首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformational transitions of calcium binding protein parvalbumin III from carp muscle were studied by scanning calorimetry, potentiometric titration and isothermal calorimetric titration. Changes of Gibbs energy, enthalpy and partial heat capacity were determined. The removal of calcium ions by EDTA is accompanied by 1) a heat absorption of 75 +/- 10 kJ per mole of the protein, 2) a decrease in the Gibbs energy of protein structure stabilisation of about 42 kJ mol-1 and 3) a decrease in thermostability by more than 50 K. The protonation of the acidic groups leads to a loss of calcium followed by denaturation, while the pH of the transition strongly depends on calcium activity. The enthalpy and heat capacity changes at denaturation are comparable with the values observed for other compact globular proteins.  相似文献   

2.
Differential scanning calorimetry has been used to investigate the thermodynamics of denaturation of ribonuclease T1 as a function of pH over the pH range 2-10, and as a function of NaCl and MgCl2 concentration. At pH 7 in 30 mM PIPES buffer, the thermodynamic parameters are as follows: melting temperature, T1/2 = 48.9 +/- 0.1 degrees C; enthalpy change, delta H = 95.5 +/- 0.9 kcal mol-1; heat capacity change, delta Cp = 1.59 kcal mol-1 K-1; free energy change at 25 degrees C, delta G degrees (25 degrees C) = 5.6 kcal mol-1. Both T1/2 = 56.5 degrees C and delta H = 106.1 kcal mol-1 are maximal near pH 5. The conformational stability of ribonuclease T1 is increased by 3.0 kcal/mol in the presence of 0.6 M NaCl or 0.3 M MgCl2. This stabilization results mainly from the preferential binding of cations to the folded conformation of the protein. The estimates of the conformational stability of ribonuclease T1 from differential scanning calorimetry are shown to be in remarkably good agreement with estimates derived from an analysis of urea denaturation curves.  相似文献   

3.
To understand the role of disulfide bridges in protein stability, the thermodynamic changes in the denaturation of two mutant human lysozymes lacking a disulfide bridge between Cys-77 and Cys-95 (C77A and C77/95A) were analyzed using differential scanning calorimetry (DSC). At pH 3.0 and 57 degrees C, the stabilities of both the C77A and C77/95A mutants were decreased about 4.6 kcal.mol-1 in Gibbs free energy change. Under the same conditions, the enthalpy changes (delta H) were 94.8 and 90.8 kcal.mol-1, respectively, which were smaller than that of the wild type (100.8 kcal.mol-1). The destabilization of the mutants was caused by enthalpic factors. Although X-ray crystallography indicated that the mutants preserve the wild-type tertiary structure, removal of the disulfide bridge increased the flexibility of the native state of the mutants. This was indicated both by an increase in the crystallographic thermal factors (B-factors) and by a decrease in the affinity of N-acetylglucosamine trimer [(NAG)3] observed using isothermal titration calorimetry (DTC) due to entropic effects. Thus, the effect of cross-linking on the stability of a protein is not solely explained by the entropy change in denaturation.  相似文献   

4.
Absorbance-detected thermal denaturation studies of the C102T variant of Saccharomyces cerevisiae iso-1-ferricytochrome c were performed between pH 3 and 5. Thermal denaturation in this pH range is reversible, shows no concentration dependence, and is consistent with a 2-state model. Values for free energy (delta GD), enthalpy (delta HD), and entropy (delta SD) of denaturation were determined as functions of pH and temperature. The value of delta GD at 300 K, pH 4.6, is 5.1 +/- 0.3 kcal mol-1. The change in molar heat capacity upon denaturation (delta Cp), determined by the temperature dependence of delta HD as a function of pH (1.37 +/- 0.06 kcal mol-1 K-1), agrees with the value determined by differential scanning calorimetry. pH-dependent changes in the Soret region indicate that a group or groups in the heme environment of the denatured protein, probably 1 or both heme propionates, ionize with a pK near 4. The C102T variant exhibits both enthalpy and entropy convergence with a delta HD of 1.30 kcal mol-1 residue-1 at 373.6 K and a delta SD of 4.24 cal mol-1 K-1 residue-1 at 385.2 K. These values agree with those for other single-domain, globular proteins.  相似文献   

5.
The equilibrium behaviour of the bovine phosphatidylethanolamine-binding protein (PEBP) has been studied under various conditions of pH, temperature and urea concentration. Far-UV and near-UV CD, fluorescence and Fourier transform infrared spectroscopies indicate that, in its native state, PEBP is mainly composed of beta-sheets, with Trp residues mostly localized in a hydrophobic environment; these results suggest that the conformation of PEBP in solution is similar to the three-dimensional structure determined by X-ray crystallography. The pH-induced conformational changes show a transition midpoint at pH 3.0, implying nine protons in the transition. At neutral pH, the thermal denaturation is irreversible due to protein precipitation, whereas at acidic pH values the protein exhibits a reversible denaturation. The thermal denaturation curves, as monitored by CD, fluorescence and differential scanning calorimetry, support a two-state model for the equilibrium and display coincident values with a melting temperature Tm = 54 degrees C, an enthalpy change DeltaH = 119 kcal.mol-1 and a free energy change DeltaG(H2O, 25 degrees C) = 5 kcal.mol-1. The urea-induced unfolding profiles of PEBP show a midpoint of the two-state unfolding transition at 4.8 M denaturant, and the stability of PEBP is 4.5 kcal.mol-1 at 25 degrees C. Moreover, the surface active properties indicate that PEBP is essentially a hydrophilic protein which progressively unfolds at the air/water interface over the course of time. Together, these results suggest that PEBP is well-structured in solution but that its conformation is weakly stable and sensitive to hydrophobic conditions: the PEBP structure seems to be flexible and adaptable to its environment.  相似文献   

6.
Heat-denaturation of tryptophan synthase alpha-subunit from E. coli and two mutant proteins (Glu 49 leads to Gln or Ser; called Gln 49 or Ser 49, respectively) has been studied by the scanning microcalorimetric method at various pH, in an attempt to elucidate the role of individual amino acid residues in the conformational stability of a protein. The partial specific heat capacity in the native state at 20 degrees, Cp20, has been found to be (0.43 +/- 0.02) cal . k-1 . g-1, the unfolding heat capacity change, delta dCp, (0.10 +/- 0.01) cal . K-1 . g-1, and the unfolding enthalpy value extrapolated to 110 degrees, delta dh110, (9.3 +/- 0.5) cal . g-1 for the three proteins. The value of Cp20 was larger than those found for "fully compact protein" and that of delta dh110 was smaller. Unfolding Gibbs energy, delta dG at 25 degrees for Wild-type, Gln 49, and Ser 49 were 5.8, 8.4, and 7.1 kcal . mol-1 at pH 9.3, respectively. Unfolding enthalpy, delta dH, of the three proteins seemed to be the same and equal to (23.2 +/- 1.2) kcal . mol-1 at 25 degrees. As a consequence of the same value of delta dH and the different value in delta dG, substantial differences in unfolding entropy, delta dS, were found for the three proteins. The values of delta dG for the three proteins at 25 degrees coincided with those from equilibrium methods of denaturation by guanidine hydrochloride.  相似文献   

7.
Thermal denaturation of Streptomyces subtilisin inhibitor was studied by means of circular dichroism (CD) measurements in the far-UV and near-UV regions. The denaturation was found to be largely reversible; the partial irreversibility was associated with a slight loss of the inhibitory activity. Difference CD spectra in the far-UV region clarified the existence of two distinct steps in the thermal transition of the secondary structure. The first step below 80 degrees C is attributable to a partial conformational change in the alpha-helix portion, whereas the second step between 80 degrees C and 94 degrees C is attributable to a major conformational change involving the beta-sheet portion. On the assumption that the major denaturation involves dissociation of the SSI into its subunits, the enthalpy and entropy changes were determined to be 216 kcal X mol-1 and to be 603 cal X deg-1 X mol-1, respectively.  相似文献   

8.
The proposed biological function of beta-lactoglobulins as transporting proteins assumes a binding ability for ligands and high stability under the acidic conditions of the stomach. This work shows that the conformational stability of nonruminant porcine beta-lactoglobulin (BLG) is not consistent with this hypothesis. Thermal denaturation of porcine BLG was studied by high-sensitivity differential scanning calorimetry within the pH range 2.0-10.0. Dependences of the denaturation temperature and enthalpy on pH were obtained, which reveal a substantial decrease in both parameters in acidic and basic media. The denaturation enthalpy follows a linear dependence on the denaturation temperature. The slope of this line is 9.4 +/- 0.6 kJ.mol-1. K-1,which is close to the denaturation heat capacity increment DeltadCp = 9.6 +/- 0.5 kJ.mol-1.K-1, determined directly from the thermograms. At pH 6.25 the denaturation temperatures of porcine and bovine BLG coincide, at 83.2 degrees C. At this pH the denaturation enthalpy of porcine BLG is 300 kJ.mol-1. The denaturation transition of porcine BLG was shown to be reversible at pH 3.0 and pH 9.0. The transition profile at both pH values follows the two-state model of denaturation. Based on the pH-dependence of the transition temperature and the linear temperature dependence of the transition enthalpy, the excess free energy of denaturation, DeltadGE, of porcine BLG was calculated as a function of pH and compared with that of bovine BLG derived from previously reported data. The pH-dependence of DeltadGE is analysed in terms of the contributions of side-chain H-bonds to the protein stability. Interactions stabilizing native folds of porcine and bovine BLG are discussed.  相似文献   

9.
A direct method is proposed for obtaining thermodynamic standard functions for native and denatured proteins using experimental data from scanning calorimetry, isothermal calorimetry and potentiometric titrations. The possibility of this approach is demonstrated on the example of lysozyme in the range of pH 1.5-7.0 and temperature 0-100 degrees C. Tests for the validity of the obtained functions of enthalpy and entropy are presented in the form of cyclic processes using experimental data obtained from thermodynamically different pathways. The Gibbs function is checked by comparison with results of an independent method. The methodic problems in determining and checking standard functions for proteins are discussed in detail.  相似文献   

10.
Y Chi  T K Kumar  H M Wang  M C Ho  I M Chiu  C Yu 《Biochemistry》2001,40(25):7746-7753
The thermodynamic parameters characterizing the conformational stability of the human acidic fibroblast growth factor (hFGF-1) have been determined by isothermal urea denaturation and thermal denaturation at fixed concentrations of urea using fluorescence and far-UV CD circular dichroism (CD) spectroscopy. The equilibrium unfolding transitions at pH 7.0 are adequately described by a two-state (native <--> unfolded state) mechanism. The stability of the protein is pH-dependent, and the protein unfolds completely below pH 3.0 (at 25 degrees C). hFGF-1 is shown to undergo a two-state transition only in a narrow pH range (pH 7.0-8.0). Under acidic (pH <6.0) and basic (pH >8.0) conditions, hFGF-1 is found to unfold noncooperatively, involving the accumulation of intermediates. The average temperature of maximum stability is determined to be 295.2 K. The heat capacity change (DeltaC(p)()) for the unfolding of hFGF-1 is estimated to be 2.1 +/- 0.5 kcal.mol(-1).K(-1). Temperature denaturation experiments in the absence and presence of urea show that hFGF-1 has a tendency to undergo cold denaturation. Two-dimensional (1)H-(15)N HSQC spectra of hFGF-1 acquired at subzero temperatures clearly show that hFGF-1 unfolds under low-temperature conditions. The significance of the noncooperative unfolding under acidic conditions and the cold denaturation process observed in hFGF-1 are discussed in detail.  相似文献   

11.
The conformational stability of Shiga toxin B-subunit (STxB), a pentameric protein from Shigella dysenteriae has been characterized by high sensitivity differential scanning calorimetry and circular dichroism spectroscopy under different solvent conditions. It is shown that the thermal folding/unfolding of STxB is a reversible process involving a highly cooperative transition between folded pentamer and unfolded monomers. The conformational stability of STxB is pH dependent and because of its pentameric nature is also concentration dependent. STxB is maximally stable in the pH range from 5 to 9 (Delta G upon unfolding is close to 13 kcal per mol of monomer at 25 degrees C), and its stability decreases both at lower and at higher pH values. The pH dependence of the Gibbs energy of stabilization between pH 2.5 and 5 is consistent with the change in the ionizable state of an average of four groups per monomer upon unfolding. Structural thermodynamic calculations show that the stabilization of the STxB pentamer is primarily due to the interactions established between monomers rather than intramonomer interactions. The folding of an isolated monomer into the conformation existing in the pentamer is unfavorable and expected to be characterized by a free-energy change upon folding in the order of 2.5 kcal mol(-1) at 25 degrees C. On the average, intersubunit interaction induced upon oligomerization of folded monomers should contribute close to -13.4 kcal per mol of monomer to bring the overall Gibbs energy to the experimentally determined value at this temperature.  相似文献   

12.
The denaturation of ribonuclease A by guanidine hydrochloride, lithium bromide, and lithium chloride and by mixed denaturants consisting of guanidine hydrochloride and one of the denaturants lithium chloride, lithium bromide, and sodium bromide was followed by difference spectral measurements at pH 4.8 and 25 degrees C. Both components of mixed denaturant systems enhance each other's effect in unfolding the protein. The effect of lithium bromide on the midpoint of guanidine hydrochloride denaturation transition is approximately the sum of the effects of the constituent ions. For all the mixed denaturants tested, the dependence of the free energy change on denaturation is linear. The conformational free energy associated with the guanidine hydrochloride denaturation transition in water is 7.5 +/- 0.1 kcal mol-1, and it is unchanged in the presence of low concentrations of lithium bromide, lithium chloride, and sodium bromide which by themselves are not concentrated enough to unfold the protein. The conformational free energy associated with the lithium bromide denaturation transition in water is 11.7 +/- 0.3 kcal mol-1, and it is not affected by the presence of low concentrations of guanidine hydrochloride which by themselves do not disrupt the structure of native ribonuclease A.  相似文献   

13.
The conformation and stabilities of the CL fragment isolated from a type lambda Bence Jones protein and the fragment in which the intrachain disulfide bond had been reduced were studied by measuring CD, fluorescence, and ultraviolet absorption. The results indicated that no great conformational change occurs on reduction of the disulfide, unless the SH groups are alkylated. Intact CL was more resistant than reduced CL to guanidine hydrochloride. The denaturation curves were analyzed using an equation based on the binding of guanidine hydrochloride and the free energy changes of denaturation in the absence of the denaturant were estimated as about 6 kcal.mol-1 for intact CL and about 1.8 kcal.mol-1 for reduced CL. The difference in stability between intact CL and reduced CL was explained to a great extent in terms of the entropy change associated with reduction of the intrachain disulfide bond of the fragment in the denatured state.  相似文献   

14.
D Shortle  A K Meeker  E Freire 《Biochemistry》1988,27(13):4761-4768
By use of intrinsic fluorescence to determine the apparent equilibrium constant Kapp as a function of temperature, the midpoint temperature Tm and apparent enthalpy change delta Happ on reversible thermal denaturation have been determined over a range of pH values for wild-type staphylococcal nuclease and six mutant forms. For wild-type nuclease at pH 7.0, a Tm of 53.3 +/- 0.2 degrees C and a delta Happ of 86.8 +/- 1.4 kcal/mol were obtained, in reasonable agreement with values determined calorimetrically, 52.8 degrees C and 96 +/- 2 kcal/mol. The heat capacity change on denaturation delta Cp was estimated at 1.8 kcal/(mol K) versus the calorimetric value of 2.2 kcal/(mol K). When values of delta Happ and delta Sapp for a series of mutant nucleases that exhibit markedly altered denaturation behavior with guanidine hydrochloride and urea were compared at the same temperature, compensating changes in enthalpy and entropy were observed that greatly reduce the overall effect of the mutations on the free energy of denaturation. In addition, a correlation was found between the estimated delta Cp for the mutant proteins and the d(delta Gapp)/dC for guanidine hydrochloride denaturation. It is proposed that both the enthalpy/entropy compensation and this correlation between two seemingly unrelated denaturation parameters are consequences of large changes in the solvation of the denatured state that result from the mutant amino acid substitutions.  相似文献   

15.
K Ruan  G Weber 《Biochemistry》1989,28(5):2144-2153
Pressure dissociation of yeast glyceraldehydephosphate dehydrogenase (GAPDH) was studied by fluorescence spectroscopy. Observations in the range of -5 to 30 degrees C indicate that monomer association into the tetramer proceeds with an enthalpy change of -14 kcal mol-1 and a large increase in entropy which at 25 degrees C amounts to 18 kcal mol-1. The large conformational drift and the low-temperature stability of the tetramer recovered after decompression facilitated a comparison of its properties with those of the native tetramer. Significant differences in absorption and fluorescence-excitation polarization spectra, yield of tryptophan fluorescence, and binding of anilinonaphthalenesulfonate and NADH were observed. At 0 degree C the standard free energies of association of the monomers into the native and drifted tetramers were respectively -32 and -29 kcal mol-1. The volume change upon association measured from the pressure span of the compression curves was 200-230 mL mol-1 but four times as large when derived from the displacement of the compression curves with total protein concentration. This large discrepancy can be explained by the existence in the native tetramer population of a distribution of free energies of association with a dispersion from the mean of about 6 kcal mol-1. At 0 degree C and 1 bar ATP and ADP decreased the stability of the GAPDH tetramer by changes in free energy of association of +3.7 and +4.1 kcal mol-1, respectively. NAD and c-AMP stabilized it by -2.3 and -1.3 kcal mol-1. The variation in sign and magnitude of the ligand-induced changes in free energy of association observed in this case, and previously in hexokinase [Ruan, K., & Weber, G. (1988) Biochemistry 27, 3295], and the heterogeneity of the free energy of association of GAPDH, revealed as indicated above, lead to the conclusion that oligomeric aggregates exist in a variety of conformations that depend upon the protein concentration, temperature, pressure, and the presence of specific ligands. The multiplicity of species revealed by the energetics raises questions about the significance of the structures of oligomeric proteins determined by X-ray crystallography.  相似文献   

16.
The stability curve - a plot of the Gibbs free energy of unfolding versus temperature - is calculated for bovine erythrocyte carbonic anhydrase in 150 mM sodium phosphate (pH = 7.0) from a combination of reversible differential scanning calorimetry measurements and isothermal guanidine hydrochloride titrations. The enzyme possesses two stable folded conformers with the conformational transition occurring at ~30 degrees C. The methodology yields a stability curve for the complete unfolding of the enzyme below this temperature but only the partial unfolding, to the molten globule state, above it. The transition state thermodynamics for the low- to physiological-temperature conformational change are calculated from slow-scan-rate differential scanning calorimetry measurements where it is found that the free energy barrier for the conversion is 90 kJ/mole and the transition state possesses a substantial unfolding quality. The data therefore suggest that the x-ray structure may differ considerably from the physiological structure and that the two conformers are not readily interconverted.  相似文献   

17.
It is widely believed that the dominant force opposing protein folding is the entropic cost of restricting internal rotations. The energetic changes from restricting side-chain torsional motion are more complex than simply a loss of conformational entropy, however. A second force opposing protein folding arises when a side-chain in the folded state is not in its lowest-energy rotamer, giving rotameric strain. chi strain energy results from a dihedral angle being shifted from the most stable conformation of a rotamer when a protein folds. We calculated the energy of a side-chain as a function of its dihedral angles in a poly(Ala) helix. Using these energy profiles, we quantify conformational entropy, rotameric strain energy and chi strain energy for all 17 amino acid residues with side-chains in alpha-helices. We can calculate these terms for any amino acid in a helix interior in a protein, as a function of its side-chain dihedral angles, and have implemented this algorithm on a web page. The mean change in rotameric strain energy on folding is 0.42 kcal mol-1 per residue and the mean chi strain energy is 0.64 kcal mol-1 per residue. Loss of conformational entropy opposes folding by a mean of 1.1 kcal mol-1 per residue, and the mean total force opposing restricting a side-chain into a helix is 2.2 kcal mol-1. Conformational entropy estimates alone therefore greatly underestimate the forces opposing protein folding. The introduction of strain when a protein folds should not be neglected when attempting to quantify the balance of forces affecting protein stability. Consideration of rotameric strain energy may help the use of rotamer libraries in protein design and rationalise the effects of mutations where side-chain conformations change.  相似文献   

18.
F Ahmad  P McPhie 《Biochemistry》1978,17(2):241-246
The denaturation of swine pepsinogen has been studied as a function of urea concentration, pH, and temperature. The unfolding of the protein by urea has been found to be fully reversible under different conditions of pH, temperature, and denaturant concentration. Kinetic experiments have shown that the transition shows two-state behavior at 25 degrees C in the pH range 6-8 covered in this study. Analysis of the equilibrium data obtained at 25 degrees C according to Tanford (Tanford, C. (1970), Adv. Protein Chem. 24, 1) and Pace (Pace, N.C. (1975), Crit. Rev. Biochem. 3, 1) leads to the conclusion that the free energy of stabilization of native pepsinogen, relative to the denatured state, under physiological conditions, is only 6-12 kcal mol-1. The temperature dependence of the equilibrium constant for the unfolding of pepsinogen by urea in the range 20-50 degrees C at pH 8.0 can be described by assigning the following values of thermodynamic parameters for the denaturation at 25 degrees C: deltaH=31.5 kcal mol-1; deltaS=105 cal deg-1 mol-1; and deltaCp=5215 cal deg-1 mol-1.  相似文献   

19.
Thermally induced denaturation has been measured for both oxidised and reduced forms of the tryptic fragment of bovine microsomal cytochrome b5 using spectrophotometric methods. In the oxidised state, the tryptic fragment of cytochrome b5 (Ala7-Lys90) denatures in a single cooperative transition with a midpoint temperature (Tm) of approximately 67 degrees C (pH 7.0). The reduced form of the tryptic fragment of cytochrome b5 shows a higher transition temperature of approximately 73 degrees C at pH 7.0 and this is reflected in the values of delta Hm, delta Sm and delta(delta G) of approximately 310kJ.mol-1, 900J.mol-1.K-1 and 5 kJ.mol-1. Increased thermal stability is demonstrated for a variant protein that contains the first 90 amino acid residues of cytochrome b5. These novel increases in stability are observed in both redox states and result from the presence of six additional residues at the amino-terminus. The two forms of cytochrome b5 do not differ significantly in structure with the results suggesting that the reorganisation energy (lambda) of the variant protein, as measured indirectly from redox-linked differences in conformational stability, is small. Consequently the reported subtle differences in reactivity between variants of cytochrome b5 may result from the presence of additional N-terminal residues on the surface of the protein.  相似文献   

20.
A lambda light chain, isolated from an immunoglobulin G molecule, was found to reversibly precipitate at low temperatures. This cryoprecipitation was a function of pH, ionic strength, protein concentration, and time as well as temperature. The lambda chain underwent a cooperative conformational change as the temperature was lowered from 26 to 0 degrees C as judged by ultraviolet difference spectroscopy and circular dichroism. Normal lambda chains showed no conformational change. By difference spectroscopy it was possible to calculate the equilibrium constant governing the conformational change. The change was strongly exothermic (delta H approximately -80 kcal mol-1) and accompanied by a large decrease in entropy (delta S approximately -280 eu). The midpoint of the transition was dependent on the initial protein concentration, suggesting that only the noncovalent dimer of the lambda chain exhibited the conformational change. The existence of a monomer-dimer eqiulibrium (KA approximately 4 X 10(5) M-1) was confirmed by sedimentation velocity. No conformational change was observed by circular dichroism at concentrations where greater than 95% of lambda chain was in the form of a monomer. Although high ionic strength inhibited cryoprecipitation, it had no effect on the conformational change. Stabilization of the dimer by forming an interchain disulfide bond between two monomers abolished both the conformational change and cryoprecipitation. A fragment corresponding to the constant region was isolated from both peptic and tryptic digests of the lambda chain. This fragment neither cryoprecipitated nor showed temperature dependence conformational changes. It proved impossible to isolate a fragment corresponding to the variable region. Both qualitative and quantitative models are presented to account for the behavior of the lambda chain at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号