首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardozo C  Wu X  Pan M  Wang H  Fisher EA 《Biochemistry》2002,41(31):10105-10114
In the human hepatic cell line, HepG2, apolipoprotein B100 (apoB100) degradation is increased by inhibiting lipid transfer mediated by the microsomal triglyceride transfer protein (MTP) and is predominantly accomplished by the ubiquitin-proteasome pathway. In the current study, we determined whether this degradative pathway was restricted to HepG2 cells or was of more general importance in hepatic apoB100 metabolism. Rat hepatoma McArdle RH7777 cells (McA), compared to HepG2 cells, secrete a large fraction of apoB100 associated with VLDL particles, as does the normal mammalian liver. In McA cells studied under basal conditions, the proteasome inhibitor lactacystin (LAC) increased apoB100 recovery, indicating that the role of the proteasome in apoB100 metabolism is not restricted to HepG2 cells. When apoB100 lipidation was blocked by an inhibitor of MTP (MTPI), recovery of cellular apoB100 was markedly reduced, but LAC was only partially ( approximately 50%) effective in reversing the induced degradation. This partial effectiveness of LAC may have represented either (1) incomplete inhibition by LAC of its preferred target, the chymotrypsin-like activity of the proteasome, (2) the presence of an apoB100 proteolytic activity of the proteasome resistant to LAC, or (3) a nonproteasomal proteolytic pathway of apoB100 degradation. By studying immunoisolated proteasomes and McA cells treated with LAC and/or MTPI and a variety of protease inhibitors, we determined that the proteasomal component of apoB100 degradation was entirely attributable to the chymotrypsin-like catalytic activity, but only accounted for part of apoB100 degradation induced by MTPI. The nonproteasomal apoB100 degradative pathway was nonlysosomal and resistant to E64d, DTT, and peptide aldehydes such as MG132 or ALLN but was partially sensitive to the serine protease inhibitor APMSF. Furthermore, when the protein trafficking inhibitor, brefeldin A, was used to block endoplasmic reticulum (ER) to Golgi transport in MTPI-treated McA cells, degradative activity resistant to LAC was increased, suggesting that the nonproteasomal pathway is associated with the ER.  相似文献   

2.
Studies in different liver-derived cells in culture indicate that apolipoprotein (apo) B-100 production is regulated largely by intracellular degradation and the ubiquitin-proteasome pathway is a major mechanism for the degradation. The proteasomal degradation of apoB-100 was postulated to be an intrinsic property of the protein that occurs even in the presence of optimal amounts of lipids supplied to the cell. We examined apoB-100 and apoB-48 biogenesis in CaCo2, a human colon carcinoma cell line. To our surprise, apoB-100 and apoB-48 were quantitatively secreted by CaCo2 cells; essentially none of the newly synthesized apoB was degraded before secretion in a 2-h period whether the cells were cultured on filter or on plastic. Furthermore, although ubiquitin immunoreactivity was readily detected in the intracellular apoB isolated from HepG2 cells, little or no ubiquitin was detectable in the intracellular apoB from CaCo2 cells. The amounts of free ubiquitin and total and non-apoB ubiquitinated proteins were comparable in HepG2 and CaCo2 cells, indicating that CaCo2 cells have the necessary machinery for tagging ubiquitin chains onto cellular proteins for proteasomal degradation. Incubation in lipoprotein-deficient serum did not induce apoB degradation, but the addition of a microsomal triglyceride transfer protein inhibitor led to apoB degradation in CaCo2 cells. Finally, similar proportions of apoB polypeptide in isolated microsomes from CaCo2 and HepG2 cells were accessible to exogenously added trypsin, indicating that the mere exposure of apoB nascent chains to the cytosolic compartment is insufficient to cause the proteasomal degradation. Therefore, the intracellular degradation of apoB is not an intrinsic property of the protein, and the phenomenon is neither universal nor inevitable. The unconditional use of apoB as a paradigm for intracellular protein degradation is not warranted.  相似文献   

3.
The grapefruit flavonoid, naringenin, is hypocholesterolemic in vivo, and inhibits basal apolipoprotein B (apoB) secretion and the expression and activities of both ACAT and microsomal triglyceride transfer protein (MTP) in human hepatoma cells (HepG2). In this report, we examined the effects of naringenin on apoB kinetics in oleate-stimulated HepG2 cells and determined the contribution of microsomal lumen cholesteryl ester (CE) availability to apoB secretion. Pulse-chase studies of apoB secretion and intracellular degradation were analyzed by multicompartmental modeling. The model for apoB metabolism in HepG2 cells includes an intracellular compartment from which apoB can be either secreted or degraded by both rapid and slow pathways. In the presence of 0.1 mM oleic acid, naringenin (200 micro M) reduced the secretion of newly synthesized apoB by 52%, due to a 56% reduction in the rate constant for secretion. Intracellular degradation was significantly increased due to a selective increase in rapid degradation, while slow degradation was unaffected. Incubation with either N-acetyl-leucinyl-leucinyl-norleucinal (ALLN) or lactacystin showed that degradation via the rapid pathway was largely proteasomal. Although these changes in apoB metabolism were accompanied by significant reductions in CE synthesis and mass, subcellular fractionation experiments comparing naringenin to specific ACAT and HMG-CoA reductase inhibitors revealed that reduced accumulation of newly synthesized CE in the microsomal lumen is not consistently associated with reduced apoB secretion. However, naringenin, unlike the ACAT and HMG-CoA reductase inhibitors, significantly reduced lumenal TG accumulation. We conclude that naringenin inhibits apoB secretion in oleate-stimulated HepG2 cells and selectively increases intracellular degradation via a largely proteasomal, rapid kinetic pathway. Although naringenin inhibits ACAT, CE availability in the endoplasmic reticulum (ER) lumen does not appear to regulate apoB secretion in HepG2 cells. Rather, inhibition of TG accumulation in the ER lumen via inhibition of MTP is the primary mechanism blocking apoB secretion.  相似文献   

4.
R Urade  M Kito 《FEBS letters》1992,312(1):83-86
A protein (ER60) with sequence similarity to phosphoinositide-specific phospholipase C-alpha purified from rat liver endoplasmic reticulum (ER) degraded ER resident proteins and is really a protease [(1992) J. Biol. Chem. 265, 15152-15159]. Therefore, ER60 is called ER-60 protease. We now show that negatively charged phospholipids, phosphatidylinositol, phosphatidylinositol 4,5-bisphosphate and phosphatidylserine inhibit ER protein degradation by ER-60 protease. Phosphatidylcholine and phosphatidylethanolamine show no effect on the activity of ER-60 protease. With the use of protease inhibitors, ER-60 protease is shown to be a novel cysteine protease distinct from those of the cytosol and lysosomes.  相似文献   

5.
Studies in hepatocyte cultures indicate that apolipoprotein (apo) B-100 production is regulated largely by intracellular degradation and the proteasome pathway is a major mechanism for the degradation. In the present study, we have examined the detailed itinerary of apoB degradation through its secretory pathway in HepG2 cells. We found that ubiquitin-dependent proteasomal degradation of apoB largely occurred on the cytosolic surface of rough and smooth endoplasmic reticulum (ER) and that a small proportion of apoB was dislodged from the secretory organelles into the cytosolic compartment where it underwent ubiquitination for proteasomal degradation. The transmembrane conformation of apoB persisted as the protein was transported through the Golgi apparatus. We further demonstrated that proteasomal degradation of apoB was associated the Golgi apparatus but Golgi-associated apoB was not ubiquitinated, indicating an ubiquitin-independent proteasomal degradation of apoB is associated with this organelle. We conclude that apoB undergoes proteasomal degradation while going through different compartments of the secretory pathway; further, ER-associated proteasomal degradation of apoB in the ER is ubiquitin-dependent whereas that occurring in the Golgi is ubiquitin-independent.  相似文献   

6.
We previously reported that treatment of Hep G2 cells with oleate significantly increased apolipoprotein B (apoB) secretion by reducing early intracellular degradation of nascent apoB. In the current study, inhibitors of secretory protein transport (brefeldin A and monensin), cell fractionation studies, and protease protection assays were utilized to determine the location of apoB degradation and to better define the mechanism whereby oleate treatment reduces nascent apoB intracellular degradation. When cells were treated with brefeldin A, which blocks endoplasmic reticulum (ER) to Golgi protein transport, apoB degradation continued in control cells, suggesting that apoB is degraded in the ER. When oleate-treated cells were blocked with brefeldin A, oleate failed to protect apoB from intracellular degradation. The effects of brefeldin A were not due to effects on lipid synthesis as brefeldin A did not inhibit the synthesis of triglyceride, phospholipid, free cholesterol, or cholesteryl ester in control cells and did not prevent the increases in triglyceride (14-fold) and phospholipid (1.4-fold) synthesis seen in oleate-treated cells. Simultaneous treatment of cells with brefeldin A and nocodazole, which inhibits retrograde transport of proteins from Golgi to ER, added to the evidence for the ER as the site of apoB degradation. This conclusion received further support from experiments in which cells were treated with monensin, a Na+ ionophore which halts protein secretion at the level of the trans-Golgi network. Early degradation of nascent apoB (between 10 and 20 min of chase) was observed in monensin-treated cells, but then cellular apoB degradation ceased and apoB was stable during the remaining chase period. More apoB accumulated in the Golgi of cells that had been treated with oleate and monensin. These results suggest that ER degradation occurs in monensin-treated cells, but then stops as apoB is transferred to the Golgi. The results obtained in whole cells were confirmed in studies using isolated ER and Golgi, which indicated that ER contains a proteolytic activity which degrades apoB, in vitro, whereas Golgi does not. ApoB degradation in isolated ER was not reduced by pretreatment with oleate. Finally, protease protection assays carried out with isolated microsomes indicated that a majority of the apoB in both control or oleate-treated HepG2 cells was located on the cytosolic side of the membranes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
Glucosamine impairs hepatic apolipoprotein B100 (apoB100) production by inducing endoplasmic reticulum (ER) stress and enhancing cotranslational and posttranslational apoB100 degradation (Qiu, W., R. K. Avramoglu, A. C. Rutledge, J. Tsai, and K. Adeli. Mechanisms of glucosamine-induced suppression of the hepatic assembly and secretion of apolipoprotein B-100-containing lipoproteins. J. Lipid Res. 2006. 47: 1749–1761). Here, we report that glucosamine also regulates apoB100 protein synthesis via ER-stress-induced PERK activation. Short-term (4 h) glucosamine treatment of HepG2 cells reduced both cellular (by 62%) and secreted apoB100 (by 43%) without altering apoB100 mRNA. Treatment with proteasomal inhibitors only partially prevented the suppressive effects of glucosamine, suggesting that mechanisms other than proteasomal degradation may also be involved. Glucosamine-induced ER stress was associated with a significantly reduced apoB100 synthesis with no significant change in posttranslational decay rates, suggesting that glucosamine exerted its effect early during apoB biosynthesis. The role of PERK and its substrate, α-subunit of eukaryotic initiation factor 2 (eIF2α), in the suppressive effects of glucosamine on apoB synthesis was then investigated. Coexpression of apoB15 (normally resistant to intracellular degradation) with wild-type double stranded (ds) RNA activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK) in COS-7 cells resulted in a dramatic reduction in the levels of newly synthesized apoB15. Interestingly, cotransfection with apoB15 and a kinase inactive PERK mutant (K618A) increased apoB15 expression. In addition, short-term glucosamine treatment stimulated an increase in phosphorylation of PERK and eIF2α. Taken together, these data suggest that in addition to the induction of ER-associated degradation and other degradative pathways, ER stress is associated with suppression of apoB synthesis via a PERK-dependent mechanism.  相似文献   

9.
The ATPase associated with various cellular activities (AAA-ATPase) p97 (p97) has been implicated in the retrotranslocation of target proteins for delivery to the cytosolic proteasome during endoplasmic reticulum-associated degradation (ERAD). Apolipoprotein B-100 (apoB-100) is an ERAD substrate in liver cells, including the human hepatoma, HepG2. We studied the potential role of p97 in the ERAD of apoB-100 in HepG2 cells using cell permeabilization, coimmunoprecipitation, and gene silencing. Degradation was abolished when HepG2 cytosol was removed by digitonin permeabilization, and treatment of intact cells with the proteasome inhibitor MG132 caused accumulation of ubiquitinated apoB protein in the cytosol. Cross-linking of intact cells with the thiol-cleavable agent dithiobis(succinimidylpropionate) (DSP), as well as nondenaturing immunoprecipitation, demonstrated an interaction between p97 and intracellular apoB. Small interfering ribonucleic acid (siRNA)-mediated reduction of p97 protein increased the intracellular levels of newly synthesized apoB-100, predominantly because of a decrease in the turnover of newly synthesized apoB-100 protein. However, although the posttranslational degradation of newly synthesized apoB-100 was delayed by p97 knockdown, secretion of apoB-100 was not affected. Knockdown of p97 also impaired the release of apoB-100 and polyubiquitinated apoB into the cytosol. In summary, our results suggest that retrotranslocation and proteasomal degradation of apoB-100 can be dissociated in HepG2 cells, and that the AAA-ATPase p97 is involved in the removal of full-length apoB from the biosynthetic pathway to the cytosolic proteasome.  相似文献   

10.
Glucosamine-induced endoplasmic reticulum (ER) stress was recently shown to specifically reduce apolipoprotein B-100 (apoB-100) secretion by enhancing the proteasomal degradation of apoB-100. Here, we examined the mechanisms linking glucosamine-induced ER stress and apoB-lipoprotein biogenesis. Trypsin sensitivity studies suggested glucosamine-induced changes in apoB-100 conformation. Endoglycosidase H studies of newly synthesized apoB-100 revealed glucosamine induced N-linked glycosylation defects resulting in reduced apoB-100 secretion. We also examined glucosamine-induced changes in VLDL assembly and secretion. A dose-dependent (1-10 mM glucosamine) reduction was observed in VLDL-apoB-100 secretion in primary hepatocytes (24.2-67.3%) and rat McA-RH7777 cells (23.2-89.5%). Glucosamine also inhibited the assembly of larger VLDL-, LDL-, and intermediate density lipoprotein-apoB-100 but did not affect smaller HDL-sized apoB-100 particles. Glucosamine treatment during the chase period (posttranslational) led to a 24% reduction in apoB-100 secretion (P < 0.01; n = 4) and promoted post-ER apoB degradation. However, the contribution of post-ER apoB-100 degradation appeared to be quantitatively minor. Interestingly, the glucosamine-induced posttranslational reduction in apoB-100 secretion could be partially prevented by treatment with desferrioxamine or vitamin E. Together, these data suggest that cotranslational glucosamine treatment may cause defects in apoB-100 N-linked glycosylation and folding, resulting in enhanced proteasomal degradation. Posttranslationally, glucosamine may interfere with the assembly process of apoB lipoproteins, leading to post-ER degradation via nonproteasomal pathways.  相似文献   

11.
12.
To study the mechanism of low levels of full length and truncated apoB in individuals heterozygous for apoB truncation, a non-sense mutation was introduced in one of the three alleles of apob gene of HepG2 cells by homologous recombination. Despite very low levels of apoB-82 (1-2%) in the media, a prominent N-terminal apoB protein of 85 kDa (apoB-15) was secreted that fractionated at d > 1.065 in density gradient ultracentrifugation. The mechanism of production of this short protein was studied by 35S-methionine pulse-chase experiment. Oleate prevented presecretory degradation of apoB-100 in the cell and resulted in increased secretion of newly synthesized apoB-100 with decreases in the apoB-15, suggesting that rescue of pre-secretary intracellular degradation of apoB restricted the production and secretion of apoB-15. Further investigation on the degradation of transmembrane forms of apoB, in the presence and absence of a cysteine protease inhibitor, N-acetyl-leucyl-leucyl-norleucinal (ALLN), showed appearance of detectable levels of newly synthesized apoB-82 in the cell and the media together with increased apoB-100 secretion, and reduction in the secretion of apoB-15. Compared to ER membrane, the levels of apoB were higher in the luminal content, and presence of both oleate and ALLN had additive effect on apoB secretion. These results suggest that the presence of improper folding of apoB during translocation led to the cleavage of both apoB-100 and apoB-82 by ALLN-sensitive protease and generation of 85 kDa N-terminal fragment of apoB.  相似文献   

13.
The balance between the hepatic assembly of apolipoprotein B (apoB) and its presecretory degradation at the level of the endoplasmic reticulum (ER) may control the secretion of apoB-containing lipoproteins. In one model, apoB that fails to assemble with lipid undergoes translocation arrest, exposing the protein to the cytosolic proteasome. To examine apoB's translocation behavior under various metabolic conditions, glycosylation site utilization studies were performed. A 70-amino acid peptide containing three sites for N-linked glycosylation was appended to the C-terminus of apoB-50 (amino-terminal 50% of apoB) and expressed in both hepatic and nonhepatic cell lines. When the C-terminal reporter peptide was released by cyanogen bromide cleavage, all of the sites were glycosylated irrespective of cell type, labeling time, or assembly status. Similar peptide mapping of endogenous apoB-100 expressed in HepG2 cells was performed to monitor glycosylation at Asn residues 2752 (apoB-61), 2955 (apoB-65), and 3074 (apoB-68). N-linked glycosylation occurred at a minimum of two of the three sites, a frequency identical to that observed in apoB-100 recovered from cell media. Treatment of cells with proteasome inhibitors produced a 2. 5-fold increase in intracellular apoB but failed to cause accumulation of an unglycosylated form. These results indicate that 1) the efficient translocation of apoB into the ER occurs independently of microsomal triglyceride transfer protein and its assembly with lipid and 2) despite its large size and affinity for lipid, delivery of misassembled apoB to the proteasome requires retrograde translocation from the ER lumen to cytosol.  相似文献   

14.
Inhibition of protein folding in the endoplasmic reticulum (ER) causes ER stress, which triggers the unfolded protein response (UPR). To decrease the biosynthetic burden on the ER, the UPR inhibits in its initial stages protein synthesis. At later stages it upregulates components of ER-associated degradation (ERAD) and of the ubiquitin/proteasome system, which targets ER as well as cytosolic proteins for disposal. Here we report that, at later stages, the UPR also activates an alternative nonproteasomal pathway of degradation, which is resistant to proteasome inhibitors and is specific for ER substrates (assessed with uncleaved precursor of asialoglycoprotein receptor H2a and unassembled CD3delta) and not for cytosolic ones (p53). To mimic the initial inhibition of translation during UPR, we incubated cells with cycloheximide. After this treatment, degradation of ERAD substrates was no longer effected by proteasomal inhibition, similarly to the observed outcome of UPR. The degradation also became insensitive to abrogation of ubiquitination in a cell line carrying a thermosensitive E1 ubiquitin activating enzyme mutant. Of all protease inhibitors tested, only the metal chelator o-phenanthroline could block this nonproteasomal degradation. Preincubation of o-phenanthroline with Mn2+ or Co2+, but not with other cations, reversed the inhibition. Our results suggest that, upon inhibition of translation, an alternative nonproteasomal pathway is activated for degradation of proteins from the ER. This involves a Mn2+/Co2+-dependent metalloprotease or other metalloprotein. The alternative pathway selectively targets ERAD substrates to reduce the ER burden, but does not affect p53, the levels of which remain dependent on proteasomal control.  相似文献   

15.
The accumulation and degradation in the endoplasmic reticulum (ER) of a truncated ER-60 protease, from which the C-terminal 89 amino acid residues have been deleted (K 417 ochre), was examined. K 417 ochre overexpressed in COS-1 cells is not secreted into the medium, but accumulates as insoluble aggregates in non-ionic detergent without degradation in unusual clump membrane structures. K 417 ochre, stably expressed, forms soluble aggregates in non-ionic detergent and is distributed in the reticular structures of ER. Under these conditions, K 417 ochre is not secreted into the medium but is degraded with a half-life time of more than 8 h. Since K 417 ochre/C all S, in which all the Cys residues of K 417 ochre are replaced by Ser, also forms aggregates, an inter-disulfide bond appears unnecessary for aggregation. In both types of aggregates, Ig heavy chain binding protein, calnexin, glucose regulated protein 94, calreticulin, ERp72, and protein disulfide isomerase are scarcely found. Since degradation of the stably expressed K 417 ochre was not inhibited by lactacystin, leupeptin, NH(4)Cl, or cytocharasin B, but was inhibited by N-acetyl-leucyl-leucyl-norleucinal, the self-aggregated abnormal protein in the lumen of ER is assumed to be degraded by an unknown protease system other than proteasome, lysosome or autophagy.  相似文献   

16.
Despite numerous studies demonstrating that microsomal triglyceride transfer protein (MTP) activity is critical to apoB secretion, there is still controversy as to whether MTP directly facilitates the translocation of apoB across the membrane of the endoplasmic reticulum (ER) through either the recruitment of lipids and/or chaperone activity. In the present study, a specific inhibitor of MTP (BMS 197636) was utilized in HepG2 cells to investigate whether a direct relationship exists between the translocation of apoB across the ER membrane and the lipid-transferring activity of MTP. Inhibition of MTP (with 10 and 50 nmol/L of the inhibitor) did not significantly affect the translocation of newly synthesized apoB (P = 0.77) or the translocational efficiency of the steady-state apoB mass (P = 0.45), despite a 49% decrease in apoB secretion and increased proteosomal degradation. These results compared well with subcellular fractionation experiments which showed no significant change in the fraction of apoB accumulated in the lumen of isolated microsomes in MTP-treated cells (P = 0.35). In summary, MTP lipid transfer activity does not appear to influence translocational status of apoB, but its inhibition is associated with an increased susceptibility to proteasome-mediated degradation and reduced assembly and secretion of apoB lipoprotein particles.  相似文献   

17.
Bile salts (BS) inhibit the secretion of apolipoprotein B (apoB) and triacylglycerol (TG) in primary rat, mouse and human hepatocytes and in mice in vivo. We investigated whether lipidation of apoB into a lipoprotein particle is required for this inhibitory action of BS. The sodium/taurocholate co-transporting polypeptide (Ntcp) was co-expressed in McArdle-RH7777 (McA-RH7777) cells stably expressing the full-length human apoB100 (h-apoB100, secreted as TG-rich lipoprotein particles) or carboxyl-truncated human apoB18 (h-apoB18, secreted in lipid-free form). The doubly transfected cell lines (h-apoB/r-Ntcp) effectively accumulated taurocholic acid (TC). TC incubation decreased the secretion of endogenous rat apoB100 (-50%) and h-apoB18 (-35%), but did not affect secretion of rat apoA-I. Pulse-chase experiments (35S-methionine) indicated that the impaired secretion of radiolabeled h-apoB18 and h-apoB100 was associated with accelerated intracellular degradation. The calpain protease inhibitor N-acetyl-leucyl-leucyl-norleucinal (ALLN) partially inhibited intracellular apoB degradation but did not affect the amount of either h-apoB18 or h-apoB100 secreted into the medium, indicating that inhibition of apoB secretion by TC is not due to calpain-dependent proteasomal degradation. We conclude that TC does not inhibit apoB secretion by interference with its lipidation, but rather involves a mechanism dependent on the N-terminal end of apoB.  相似文献   

18.
The transport of apolipoprotein B (apoB) between the endoplasmic reticulum (ER) and Golgi was studied in puromycin-synchronized HepG2 cells, using an antibody that could distinguish between apoB in ER and Golgi compartments. In cells with normal ER-to-Golgi transport, both albumin and apoB colocalized throughout the ER and appeared as intense, compact signals in Golgi. When ER-to-Golgi transport was blocked with brefeldin A, apoB and albumin remained colocalized in the ER network and three-dimensional constructed images showed more intense signals for both proteins in a central, perinuclear region of the ER. When protein synthesis was stopped in cells with brefeldin A-inhibited ER-to-Golgi transport, apoB degradation was visualized as a homogeneous decrease in fluorescence signal intensity throughout the ER that could be slowed with clasto-lactacystin beta-lactone, a proteasome inhibitor. Incubation of cells with CP-10447, an inhibitor of microsomal triglyceride transfer protein, inhibited apoB, but not albumin, transport from ER to Golgi. Nanogold immunoelectron microscopy of digitonin-permeabilized cells showed proteasomes in close proximity to the cytosolic side of the ER membrane. Thus, newly synthesized apoB is localized throughout the entire ER and degraded homogeneously, most likely by neighboring proteasomes located on the cytosolic side of the ER membrane. Although albumin is colocalized with apoB in the ER, as expected, it was not targeted for ER-associated proteasomal degradation.  相似文献   

19.
Although microsomal triglyceride transfer protein (MTP) and newly synthesized triglyceride (TG) are critical for co-translational targeting of apolipoprotein B (apoB100) to lipoprotein assembly in hepatoma cell lines, their roles in the later stages of lipoprotein assembly remain unclear. Using N-acetyl-Leu-Leu-norleucinal to prevent proteasomal degradation, HepG2 cells were radiolabeled and chased for 0-90 min (chase I). The medium was changed and cells chased for another 150 min (chase II) in the absence (control) or presence of Pfizer MTP inhibitor CP-10447 (CP). As chase I was extended, inhibition of apoB100 secretion by CP during chase II decreased from 75.9% to only 15% of control (no CP during chase II). Additional studies were conducted in which chase I was either 0 or 90 min, and chase II was in the presence of [(3)H]glycerol and either BSA (control), CP (inhibits both MTP activity and TG synthesis),BMS-1976360-1) (BMS) (inhibits only MTP activity), or triacsin C (TC) (inhibits only TG synthesis). When chase I was 0 min, CP, BMS, and TC reduced apoB100 secretion during chase II by 75.3, 73.9, and 53.9%. However, when chase I was 90 min, those agents reduced apoB100 secretion during chase II by only 16.0, 19.2, and 13.9%. Of note, all three inhibited secretion of newly synthesized TG during chase II by 80, 80, and 40%, whether chase I was 0 or 90 min. In both HepG2 cells and McA-RH7777 cells, if chase I was at least 60 min, inhibition of TG synthesis and/or MTP activity did not affect the density of secreted apoB100-lipoproteins under basal conditions. Oleic acid increased secretion of TG-enriched apoB100-lipoproteins similarly in the absence or presence of either of CP, BMS, or TC. We conclude that neither MTP nor newly synthesized TG is necessary for the later stages of apoB100-lipoprotein assembly and secretion in either HepG2 or McA-RH7777 cells.  相似文献   

20.
Apolipoprotein-B100 (apoB100) is the essential protein for the assembly and secretion of very low density lipoproteins (VLDL) from liver. The hepatoma HepG2 cell line has been the cell line of choice for the study of synthesis and secretion of human apoB-100. Despite the general use of HepG2 cells to study apoB100 metabolism, they secrete relatively dense, lipid-poor particles compared with VLDL secreted in vivo. Recently, Huh-7 cells were adopted as an alternative model to HepG2 cells, with the implicit assumption that Huh-7 cells were superior in some respects of lipoprotein metabolism, including VLDL secretion. In this study we addressed the hypothesis that the spectrum of apoB100 lipoprotein particles secreted by Huh-7 cells more closely resembles the native state in human liver. We find that Huh-7 cells resemble HepG2 cells in the effects of exogenous lipids, microsomal triglyceride transfer protein (MTP)-inhibition, and proteasome inhibitors of apoB100 secretion, recovery, and degradation. In contrast to HepG2 cells, however, MEK-ERK inhibition does not correct the defect in VLDL secretion. Huh-7 cells do not appear to offer any advantages over HepG2 cells as a general model of human apoB100-lipoprotein metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号