首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20 mM and 15 mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram + bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a kcat/KM value of 1.2 × 104 M− 1 s− 1. It also exhibited weak phosphatase activity with a kcat/KM value of 2.7 × 10− 4 M− 1 s− 1. The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural–functional characterization of a thermophilic arsenate reductase.  相似文献   

2.
The influence of sulphur on the accumulation and metabolism of arsenic in rice was investigated. Rice seedlings were grown in nutrient solutions with low sulphate (1.8 μM SO42−) or high sulphate (0.7 mM SO42−) for 12 or 14 d, before being exposed to 10 μM arsenite or arsenate for 2 or 1 d, respectively. In the arsenite exposure treatment, low sulphate-pretreated rice accumulated less arsenite than high sulphate pretreated plants, but the arsenite concentrations in shoots of low sulphate pretreated rice were higher than those of high sulphate pretreated. In the arsenate exposure treatment, the low sulphate pre-treatments also resulted in less arsenite accumulation in rice roots. Sulphur deprivation in nutrient solution decreased the concentrations of non-protein thiols in rice roots exposed to either arsenite or arsenate. The low sulphate-pretreated plants had a higher arsenic transfer factor than the high sulphate-pretreated plants. The results suggest that rice sulphate nutrition plays an important role in regulating arsenic translocation from roots to shoots, possibly through the complexation of arsenite-phytochelatins.  相似文献   

3.
Poynton CY  Huang JW  Blaylock MJ  Kochian LV  Elless MP 《Planta》2004,219(6):1080-1088
Several species of fern from the Pteris genus are able to accumulate extremely high concentrations of arsenic (As) in the fronds. We have conducted short-term unidirectional As influx and translocation experiments with 73As-radiolabeled arsenate, and found that the concentration-dependent influx of arsenate into roots was significantly larger in two of these As-hyperaccumulating species, Pteris vittata (L.) and Pteris cretica cv. Mayii (L.), than in Nephrolepis exaltata (L.), a non-accumulating fern. The arsenate influx could be described by Michaelis-Menten kinetics and the kinetic parameter K m was found to be lower in the Pteris species, indicating higher affinity of the transport protein for arsenate. Quantitative analysis of kinetic parameters showed that phosphate inhibited arsenate influx in a directly competitive manner, consistent with the hypothesis that arsenate enters plant roots on a phosphate-transport protein. The significantly augmented translocation of arsenic to the shoots that was seen in these As hyperaccumulator species is proposed to be due to a combination of the increased root influx and also decreased sequestration of As in the roots, as a larger fraction of As could be extracted from roots of the Pteris species than from roots of N. exaltata. This leaves a larger pool of mobile As available for translocation to the shoot, probably predominantly as arsenite.Abbreviations As V Arsenate - As III Arsenite - K m Michaelis-Menten constant - P i Phosphate - V max Maximum rate of an enzyme-catalyzed reaction  相似文献   

4.
In Holcus lanatus L. phosphate and arsenate are taken up bythe same transport system. Short-term uptake kinetics of thehigh affinity arsenate transport system were determined in excisedroots of arsenate-tolerant and non-tolerant genotypes. In tolerantplants the Vmax of ion uptake in plants grown in phosphate-freemedia was decreased compared to non-tolerant plants, and theaffinity of the uptake system was lower than in the non-tolerantplants. Both the reduction in Vmax and the increase in Km ledto reduced arsenate influx into tolerant roots. When the twogenotypes were grown in nutrient solution containing high levelsof phosphate, there was little change in the uptake kineticsin tolerant plants. In non-tolerant plants, however, there wasa marked decrease in the Vmax to the level of the tolerant plantsbut with little change in the Km. This suggests that the lowrate of arsenate uptake over a wide range of differing rootphosphate status is due to loss of induction of the synthesisof the arsenate (phosphate) carrier. Key words: Arsenate, Holcus lanatus L., phosphate uptake, tolerance mechanisms, uptake mechanisms  相似文献   

5.
A glucose-tolerant β-glucosidase was purified to homogeneity from prune (Prunus domestica) seeds by successive ammonium sulfate precipitation, hydrophobic interaction chromatography and anion-exchange chromatography. The molecular mass of the enzyme was estimated to be 61 kDa by SDS-PAGE and 54 kDa by gel permeation chromatography. The enzyme has a pI of 5.0 by isoelectric focusing and an optimum activity at pH 5.5 and 55 °C. It is stable at temperatures up to 45 °C and in a broad pH range. Its activity was completely inhibited by 5 mM of Ag+ and Hg2+. The enzyme hydrolyzed both p-nitrophenyl β-d-glucopyranoside with a Km of 3.09 mM and a Vmax of 122.1 μmol/min mg and p-nitrophenyl β-d-fucopyranoside with a Km of 1.65 mM and a Vmax of 217.6 μmol/min mg, while cellobiose was not a substrate. Glucono-δ-lactone and glucose competitively inhibited the enzyme with Ki values of 0.033 and 468 mM, respectively.  相似文献   

6.
7.
1H NMR spectroscopy was used to follow the cleavage of sucrose by invertase. The parameters of the enzyme's kinetics, Km and Vmax, were directly determined from progress curves at only one concentration of the substrate. For comparison with the classical Michaelis-Menten analysis, the reaction progress was also monitored at various initial concentrations of 3.5 to 41.8 mM. Using the Lambert W function the parameters Km and Vmax were fitted to obtain the experimental progress curve and resulted in Km = 28 mM and Vmax = 13 μM/s. The result is almost identical to an initial rate analysis that, however, costs much more time and experimental effort. The effect of product inhibition was also investigated. Furthermore, we analyzed a much more complex reaction, the conversion of farnesyl diphosphate into (+)-germacrene D by the enzyme germacrene D synthase, yielding Km = 379 μM and kcat = 0.04 s− 1. The reaction involves an amphiphilic substrate forming micelles and a water insoluble product; using proper controls, the conversion can well be analyzed by the progress curve approach using the Lambert W function.  相似文献   

8.
The influx of arsenate, arsenite and dimethyl arsinic acid (DMA) were studied in 7-day-old excised maize roots (Zea mays L.), and then related to arsenate, arsenite and DMA toxicity. Arsenate, arsenite and DMA influx was all found concentration dependent with significant genotypic differences for arsenite and DMA. Arsenate influx in phosphate starved plants best fitted the four-parameter Michaelis–Menten model corresponding to an additive high and low affinity uptake system, while the uptake of phosphate replete plants followed the two parameter model of Michaelis–Menten kinetics. Arsenite influx was well described by the two parameter model of ‘Michaelis–Menten’ kinetics. DMA influx was comprised of linear phase and a hyperbolic phase. DMA influx was much lower than that for arsenite and arsenate. Arsenate and DMA influx decreased when phosphate was given as a pre-treatment as opposed to phosphate starved plants. The +P treatment tended to decrease influx by 50% for arsenate while this figure was 90% for DMA. Arsenite influx increasing slightly at higher arsenite concentrations in P starved plants but at lower arsenite concentrations, there was little or no difference in arsenite uptake. Low toxicity was found for DMA on maize compared with arsenate and arsenite and the relative toxicity of arsenic species was As(V) > As(III) >> DMA.  相似文献   

9.
A novel assay method was investigated for urease (EC 3.5.1.5) from Pseudomonas aeruginosa and Canavalia ensiformis by Fourier transform infrared spectroscopy. This enzyme catalyzed the hydrolysis of urea in phosphate buffer in deuterium oxide (2H2O). The intensities of the bicarbonate bands maxima at 1625 and 1365 cm−1 and of the amide I band at 1605 cm−1 were measured as a function of time to study the kinetics of urea hydrolysis. The extinction coefficients ε of urea and bicarbonate were determined to be 0.72, 0.48, and 0.56 mM−1 cm−1 at 1625, 1605, and 1365 cm−1, respectively. The initial velocity is proportional to the enzyme concentration by using the ureases from both C.ensiformis and P. aeruginosa. The kinetic constants (Vmax, Km, and Kcat) determined by Lineweaver-Burk plot were 532.2  U mg−1 protein, 6.4 mM, and 806.36 s−1, respectively. These data are in agreement with the results obtained by a spectrophotometric method using a linked assay based on glutamate dehydrogenase in aqueous media. Therefore, this spectroscopic method is highly suited to assay for urease activity and its kinetic parameters by using either cell-free extracts or purified enzyme preparations with an additional advantage of performing a real-time measurement of urease activity.  相似文献   

10.
Techniques utilizing β-glucuronidase (GUS) activity as an indicator of Escherichia coli (E. coli) presence use labeled glucuronides to produce optical signals. Carboxyumbelliferyl-β-d-glucuronide (CUGlcU) is a fluorescent labeled glucuronide that is soluble and highly fluorescent at natural water pHs and temperatures and, therefore, may be an ideal reagent for use in an in situ optical sensor. This paper reports for the first time the Michaelis-Menten kinetic parameters for the binding of E. coli GUS with CUGlcU as Km = 910 μM, Vmax = 41.0 μM min−1, Vmax/Km 45.0 μmol L−1 min−1, the optimal pH as 6.5 ± 1.0, optimal temperature as 38 °C, and the Gibb's free energy of activation as 61.40 kJ mol−1. Additionally, it was found CUGlcU hydrolysis is not significantly affected by heavy solvents suggesting proton transfer and solvent addition that occur during hydrolysis are not limiting steps. Comparison studies were made with the more common fluorescent molecule methylumbelliferyl-β-d-glucuronide (MUGlcU). Experiments showed GUS preferentially binds to MUGlcU in comparison to CUGlcU. CUGlcU was also demonstrated in a prototype optical sensor for the detection of E. coli. Initial bench testing of the sensor produced detection of low concentrations of E. coli (1.00 × 103 CFU/100 mL) in 230 ± 15.1 min and high concentrations (1.05 × 105 CFU/100 mL) in 8.00 ± 1.01 min.  相似文献   

11.
Trypanosoma cruzi dihydroorotate dehydrogenase (TcDHODH) catalyzes the oxidation of l-dihydroorotate to orotate with concomitant reduction of fumarate to succinate in the de novo pyrimidine biosynthetic pathway. Based on the important need to characterize catalytic mechanism of TcDHODH, we have tailored a protocol to measure TcDHODH kinetic parameters based on isothermal titration calorimetry. Enzymatic assays lead to Michaelis-Menten curves that enable the Michaelis constant (KM) and maximum velocity (Vmax) for both of the TcDHODH substrates: dihydroorotate (KM = 8.6 ± 2.6 μM and Vmax = 4.1 ± 0.7 μM s-1) and fumarate (KM = 120 ± 9 μM and Vmax = 6.71 ± 0.15 μM s-1). TcDHODH activity was investigated using dimethyl sulfoxide (10%, v/v) and Triton X-100 (0.5%, v/v), which seem to facilitate the substrate binding process with a small decrease in KM. Arrhenius plot analysis allowed the determination of thermodynamic parameters of activation for substrates and gave some insights into the enzyme mechanism. Activation entropy was the main contributor to the Gibbs free energy in the formation of the transition state. A factor that might contribute to the unfavorable entropy is the hindered access of substrates to the TcDHODH active site where a loop at its entrance regulates the open-close channel for substrate access.  相似文献   

12.
The interaction of arsenite with a Cys3His (CCHC) zinc finger model (34-51) HIV-1 nucleocapsid protein p7 (NCp7) peptide in the absence and presence of ZnII was studied using fluorescence spectroscopy, CD (circular dichroism) and ESI-MS (Electrospray Ionization Mass Spectrometry). We found that arsenic forms different complexes with the free peptide and the zinc finger peptide. In the former case the peptide conformation differed greatly from that of the zinc finger, whereas in the second case a mixed As-Zn-peptide complex was formed with partial preservation of zinc finger conformation. An apparent stability constant was estimated for the mixed As-Zn-peptide complex (K = 2083 M− 1 and 442 M− 1 at 25 °C and pHs 6 and 7, respectively). Our study also shows that the interaction of arsenic with the CCHC motif is facilitated by glutathione (GSH), through formation of a GS-As-peptide conjugate.  相似文献   

13.
The glycolytic enzyme triose phosphate isomerase from Schistosoma mansoni is a potential target for drugs and vaccines. Molecular modelling of the enzyme predicted that a Ser-Ala-Asp motif which is believed to be a helminth-specific epitope is exposed. The enzyme is dimeric (as judged by gel filtration and cross-linking), resistant to proteolysis and highly stable to thermal denaturation (melting temperature of 82.0 °C). The steady-state kinetic parameters are high (Km for dihydroxyacetone phosphate is 0.51 mM; Km for glyceraldehyde 3-phosphate is 1.1 mM; kcat for dihydroxyacetone phosphate is 7800 s−1 and kcat for glyceraldehyde 3-phosphate is 6.9 s−1).  相似文献   

14.
15.
This study investigated the absorption of arsenic (As), sulfur (S), and phosphorus (P) in the desert plant Chilopsis linearis (Desert willow). A comparison between an inbred line (red flowered) and wild type (white flowered) plants was performed to look for differential responses to As treatment. One month old seedlings were treated for 7 days with arsenate (As2O5, AsV) at 0, 20, and 40 mg AsV L−1. Results from the ICP-OES analysis showed that at 20 mg AsV L−1, red flowered plants had 280 ± 11 and 98 ± 7 mg As kg−1 dry wt in roots and stems, respectively, while white flowered plants had 196 ± 30 and 103 ± 13 mg As kg−1 dry wt for roots and stems. At this treatment level, the concentration of As in leaves was below detection limits for both plants. In red flowered plants treated with 40 mg AsV L−1, As was at 290 ± 77 and 151 ± 60 mg As kg−1 in roots and stems, respectively, and not detected in leaves, whereas white flowered plants had 406 ± 36, 213 ± 12, and 177 ± 40 mg As kg−1 in roots, stems, and leaves. The concentration of S increased in all As treated plants, while the concentration of P decreased in roots and stems of both types of plants and in leaves of red flowered plants. X-ray absorption spectroscopy analyses demonstrated partial reduction of arsenate to arsenite in the form of As-(SX)3 species in both types of plants.  相似文献   

16.
To understand the role of His and Glu in the catalytic activity of Bacillus licheniformis α-amylase (BLA), His235 was replaced with Glu. The mutant enzyme, H235E, was characterized in terms of its mode of action using labeled and unlabeled maltooctaose (Glc8). H235E predominantly produced maltotridecaose (Glc13) from Glc8, exhibiting high substrate transglycosylation activity, with Km = 0.38 mM and kcat/Km = 20.58 mM−1 s−1 for hydrolysis, and Km2 = 18.38 mM and kcat2/Km2 = 2.57 mM−1 s−1 for transglycosylation, while the wild-type BLA exhibited high hydrolysis activity exclusively. Glu235—located on a wide open groove near subsite +1—is likely involved in transglycosylation via formation of an α-1,4-glycosidic linkage and may recognize and stabilize the non-reducing end glucose of the acceptor molecule.  相似文献   

17.
Ng IS  Tsai SW  Ju YM  Yu SM  Ho TH 《Bioresource technology》2011,102(10):6073-6081
Dynamic synergistic effects in cellulosic bioconversion have been revealed between Trichoderma reesei cellulases and β-glucosidases (BGLs) from six Taiwanese fungi. A high level of synergy (8.9-fold) was observed with the addition of Chaetomellaraphigera BGL to T. reesei cellulases. In addition, the C. raphigera BGL possessed the highest activity (Vmax/Km = 46.6 U/mg mM) and lowest glucose inhibition (Ki = 4.6 mM) with the substrate 4-nitrophenyl β-d-glucopyranoside. For the natural cellobiose substrate, however, the previously isolated Aspergillus niger BGL Novo-188 had the highest Vmax/Km (0.72 U/mg mM) and lowest Ki (59.5 mM). The demonstrated dynamic synergistic effects between some BGLs and the T. reesei cellulase system suggest that BGLs not only prevent the inhibition by cellobiose, but also enhance activities of endo- and exo-cellulases in cellulosic bioconversion. Comparisons of kinetic parameters and synergism analyses between BGLs and T. reesei cellulases can be used for further optimization of the cellulosic bioconversion process.  相似文献   

18.
To better understand the mechanisms of plant tolerance to high concentration of arsenic, we characterized two antioxidant enzymes, glutathione reductase (GR) and catalase (CAT), in the fronds of Pteris vittata, an arsenic-hyperaccumulating fern, and Pteris ensiformis, an arsenic-sensitive fern. The induction, activation and apparent kinetics of GR and CAT in the plants upon arsenic exposure were investigated. Under arsenic exposure (sodium arsenate), CAT activity in P. vittata was increased by 1.5-fold, but GR activity was unchanged. Further, GR was not inhibited or activated by the arsenic in assays. No significant differences in Km and Vmax values of GR or CAT were observed between the two ferns. However, CAT activity in P. vittata was activated by 200 μM arsenate up to 300% compared to the control. Similar but much smaller increases were observed for P. ensiformis and purified bovine liver catalase (133% and 120%, respectively). This research reports, for the first time, the activation of CAT by arsenic in P. vittata. The increased CAT activities may allow P. vittata to more efficiently mediate arsenic-induced stress by preparing the fern for the impeding production of reactive oxygen species resulting from arsenate reduction to arsenite in the fronds.  相似文献   

19.
Two extracellular chitinases (designated as Chi-56 and Chi-64) produced by Massilia timonae were purified by ion-exchange chromatography, ammonium sulfate precipitation, and gel-filtration chromatography. The molecular mass of Chi-56 was 56 kDa as determined by both SDS-PAGE and gel-filtration chromatography. On the other hand, Chi-64 showed a molecular mass of 64 kDa by SDS-PAGE and 28 kDa by gel-filtration chromatography suggesting that its properties may be different from those of Chi-56. The optimum temperature, optimum pH, pI, Km, and Vmax of Chi-56 were 55 °C, pH 5.0, pH 8.5, 1.1 mg mL−1, and 0.59 μmol μg−1 h−1, respectively. For Chi-64, these values were 60 °C, pH 5.0, pH 8.5, 1.3 mg mL−1, and 1.36 μmol μg−1 h−1, respectively. Both enzymes were stimulated by Mn2+ and inhibited by Hg2+, and neither showed exochitinase activity. The N-terminal sequences of Chi-56 and Chi-64 were determined to be Q-T-P-T-Y-T-A-T-L and Q-A-D-F-P-A-P-A-E, respectively.  相似文献   

20.
Arsenic speciation and cycling in the natural environment are highly impacted via biological processes. Since arsenic is ubiquitous in the environment, microorganisms have developed resistance mechanisms and detoxification pathways to overcome the arsenic toxicity. This study has evaluated the toxicity, transformation and accumulation of arsenic in a soil microalga Scenedesmus sp. The alga showed high tolerance to arsenite. The 72-h 50 % growth inhibitory concentrations (IC50 values) of the alga exposed to arsenite and arsenate in low-phosphate growth medium were 196.5 and 20.6 mg? L?1, respectively. When treated with up to 7.5 mg? L?1 arsenite, Scenedesmus sp. oxidised all arsenite to arsenate in solution. However, only 50 % of the total arsenic remained in the solution while the rest was accumulated in the cells. Thus, this alga has accumulated arsenic as much as 606 and 761 μg? g?1 dry weight when exposed to 750 μg? L?1 arsenite and arsenate, respectively, for 8 days. To our knowledge, this is the first report of biotransformation of arsenic by a soil alga. The ability of this alga to oxidise arsenite and accumulate arsenic could be used in bioremediation of arsenic from contaminated water and soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号