight shell in the Early Devonian. During the Devonian, evolutionary trends toward tighter coiling and a size reduction occurred in ammonoid embryonic shells. In at least three lineages, descendants with a closed umbilicus evolved convergently from forms with an opening in the first whorl (umbilical window). Other lineages having representatives with open umbilici became extinct around important Devonian events whereas only those with more tightly coiled embryonic shells survived. This change was accompanied by an evolutionary trend in shape of the initial chamber, but no clear trend in its size. The fact that several ammonoid lineages independently reduced and closed the umbilical window more or less synchronously indicates that common driving factors were involved. A trend in size decrease of the embryos as well as the concurrent increase in adult size in some lineages likely reflects a fundamental change in reproductive strategies toward a higher fecundity early in the evolutionary history of ammonoids. This might have played an important role in their subsequent success as well as in their demise.  相似文献   

6.
7.
Several soft‐tissue imprints and attachment sites have been discovered on the inside of the shell wall and on the apertural side of the septum of various fossil and Recent ectocochleate cephalopods. In addition to the scars of the cephalic retractors, steinkerns of the body chambers of bactritoids and some ammonoids from the Moroccan and the German Emsian (Early Devonian) display various kinds of striations; some of these striations are restricted to the mural part of the septum, some start at the suture and terminate at the anterior limit of the annular elevation. Several of these features were also discovered in specimens of Mesozoic and Recent nautilids. These structures are here interpreted as imprints of muscle fibre bundles of the posterior and especially the septal mantle, blood vessels as well as the septal furrow. Most of these structures were not found in ammonoids younger than Middle Devonian. We suggest that newly formed, not yet mineralized (or only slightly), septa were more tightly stayed between the more numerous lobes and saddles in more strongly folded septa of more derived ammonoids and that the higher tension in these septa did not permit soft‐parts to leave imprints on the organic preseptum. It is conceivable that this permitted more derived ammonoids to replace the chamber liquid faster by gas and consequently, new chambers could be used earlier than in other ectocochleate cephalopods, perhaps this process began even prior to mineralization. This would have allowed faster growth rates in derived ammonoids.  相似文献   

8.
The end‐Devonian Hangenberg Crisis constituted one of the greatest ecological and environmental perturbations of the Paleozoic Era. To date, however, it has been difficult to precisely constrain the occurrence of the Hangenberg Crisis in the Appalachian Basin of the United States and thus to directly assess the effects of this crisis on marine microbial communities and paleoenvironmental conditions. Here, we integrate organic and inorganic chemostratigraphic records compiled from two discrete outcrop locations to characterize the onset and paleoenvironmental transitions associated with the Hangenberg Crisis within the Cleveland Shale member of the Ohio Shale. The upper Cleveland Shale records both positive carbon (δ13Corg) and nitrogen (δ15Ntotal) isotopic excursions, and replenished trace metal inventories with links to eustatic rise. These dual but apparently temporally offset isotope excursions may be useful for stratigraphic correlation with other productive end‐Devonian epeiric marine locations. Deposition of the black shale succession occurred locally beneath a redox‐stratified water column with euxinic zones, with signs of strengthening denitrification during the Hangenberg Crisis interval, but with an otherwise stable and algal‐rich marine microbial community structure sustained in the surface mixed layer as ascertained by lipid biomarker assemblages. Discernible trace fossil signals in some horizons suggest, however, that bioturbation and seafloor oxygenation occurred episodically throughout this succession and highlight that geochemical proxies often fail to capture these rapid and sporadic redox fluctuations in ancient black shales. The paleoenvironmental conditions, source biota, and accumulations of black shale are consistent with expressions of the Hangenberg Crisis globally, suggesting this event is likely captured within the uppermost strata of the Cleveland Shale in North America.  相似文献   

9.
Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the “Big Five” mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems.  相似文献   

10.
On the basis of evolutionary rates several maxima and minima in the diversity of ammonoids can be recognized during Upper Devonian and Carboniferous times. The development of new characters, the beginning and continuation of phylogenetic trends and the origination as well as the extinction of bradytelic genera are restricted to diversity maxima.  相似文献   

11.
Ammonoids are well‐known objects used for studies on ontogeny and phylogeny, but a quantification of ontogenetic change has not yet been carried out. Their planispirally coiled conchs allow for a study of “longitudinal” ontogenetic data, that is data of ontogenetic trajectories that can be obtained from a single specimen. Therefore, they provide a good model for ontogenetic studies of geometry in other shelled organisms. Using modifications of three cardinal conch dimensions, computer simulations can model artificial conchs. The trajectories of ontogenetic allometry of these simulations can be analyzed in great detail in a theoretical morphospace. A method for the classification of conch ontogeny and quantification of the degree of allometry is proposed. Using high‐precision cross‐sections, the allometric conch growth of real ammonoids can be documented and compared. The members of the Ammonoidea show a wide variety of allometric growth, ranging from near isometry to monophasic, biphasic, or polyphasic allometry. Selected examples of Palaeozoic and Mesozoic ammonoids are shown with respect to their degree of change during ontogeny of the conch.  相似文献   

12.
13.
A remarkable diversification of several independent ammonoid lineages with high evolutionary rates occurred in the Late Devonian Wocklumeria Stufe. Many speciation events led to paedomorphic ammonoids that display a striking range of conch shapes, sculpture, and ornamentation. In the goniatite family Prionoceratidae, the transition from normal Mimimitoceras species to paedomorphic Balvia species provides an example of rapid size decrease combined with an early character developmental offset arising from progenesis. Adults of early Balvia species largely have the preadult ancestral morphology of Mimimitoceras , but later evolving species acquire distinct conch and ornamentation types. Progenetic ammonoid species also appeared within the clymeniid family Kosmoclymeniidae and probably in the Glatzielliidae. In the clymeniid family Parawocklumeriidae, evolution is characterized by the extension of tri-segmented and triangularly coiled whorls found only in juveniles of earlier species, to the adults of later species. This is interpreted as resulting from neoteny. The distribution of paedomorphic ammonoids in the Late Devonian Wocklumeria Stufe is closely correlated to relative sealevel changes. The regressive trend in the lower two-thirds of the Wocklumeria Stufe is interpreted as the cause of a diversification of the pelagic habitat during unstable conditions, and as an extrinsic factor inducing heterochronic change. Some ammonoids reacted by rapid maturation and faster reproductive rates, giving the opportunity to exploit a wider range of niches. The apparent consequence was the formation of several allopatric species. □ Ammonoidea, Late Devonian, evolution, heterochrony, sealevel changes.  相似文献   

14.
The Triassic–Jurassic extinction resulted in the near demise of the ammonoids. Based on a survey of ammonoid expansion rates, coiling geometry and whorl shape, we use the Raup accretionary growth model to outline a universal morphospace for planispiral shell geometry. We explore the occupation of that planispiral morphospace in terms of both breadth and density of occupation in addition to separately reviewing the occurrence of heteromorphs. Four intervals are recognized: pre‐extinction (Carnian to Rhaetian); aftermath (Hettangian); post‐extinction (Sinemurian to Aalenian) and recovery (Bajocian to Callovian). The pre‐extinction and recovery intervals show maximum disparity. The aftermath is marked by the disappearance of heteromorphs and a dramatic reduction in the range of planispiral morphologies to a core area of the morphospace. It is also characterized by an expansion into an evolute, slowly expanding part of the morphospace that was not occupied prior to the extinction and is soon abandoned during the post‐extinction interval. Aftermath and post‐extinction ammonoid data show a persistent negative correlation whereby rapid expansion rates are associated with narrow umbilical widths and often compressed whorls. The permanently occupied core area of planispiral morphospace represents generalist demersals whose shells were probably optimizing both hydrodynamic efficiency and shell stability. All other parts of the planispiral morphospace, and the pelagic modes of life the shells probably exploited, were gradually reoccupied during the post‐extinction interval. Planispiral adaptation was by diffusion away from the morphospace core rather than by radical jumps. Recovery of disparity was not achieved until some 30 Myr after the extinction event.  相似文献   

15.
Mass occurrence of benthic cyanobacterial mats in a sequence of Late Devonian black shales and bituminous limestones of the Holy Cross Mts. (central Poland), enclosing the famous Kellwasser and Hangenberg extinction horizons, is reported. The microbiota forming the mats is compared with some modern benthic chroococcalean cyanobacteria. Similarly to their extant counterparts, the Devonian cyanobacteria must had been phototrophic and oxygenic aerobes which could, however, tolerate slightly sulfidic conditions characterizing the near-bottom waters of the Late Devonian epicontinental sea. The cyanobacterial mats successfully colonized the oxygen-deficient and H(2) S-enriched seabed otherwise unfavorable for most other benthic biota. The redox state of this sluggish Late Devonian sea, ascribed previously mostly to anoxic or euxinic conditions, is reassessed as probably pulsating between anoxic, dysoxic, and weakly oxic conditions. The redox state was dependent on the rate of oxygen production by the cyanobacterial mats, the intensity of H(2) S emissions from the decaying mat biomass, and the rate of planktonic production.  相似文献   

16.
Three main modes of extinction are responsible for reductions in morphological disparity: (1) random (caused by a nonselective extinction event); (2) marginal (a symmetric, selective extinction event trimming the margin of morphospace); and (3) lateral (an asymmetric, selective extinction event eliminating one side of the morphospace). These three types of extinction event can be distinguished from one another by comparing changes in three measures of morphospace occupation: (1) the sum of range along the main axes; (2) the sum of variance; and (3) the position of the centroid. Computer simulations of various extinction events demonstrate that the pre‐extinction distribution of taxa (random or normal) in the morphospace has little influence on the quantification of disparity changes, whereas the modes of the extinction events play the major role. Together, the three disparity metrics define an “extinction‐space” in which different extinction events can be directly compared with one another. Application of this method to selected extinction events (Frasnian‐Famennian, Devonian‐Carboniferous, and Permian‐Triassic) of the Ammonoidea demonstrate the similarity of the Devonian events (selective extinctions) but the striking difference from the end‐Permian event (nonselective extinction). These events differ in their mode of extinction despite decreases in taxonomic diversity of similar magnitude.  相似文献   

17.
The Devonian–Carboniferous (D–C) transition coincides with the Hangenberg Crisis, carbon isotope anomalies, and the enhanced preservation of organic matter associated with marine redox fluctuations. The proposed driving factors for the biotic extinction include variations in the eustatic sea level, paleoclimate fluctuation, climatic conditions, redox conditions, and the configuration of ocean basins. To investigate this phenomenon and obtain information on the paleo-ocean environment of different depositional facies, we studied a shallow-water carbonate section developed in the periplatform slope facies on the southern margin of South China, which includes a well-preserved succession spanning the D–C boundary. The integrated chemostratigraphic trends reveal distinct excursions in the isotopic compositions of bulk nitrogen, carbonate carbon, organic carbon, and total sulfur. A distinct negative δ15N excursion (~−3.1‰) is recorded throughout the Middle Si. praesulcata Zone and the Upper Si. praesulcata Zone, when the Hangenberg mass extinction occurred. We attribute the nitrogen cycle anomaly to enhanced microbial nitrogen fixation, which was likely a consequence of intensified seawater anoxia associated with increased denitrification, as well as upwelling of anoxic ammonium-bearing waters. Negative excursions in the δ13Ccarb and δ13Corg values were identified in the Middle Si. praesulcata Zone and likely resulted from intense deep ocean upwelling that amplified nutrient fluxes and delivered 13C-depleted anoxic water masses. Decreased δ34S values during the Middle Si. praesulcata Zone suggests an increasing contribution of water-column sulfate reduction under euxinic conditions. Contributions of organic matter produced by anaerobic metabolisms to the deposition of shallow carbonate in the Upper Si. praesulcata Zone is recorded by the nadir of δ13Corg values associated with maximal △13C. The integrated δ15N-δ13C-δ34S data suggest that significant ocean-redox variation was recorded in South China during the D–C transition; and that this prominent fluctuation was likely associated with intense upwelling of deep anoxic waters. The temporal synchrony between the development of euxinia/anoxia and the Hangenberg Event indicates that the redox oscillation was a key factor triggering manifestations of the biodiversity crisis.  相似文献   

18.
This study defines a new bivalve species, Naiadites devonicus nov. sp., of Famennian (Late Devonian) age. The material was excavated from the non-marine deposits of the Waterloo Farm Lagerstätte in South Africa, which form part of the Witpoort Formation (Witteberg Group, Cape Supergroup) of the Cape Fold Belt region. The type material of Naiadites devonicus nov. sp. is preserved in metamorphosed, clayey to silty mudstones of a coastal estuarine to lagoonal facies, deposited along the shoreline of the Agulhas Sea, in a high-palaeolatitude Gondwanan setting. The new bivalve species is the stratigraphically oldest representative of the genus Naiadites Dawson. It is a faunal element of a high-latitude palaeoecosystem, immediately preceding the Hangenberg extinction event at the end of the Late Devonian.  相似文献   

19.
Cruziana reticulata is an arthropod-related ichnospecies that is characterized by a conspicuous net-like scratch pattern whose initial formation and later preservation require the presence of consolidated substrates in shallow marine fine-grained bottoms. There are two scenarios in which epifaunal to shallow infaunal benthic organisms may access firm siliciclastic substrates: first, by exposure of the compacted bottom after erosion of the upper, water-saturated and usually soft portion of sediment column; and, second, by primary fast substrate stabilization in the absence of biogenic sediment mixing. Whereas the first mode occurs throughout the Phanerozoic, the latter is only prevalent in marine bottoms during the Early Palaeozoic mainly as a consequence of poorly developed infaunal bioturbation. However, by eradicating burrowing organisms, mass extinctions are known (i.e. the end-Permian extinction) to ‘reset’ intensity of ecospace utilization, which entails the return to this anachronistic style of trace fossil preservation in younger times. An earliest Carboniferous ichno-assemblage dominated by Cruziana reticulata from Morocco attests the spread of firm substrates in the aftermath of the Hangenberg Event – a major extinction at the end of the Devonian period. Since evidence for erosion is lacking in accompanying sedimentary rocks and the ichno-assemblage shows characteristics of opportunistic exploitation of the nutritious muddy seabed, we favour the interpretation of this assemblage to represent a post-extinction ichnofauna. It shows that other taxonomically less severe mass extinctions may also exhibit transient but severe ecological effects in open marine ecosystems such as the collapse of vital sediment mixing. Such post-extinction effects may distort the perception of the stratigraphical record as a firmground ichno-assemblage often taken as evidence for submarine erosion and are crucial in highlighting sequence boundaries. We, thus, encourage appreciating macroevolutionary framework of respective ichnofaunas.  相似文献   

20.
We measured longitudinal growth in conch cross‐sections of 177 Devonian to Jurassic ammonoid species to test whether conch ontogenetic development parallels the iterative evolution of pachyconic or globular conch shapes. Ontogenetic trajectories of two cardinal conch parameters, conch width index and umbilical width index, show a few common recurring ontogenetic pathways in terms of the number of ontogenetic phases. The most common, with three phases in the conch width index (decrease–increase–decrease) and umbilical width index (increase–decrease–increase), is termed here C‐mode ontogeny (after the Carboniferous genus Cravenoceras). Many of the studied globular Palaeozoic and Triassic species (of the latter, particularly the arcestid ammonoids) share principal patterns in the triphasic C‐mode conch ontogeny in closely related groups but also between unrelated groups as well. The repetition of conch growth patterns is an example of convergent evolution of the entire life history of globular ammonoids. The studied Jurassic globular shaped ammonoids deviate from the growth patterns seen in earlier groups showing less pronounced ontogenetic trajectories with nearly isometric or weakly asymmetric growth without distinct phases. This trajectory is termed here M‐mode ontogeny (after the Jurassic genus Macrocephalites). No major change in the ontogenetic modes of pachyconic and globular ammonoids occurred moving from the Palaeozoic into the Mesozoic; the survivors of the end‐Permian extinction event iteratively developed conch ontogenies similar to those of Palaeozoic forms. In contrast, the Triassic–Jurassic boundary marks the major event with the evolution of some cardinal conch parameters relating to globular ammonoid ontogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号