首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transglutaminase 2 in the balance of cell death and survival   总被引:7,自引:0,他引:7  
Fésüs L  Szondy Z 《FEBS letters》2005,579(15):3297-3302
Transglutaminase 2 (TG2), a multifunctional enzyme with Ca(2+)-dependent protein crosslinking activity and GTP-dependent G protein functions, is often upregulated in cells undergoing apoptosis. In cultured cells TG2 may exert both pro- and anti-apoptotic effects depending upon the type of cell, the kind of death stimuli, the intracellular localization of the enzyme and the type of its activities switched on. The majority of data support the notion that transamidation by TG2 can both facilitate and inhibit apoptosis, while the GTP-bound form of the enzyme generally protects cells against death. In vivo studies confirm the Janus face of TG2 in the initiation of the apoptotic program. In addition, they reveal a further role: the prevention of inflammation, tissue injury and autoimmunity once the apoptosis has already been initiated. This function of TG2 is partially achieved by being expressed and activated also in macrophages digesting apoptotic cells and mediating a crosstalk between dying and phagocytic cells.  相似文献   

2.
Cell-death and -survival decisions are critically controlled by intracellular Ca2 + homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca2 + flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca2 + signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca2 +, Ca2 +-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca2 + store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca2 + leak. Third, we will review the regulation of the Ca2 +-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

3.
The balance between neuronal apoptosis and survival sculpts the developing brain and has an important role in neurodegenerative diseases. Thus, the individuation of signals that could modulate the cell death machinery as well as enhance survival in neurons promises to provide multiple points of therapeutic intervention in neurodegenerative diseases. Neuroglobin (NGB), the first nerve globin identified in neuronal tissues of humans, seems to possess a protective role in the brain only after up-regulation. Here, the NGB physiological role in the control of neuronal survival is reviewed. In vitro studies suggested that cytosolic NGB could react very rapidly with cytochrome c released from mitochondria, thus interfering with the intrinsic pathway of apoptosis. Although very suggestive, these data do not explain either the role of NGB up-regulation in neuroprotection or the recently reported NGB localization into mitochondria. Recently, we identified the steroid hormone 17β-estradiol (E2) as an endogenous modulator of NGB levels in neuroblastoma SK-N-BE cell line. Upon E2 stimulation, NGB reallocates mainly into mitochondria where the association with the mitochondrial cytochrome c occurs. Remarkably, E2 treatment before an apoptotic stimulus strongly enhances the NGB:cytochrome c association reducing cytochrome c release into the cytosol. As a consequence, a decrease of caspase-3 activation and, in turn, of the apoptotic cascade activation take place. Besides E2, other compounds have been reported to up-regulate the NGB expression highlighting the possibility to develop NGB-mediated therapeutic strategies against stroke damage and neurodegenerative diseases. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

4.
The adaptor protein Shb has previously been shown to regulate apoptosis in response to cytokines and inhibitors of angiogenesis although the mechanisms governing these effects have remained obscure. We currently demonstrate interactions between Shb and c-Abl and that Shb regulates c-Abl kinase activity. The data suggest that c-Abl binds to tyrosine phosphorylated Shb via a concerted effort involving both the c-Abl SH3 and SH2 domains. The biological significance of the Shb/c-Abl interaction was presently tested in overexpression experiments and was found to promote hydrogen peroxide-induced cell death. We also show by Shb knockdown experiments that Shb regulates c-Abl activity and modulates cell death in response to the genotoxic agent cisplatin and the endoplasmic reticulum stress-inducer tunicamycin. The findings are in agreement with the notion of Shb playing a pivotal role in modulating c-Abl pro-apoptotic signaling in response to various stress stimuli.  相似文献   

5.
Cellular oxidative stress results from the increased generation of reactive oxygen species and/or the dysfunction of the antioxidant systems. Most intracellular reactive oxygen species derive from superoxide radical although the majority of the biological effects of reactive oxygen species are mediated by hydrogen peroxide. In this contribution we overview the major cellular sites of reactive oxygen species production, with special emphasis in the mitochondrial pathways. Reactive oxygen species regulate signaling pathways involved in promoting survival and cell death, proliferation, metabolic regulation, the activation of the antioxidant response, the control of iron metabolism and Ca2 + signaling. The reversible oxidation of cysteines in transducers of reactive oxygen species is the primary mechanism of regulation of the activity of these proteins. Next, we present the mitochondrial H+-ATP synthase as a core hub in energy and cell death regulation, defining both the rate of energy metabolism and the reactive oxygen species-mediated cell death in response to chemotherapy. Two main mechanisms that affect the expression and activity of the H+-ATP synthase down-regulate oxidative phosphorylation in prevalent human carcinomas. In this context, we emphasize the prominent role played by the ATPase Inhibitory Factor 1 in human carcinogenesis as an inhibitor of the H+-ATP synthase activity and a mediator of cell survival. The ATPase Inhibitory Factor 1 promotes metabolic rewiring to an enhanced aerobic glycolysis and the subsequent production of mitochondrial reactive oxygen species. The generated reactive oxygen species are able to reprogram the nucleus to support tumor development by arresting cell death. Overall, we discuss the cross-talk between reactive oxygen species signaling and mitochondrial function that is crucial in determining the cellular fate. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

6.
7.
8.
Diabetic retinopathy is a chronic low-grade inflammatory disease; however, the mechanisms remain elusive. In the present study, we demonstrated that endoplasmic reticulum (ER) stress was activated in the retina in animal models of diabetes and oxygen-induced retinopathy (OIR). Induction of ER stress by tunicamycin resulted in significantly increased expression of inflammatory molecules in the retina. Inhibition of ER stress by chemical chaperone 4-phenyl butyric acid ameliorated inflammation in cultured human retinal endothelial cells exposed to hypoxia, and in the retinas of diabetic and OIR mice. These findings indicate that ER stress is a potential mediator of retinal inflammation in diabetic retinopathy.  相似文献   

9.
Heparan sulphate (HS) is a long, linear polysaccharide, which has a basic backbone of -β1-4GlcA-α1-4GlcNAc- units. The involvement of HS in many steps of tumourigenesis, including growth and angiogenesis, makes it an appealing target for cancer therapy. To target the biosynthesis of HS by interfering with its chain elongation, a 4-deoxy analogue of N-acetyl-d-glucosamine (4-deoxy-GlcNAc) was synthesized. Using immunocytochemistry and agarose gel electrophoresis it was shown that incubation with the 4-deoxysugar resulted in a dose dependent reduction of HS expression of MV3 melanoma cells, 1 mM resulting in an almost nullified HS expression. The parent sugar GlcNAc had no effect. 4-deoxysugar treated cells were viable and proliferated at the same rate as control cells. Other glycan structures appeared to be only mildly affected, as staining by various lectins was generally not or only modestly inhibited. At 1 mM of the 4-deoxysugar, the capacity of cells to bind the HS-dependent pro-angiogenic growth factors FGF-2 and VEGF was greatly compromised. Using an in vitro angiogenesis assay, 4-deoxysugar treated endothelial cells showed a sharp reduction of FGF-2-induced sprout formation. Combined, these data indicate that an inexpensive, easily synthesized, water-soluble monosaccharide analogue can interfere with HS expression and pro-angiogenic growth factor binding.  相似文献   

10.

Background & objectives

To analyze the reversal gene pairs and identify featured reversal genes related to mitogen-activated protein kinases (MAPK) signaling pathway and cell cycle in Glioblastoma multiforme (GBM) to reveal its pathogenetic mechanism.

Methods

We downloaded the gene expression profile GSE4290 from the Gene Expression Omnibus database, including 81 gene chips of GBM and 23 gene chips of controls. The t test was used to analyze the DEGs (differentially expressed genes) between 23 normal and 81 GBM samples. Then some perturbing metabolic pathways, including MAPK (mitogen-activated protein kinases) and cell cycle signaling pathway, were extracted from KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database. Cancer genes were obtained from the database of Cancer Gene Census. The reversal gene pairs between DEGs and cancer genes were further analyzed in MAPK and cell cycle signaling pathway.

Results

A total 8523 DEGs were obtained including 4090 up-regulated and 4433 down-regulated genes. Among them, ras-related protein rab-13(RAB13), neuroblastoma breakpoint family member 10 (NBPF10) and disks large homologue 4 (DLG4) were found to be involved in GBM for the first time. We obtained MAPK and cell cycle signaling pathways from KEGG database. By analyzing perturbing mechanism in these two pathways, we identified several reversal gene pairs, including NRAS (neuroblastoma RAS) and CDK2 (cyclin-dependent kinase 2), CCND1 (cyclin D1) and FGFR (fibroblast growth factor receptor). Further analysis showed that NRAS and CDK2 were positively related with GBM. However, FGFR2 and CCND1 were negatively related with GBM.

Interpretation & conclusions

These findings suggest that newly identified DEGs and featured reversal gene pairs participated in MAPK and cell cycle signaling pathway may provide a new therapeutic line of approach to GBM.  相似文献   

11.
Li CM  Tzeng JN  Sung HM 《Gene》2012,497(1):93-97
Recently, two genome-wide association studies in Asia identified gene polymorphisms known as rs4488809, rs9816619 in TP63 and rs2131877, rs952481 in C3orf21. It has been proposed that these polymorphisms are susceptibility loci for non-small cell lung cancer (NSCLC) development among Japanese and Korean populations. We ask whether susceptibility to NSCLC is limited to the Chinese population or whether the environment also affects genetic polymorphisms. We conducted a matched case-control study to explore this question. Results show that polymorphism of TP63 was not associated with NSCLC development, whereas variant genotypes of C3orf21 were nominally associated with a reduced risk of lung adenocarcinoma (OR=0.619, 95% CI=0.390-0.976). These results strongly suggest that environmental agents interact with human genetic polymorphism independent of ethnic background. In addition, the C3orf21 gene may be a potential susceptibility marker for lung adenocarcinoma independent of ethnic background and environmental agents.  相似文献   

12.
In traumatic brain injury (TBI), the primary, irreversible damage associated with the moment of impact consists of cells dying from necrosis. This contributes to fuelling a chronic central nervous system (CNS) inflammation with increased formation of proinflammatory cytokines, enzymes and reactive oxygen species (ROS). ROS promote oxidative stress, which leads to neurodegeneration and ultimately results in programmed cell death (secondary injury). Since this delayed, secondary tissue loss occurs days to months following the primary injury it provides a therapeutic window where potential neuroprotective treatment could alleviate ongoing neurodegeneration, cell death and neurological impairment following TBI. Various neuroprotective drug candidates have been described, tested and proven effective in pre-clinical studies, including glutamate receptor antagonists, calcium-channel blockers, and caspase inhibitors. However, most of the scientific efforts have failed in translating the experimental results into clinical trials. Despite intensive research, effective neuroprotective therapies are lacking in the clinic, and TBI continues to be a major cause of morbidity and mortality.This paper provides an overview of the TBI pathophysiology leading to cell death and neurological impairment. We also discuss endogenously expressed neuroprotectants and drug candidates, which at this stage may still hold the potential for treating brain injured patients.  相似文献   

13.
Cadherins are homophilic cell-to-cell adhesion molecules that help cells respond to environmental changes. Newly formed cadherin junctions are associated with increased cell phosphorylation, but the pathways driving this signaling response are largely unknown. Since cadherins have no intrinsic signaling activity, this phosphorylation must occur through interactions with other signaling molecules. We previously reported that cadherin-11 engagement activates joint synovial fibroblasts, promoting inflammatory and degradative pathways important in rheumatoid arthritis (RA) pathogenesis. Our objective in this study was to discover interacting partners that mediate cadherin-11 signaling. Protein array screening showed that cadherin-11 extracellular binding domains linked to an Fc domain (cad11Fc) induced platelet-derived growth factor (PDGFR)-α phosphorylation in synovial fibroblasts and glioblastoma cells. PDGFRs are growth factor receptor tyrosine kinases that promote cell proliferation, survival, and migration in mesodermally derived cells. Increased PDGFR activity is implicated in RA pathology and associates with poor prognosis in several cancers, including sarcoma and glioblastoma. PDGFRα activation by cadherin-11 signaling promoted fibroblast proliferation, a signaling pathway independent from cadherin-11-stimulated IL-6 or matrix metalloproteinase (MMP)-3 release. PDGFRα phosphorylation mediated most of the cad11Fc-induced phosphatidyl-3-kinase (PI3K)/Akt activation, but only part of the mitogen-activated protein kinase (MAPK) response. PDGFRα-dependent signaling did not require cell cadherin-11 expression. Rather, cad11Fc immunoprecipitated PDGFRα, indicating a direct interaction between cadherin-11 and PDGFRα extracellular domains. This study is the first to report an interaction between cadherin-11 and PDGFRα and adds to our growing understanding that cadherin-growth factor receptor interactions help balance the interplay between tissue growth and adhesion.  相似文献   

14.
The effect of thalidomide on epidermal growth factor (EGF)-induced cell growth was examined. Thalidomide inhibited EGF-induced cell growth in mouse and human monocytic leukemia cells, RAW 264.7, U937 and THP-1. Thalidomide inhibited EGF-induced phosphorylation of extracellular signal regulated kinase (ERK) 1/2, but not p38 and stress-activated protein kinase (SAPK)/JNK. The phosphorylation of MEK1/2 and Raf at Ser 338 as the upstream molecules of ERK 1/2 was also prevented by thalidomide. Further, it inhibited EGF-induced Ras activation through preventing the transition to GTP-bound active Ras. Thalidomide inhibited the Ras activation induced by lipopolysaccharide (LPS) and vascular endothelial growth factor (VEGF) as well as EGF. There was no significant difference in the expression and function of EGF receptor between thalidomide-treated and non-treated cells. Therefore, thalidomide was suggested to inhibit EGF-induced cell growth via inactivation of Ras.  相似文献   

15.
Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury.  相似文献   

16.
This review focuses on matrix metalloproteinases (MMPs)-2 (gelatinase A) and -9 (gelatinase B), both of which are cancer-associated, secreted, zinc-dependent endopeptidases. Gelatinases cleave many different targets (extracellular matrix, cytokines, growth factors, chemokines and cytokine/growth factor receptors) that in turn regulate key signaling pathways in cell growth, migration, invasion, inflammation and angiogenesis. Interactions with cell surface integral membrane proteins (CD44, αVβ/αβ1/αβ2 integrins and Ku protein) can occur through the gelatinases' active site or hemopexin-like C-terminal domain. This review evaluates the recent literature on the non-enzymatic, signal transduction roles of surface-bound gelatinases and their subsequent effects on cell survival, migration and angiogenesis. Gelatinases have long been drug targets. The current status of gelatinase inhibitors as anticancer agents and their failure in the clinic is discussed in light of these new data on the gelatinases' roles as cell surface transducers — data that may lead to the design and development of novel, gelatinase-targeting inhibitors.  相似文献   

17.
Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key events in the development of glioma, acute myeloid leukemia (AML), chondrosarcoma, intrahepatic cholangiocarcinoma (ICC), and angioimmunoblastic T-cell lymphoma. They also cause D-2-hydroxyglutaric aciduria and Ollier and Maffucci syndromes. IDH1/2 mutations are associated with prolonged survival in glioma and in ICC, but not in AML. The reason for this is unknown. In their wild-type forms, IDH1 and IDH2 convert isocitrate and NADP+ to α-ketoglutarate (αKG) and NADPH. Missense mutations in the active sites of these enzymes induce a neo-enzymatic reaction wherein NADPH reduces αKG to D-2-hydroxyglutarate (D-2HG). The resulting D-2HG accumulation leads to hypoxia-inducible factor 1α degradation, and changes in epigenetics and extracellular matrix homeostasis. Such mutations also imply less NADPH production capacity. Each of these effects could play a role in cancer formation. Here, we provide an overview of the literature and discuss which downstream molecular effects are likely to be the drivers of the oncogenic and survival-prolonging properties of IDH1/2 mutations. We discuss interactions between mutant IDH1/2 inhibitors and conventional therapies. Understanding of the biochemical consequences of IDH1/2 mutations in oncogenesis and survival prolongation will yield valuable information for rational therapy design: it will tell us which oncogenic processes should be blocked and which “survivalogenic” effects should be retained.  相似文献   

18.
Immunoglobulin superfamily (IgSF) proteins are involved in cell adhesion, cell communication and immune functions. In this study, 152 IgSF genes containing at least one immunoglobulin (Ig) domain were predicted in the Bombyx mori silkworm genome. Of these, 145 were distributed on 25 chromosomes with no genes on chromosomes 16, 18 and 26. Multiple sequence alignments and phylogenetic evolution analysis indicated that IgSFs evolved rapidly. Gene ontology (GO) annotation indicated that IgSF members functioned as cellular components and in molecular functions and biological processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that IgSF proteins were involved in signal transduction, signaling molecules and interaction, and cell communication. Microarray-based expression data showed tissue expression for 136 genes in anterior silkgland, middle silkgland, posterior silkgland, testis, ovary, fat body, midgut, integument, hemocyte, malpighian tubule and head. Expression pattern of IgSF genes in the silkworm ovary and midgut was analyzed by RNA-Seq. Expression of 105 genes was detected in the ovary in strain Dazao. Expression in the midgut was detected for 74 genes in strain Lan5 and 75 genes in strain Ou17. Expression of 34 IgSF genes in the midgut relative to the actin A3 gene was significantly different between strains Lan5 and Ou17. Furthermore, 1 IgSF gene was upregulated and 1 IgSF gene was downregulated in strain Lan5, and 4 IgSF genes were upregulated and 2 IgSF genes were downregulated in strain Ou17 after silkworms were challenged with B. mori cypovirus (BmCPV), indicating potential involvement in the response to BmCPV-infection. These results provide an overview of IgSF family members in silkworms, and lay the foundation for further functional studies.  相似文献   

19.
Recombinant human erythropoietin (rhEPO) has been used clinically to alleviate cancer- and chemotherapy-related anemia. However, recent clinical trials have reported that rhEPO also may adversely impact disease progression and survival. The expression of functional EPO receptors (EPOR) has been demonstrated in many human cancer cells where, at least in vitro, rhEPO can stimulate cell growth and survival and may induce resistance to selected therapies.  相似文献   

20.
Tumor angiogenesis and immune response have in common to be cell recognition mechanisms, which are based on specific adhesion molecules and dependent on nitric oxide (NO). The aim of the present study is to deepen the mechanisms of angiogenesis and inflammation regulation by NO to find out the molecular regulation processes that govern endothelial cell permeability and leukocyte transmigration.Effects of NO, either exogenous or produced in hypoxic conditions, were studied on microvascular endothelial cells from skin and lymph node because of their strong involvement in melanoma progression. We found that NO down-regulation of pseudo-vessel formation was linked to a decrease in endothelial cell ability to adhere to each other which can be explain, in part, by the inhibition of PECAM-1/CD31 expression. On the other hand, NO was shown to be able to decrease leukocyte adhesion on an endothelial monolayer, performed either in static or in rolling conditions, and to modulate differentially CD34, ICAM-1/CD54, ICAM-2/CD102 and VCAM-1/CD106 expression.In conclusion, during angiogenesis and leukocyte recruitment, NO regulates cell interactions by controlling adhesion molecule expression and subsequently cell adhesion. Moreover, each endothelial cell type presents its own organospecific response to NO, reflecting the functions of the tissue they originate from.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号