首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Osteoclasts are multinucleated giant cells that originate from a monocyte/macrophage lineage, and are involved in the inflammatory bone destruction accompanied by periodontitis. Recent studies have shown that osteoclast precursors reside not only in the bone marrow, but also in the peripheral blood and spleen, though the precise characteristics of each precursor have not been analyzed. We hypothesized that the number of osteoclast precursors in those tissues may increase under pathological conditions and contribute to osteoclast formation in vivo in a mouse model. To test this hypothesis, we attempted to identify cell populations that possess osteoclast differentiation potential in the bone marrow, spleen, and blood by analyzing macrophage/monocyte-related cell surface markers such as CD11b, CD14, and colony-stimulating factor-1 receptor (c-Fms). In the bone marrow, the CD11b? cell population, but not the CD11b+ cell population, differentiated into osteoclasts in the presence of receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. On the other hand, in the spleen and blood, CD11b+ cells differentiated into osteoclasts. Interestingly, lipopolysaccharide (LPS) administration to the mice dramatically increased the proportion of CD11b+ c-Fms+ CD14+ cells, which differentiated into osteoclasts, in the bone marrow and spleen. These results suggest that LPS administration increases the proportion of a distinct cell population expressing CD11b+, c-Fms+, and CD14+ in the bone marrow and spleen. Thus, these cell populations are considered to contribute to the increase in osteoclast number during inflammatory bone destruction such as periodontitis.  相似文献   

2.
The identification and separation of small intestinal epithelial stem cells are still on the preliminary stage. In this study, we planned to utilize immunohistochemistry, fluorescence-activated cell sorting (FACS) and RT-PCR to investigate the possibility of CD133 and CD44 as markers of human small intestinal epithelial stem cells. The expressions of CD133, CD44 and Lgr5 were studied by immunohistochemistry. Four subgroups of CD133+CD44+, CD133+CD44, CD133CD44+, CD133CD44 were sorted out through FACS and the expression level of Lgr5 gene was measured by RT-PCR and polyacrylamide gel electropheresis (PAGE) with sliver stained. Ten cases of samples were available for analyzing. By immunohistochemical staining, few cells with positive expressions of CD133, CD44 and Lgr5 were distributed in the bottom of crypts with the expression locations somewhat overlapped. The average percentage of CD133+CD44+ cells was 0.0580 ± 0.0403%, while the corresponding contents of CD133+CD44 cells, CD133CD44+ cells and CD133CD44 cells were 0.4000 ± 0.1225%, 0.7000 ± 0.2646% and 76.5600 ± 3.5529% respectively. Ten times of positive expressions of Lgr5 were detected in the CD133+CD44+ groups, while 9/10, 8/10 and 4/10 times for CD133+CD44, CD133CD44+ and CD133CD44 subgroups respectively. With the help of Quantityone 4.62 software, the densities of corresponding place to Lgr5 and reference gene were obtained. The density ratios of corresponding place to Lgr5 to reference gene were significant difference between subgroups (P < 0.001). By means of LSD method, the density ratios in CD133+CD44+ subgroups had statistical differences from the other subgroups (P < 0.05). We concluded CD133+CD44+ cells may be human small intestinal epithelial stem cells, which need further researches to confirm.  相似文献   

3.

   

CD4+CD25+Foxp3+ regulatory T (Treg) cells are believed to play an important role in suppressing autoimmunity and maintaining peripheral tolerance. How their survival is regulated in the periphery is less clear. Here we show that Treg cells express receptors for gamma chain cytokines and are dependent on an exogenous supply of these cytokines to overcome cytokine withdrawal apoptosis in vitro. This result was validated in vivo by the accumulation of Treg cells in Bim-/- and Bcl-2 tg mice which have arrested cytokine deprivation apoptosis. We also found that CD25 and Foxp3 expression were down-regulated in the absence of these cytokines. CD25+ cells from Scurfy mice do not depend on cytokines for survival demonstrating that Foxp3 increases their dependence on cytokines by suppressing cytokine production in Treg cells. Our study reveals that the survival of Treg cells is strictly dependent on cytokines and cytokine producing cells because they do not produce cytokines. Our study thus, demonstrates that different gamma chain cytokines regulate Treg homeostasis in the periphery by differentially regulating survival and proliferation. These findings may shed light on ways to manipulate Treg cells that could be utilized for their therapeutic applications.  相似文献   

4.
5.
6.
Dendritic cells are migratory cells. Before they extravasate from the circulation into the skin across capillary blood vessel walls, they have to interact with endothelial cells. Using a fluorimetric adhesion assay, we have recently shown that CD34+-derived dendritic cell precursors are able to bind to resting and stimulated dermal microvascular endothelial cells. In the present study, we attempted to visualize this process at an ultrastructural level. CD34+ progenitor cells were purified from human cord blood samples by means of immunomagnetic beads, and dendritic cells were generated by culture in the presence of GM-CSF, TNF- and hSCF for 5 days. Immature CD83 CD86low dendritic cells were added to human dermal microvascular endothelial cells grown to confluence on membrane chambers. After 2 h, unbound dendritic cell precursors were removed, and bound cells were prepared for routine scanning electron microscopy. We found that (1) dendritic cell precursors firmly adhere to microvascular endothelial cells, enveloping them with their surface processes; (2) dendritic cell precursors are extremely deformable as they squeeze through the dense network of microvascular endothelial cells; (3) microvascular endothelial cells form, in part, a multi-layered network rather than the typical cobblestone pattern as seen by phase-contrast microscopy. The morphology of dendritic cell precursors and of human dermal microvascular endothelial cells was examined here, for the first time, by scanning electron microscopy. These data further emphasize that CD34+-derived dendritic cells efficiently adhere to dermal microvascular endothelial cells.  相似文献   

7.
T cell-mediated immunotherapy against malignancies has been shown to be effective for certain types of cancer. However, ex vivo expansion of tumor-reactive T cells has been hindered by the low precursor frequency of such cells, often requiring multiple rounds of stimulation, resulting in full differentiation, loss of homing receptors and potential exhaustion of the expanded T cells. Here, we show that when using highly purified naïve CD8+ T cells, a single stimulation with peptide-pulsed, IFNγ/LPS-matured dendritic cells in combination with the sequential use of IL-21, IL-7 and IL-15 is sufficient for extensive expansion of antigen-specific T cells. Short-term expanded T cells were tumor-reactive, multifunctional and retained a central-memory-like phenotype (CD62L+, CCR7+, CD28+). The procedure is highly reproducible and robust as demonstrated for different healthy donors and for cancer patients. Such short-term tumor-antigen-primed, multifunctional T cells may therefore serve as a platform to target different malignancies accessible to immunotherapy.  相似文献   

8.
Cancer stem cells (CSC) are resistant to chemo- and radiotherapy. To eliminate cells with phenotypic markers of CSC-like we characterized: (1) expression of CD44, CD24, CD133 and MIC-A/B (NKG2 receptors) in breast (MCF7) and ovarian (SK-OV-3) cells resistant to gemcitabine (GEM), paclitaxel (PTX) and 5-fluorouracil (5-FU) and (2) their elimination by Numb- and Notch-peptide activated CTL. The number of cells in all populations with the luminal CSC phenotype [epithelial specific antigen+ (ESA) CD44hi CD24lo, CD44hi CD133+, and CD133+ CD24lo] increased in drug-resistant MCF7 and SK-OV-3 cells. Similarly, the number of cells with expressed MIC-A/B increased 4 times in drug-resistant tumor cells compared with drug-sensitive cells. GEMRes MCF7 cells had lower levels of the Notch-1-extracellular domain (NECD) and Notch trans-membrane intracellular domain (TMIC) than GEMSens MCF7. The levels of Numb, and Numb-L-[P]-Ser265 were similar in GEMRes and GEMSens MCF7 cells. Only the levels of Numb-L (long)-Ser295 decreased slightly. This finding suggests that Notch-1 cleavage to TMIC is inhibited in GEMRes MCF7 cells. PBMC activated by natural immunogenic peptides Notch-1 (2112–2120) and Numb-1 (87–95) eliminated NICDpositive, CD24hi CD24lo MCF7 cells. It is likely that the immunogenic Numb-1 peptide in MCF7 cells originated from Numb, [P]-lated by an unknown kinase, because staurosporine but not wortmannin and MAPK-inhibitors decreased peptide presentation. Numb and Notch are antagonistic proteins which degrade each other to stop and activate cell proliferation, respectively. Their peptides are presented alternatively. Targeting both antagonistic proteins should be useful to prevent metastases in patients whose tumors are resistant to conventional treatments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
CD25+CD4+ regulatory T cells participate in the regulation of immune responses. We recently demonstrated the presence of CD25brightCD4+ regulatory T cells with a capacity to control T cell proliferation in the joints of patients with rheumatoid arthritis. Here, we investigate a possible accumulation of these regulatory T cells in the inflamed joint of different rheumatic diseases including rheumatoid arthritis. The studies are also extended to analyze whether cytokine production can be suppressed by the regulatory T cells. Synovial fluid and peripheral blood samples were obtained during relapse from 36 patients with spondyloarthropathies, 21 adults with juvenile idiopathic arthritis and 135 patients with rheumatoid arthritis, and the frequency of CD25brightCD4+ T cells was determined. Of 192 patients, 182 demonstrated a higher frequency of CD25brightCD4+ T cells in synovial fluid than in peripheral blood. In comparison with healthy subjects, the patients had significantly fewer CD25brightCD4+ T cells in peripheral blood. For functional studies, synovial fluid cells from eight patients were sorted by flow cytometry, and the suppressive capacity of the CD25brightCD4+ T cells was determined in in vitro cocultures. The CD25brightCD4+ T cells suppressed the production of both type 1 and 2 cytokines including interleukin-17, as well as proliferation, independently of diagnosis. Thus, irrespective of the inflammatory joint disease investigated, CD25brightCD4+ T cells were reduced in peripheral blood and enriched in the joint, suggesting an active recruitment of regulatory T cells to the affected joint. Their capacity to suppress both proliferation and cytokine secretion might contribute to a dampening of local inflammatory processes.  相似文献   

10.
11.
Molecularly defined synthetic vaccines capable of inducing both antibodies and cellular anti-tumor immune responses, in a manner compatible with human delivery, are limited. Few molecules achieve this target without utilizing external immuno-adjuvants. In this study, we explored a self-adjuvanting glyco-lipopeptide (GLP) as a platform for cancer vaccines using as a model MO5, an OVA-expressing mouse B16 melanoma. A prototype B and T cell epitope-based GLP molecule was constructed by synthesizing a chimeric peptide made of a CD8+ T cell epitope, from ovalbumin (OVA257–264) and an universal CD4+ T helper (Th) epitope (PADRE). The resulting CTL–Th peptide backbones was coupled to a carbohydrate B cell epitope based on a regioselectively addressable functionalized templates (RAFT), made of four α-GalNAc molecules at C-terminal. The N terminus of the resulting glycopeptides (GP) was then linked to a palmitic acid moiety (PAM), obviating the need for potentially toxic external immuno-adjuvants. The final prototype OVA-GLP molecule, delivered in adjuvant-free PBS, in mice induced: (1) robust RAFT-specific IgG/IgM that recognized tumor cell lines; (2) local and systemic OVA257–264-specific IFN-γ producing CD8+ T cells; (3) PADRE-specific CD4+ T cells; (4) OVA-GLP vaccination elicited a reduction of tumor size in mice inoculated with syngeneic murine MO5 carcinoma cells and a protection from lethal carcinoma cell challenge; (5) finally, OVA-GLP immunization significantly inhibited the growth of pre-established MO5 tumors. Our results suggest self-adjuvanting glyco-lipopeptide molecules as a platform for B Cell, CD4+, and CD8+ T cell epitopes-based immunotherapeutic cancer vaccines. Both I. Bettahi and G. Dasgupta have contributed equally to this work.  相似文献   

12.
13.
Appropriate activation of dendritic cells (DC) is essential for successful active vaccination and induction of cell-mediated immunity. The scarcity of precursor cells, as well as long culture methods, have hampered wide-scale application of DC vaccines derived from CD34+ precursors, despite their suggested superior efficacy over the more commonly applied monocyte-derived DC (MoDC). Here, employing the CD34+/CD14+ AML-derived human DC progenitor cell line MUTZ3, we show that cytostatic anthraquinone-derivatives (i.e., the anthracenedione mitoxantrone and the related anthracyclin doxorubicin) induce rapid differentiation of CD34+ DC precursors into functional antigen-presenting cells (APC) in a three-day protocol. The drugs were found to act specifically on CD34+, and not on CD14+ DC precursors. Importantly, these observations were confirmed for primary CD34+ and CD14+ DC precursors from peripheral blood. Mitoxantrone-generated DC were fully differentiated within three days and after an additional 24 h of maturation, were as capable as standard 9-day differentiated and matured DC to migrate toward the lymph node-homing chemokines CCL19 and CCL21, to induce primary allogeneic T cell proliferation, and to prime functional MART1-specific CD8+ T lymphocytes. Our finding that anthraquinone-derivatives like mitoxantrone support rapid high-efficiency differentiation of DC precursors may have consequences for in vitro production of DC vaccines as well as for novel immunochemotherapy strategies.  相似文献   

14.
B-lymphoma cells express a highly tumor-specific antigen, monoclonal Ig, which is a promising target for immunotherapy. Previous work has demonstrated that B-lymphoma cells spontaneously process their endogenous monoclonal Ig and present variable (V) region peptides (Id-peptides) on their MHC class II molecules to CD4+ T cells. Id-specific CD4+ T cells protect mice against B-lymphoma cells in the absence of anti-idiotypic antibodies. The molecular mechanism by which Id-specific CD4+ T cells kill B-lymphoma cells is hitherto unknown. We here demonstrate in an Id-specific T-cell receptor (TCR)–transgenic mouse model that Id-specific CD4+ T cells induce apoptosis of Fas+ B-lymphoma cells in vitro by FasLigand (FasL)–Fas interaction. Moreover, the rare B lymphomas that had escaped rejection in TCR-transgenic mice had down-regulated their sensitivity to Fas-mediated apoptosis. Although these results suggest that FasL-Fas interaction is important, Id-specific CD4+ T cells could eliminate Id+ B-lymphoma cells in vivo by other mechanisms, since three independent ways of blocking FasL-Fas–mediated killing failed to abrogate tumor protection in TCR-transgenic mice. These results suggest that there are several redundant pathways by which Id-specific CD4+ T cells eliminate Id+ B-lymphoma cells in vivo, of which FasL-Fas interaction is only one.Supported by grants from the Norwegian Cancer Society, the Research Council of Norway, and the Multiple Myeloma Research Foundation.  相似文献   

15.

Background

In acute myeloid leukemia (AML), the leukemia initiating cells (LICs) or leukemia stem cells (LSCs) is found within the CD34+CD38- cell compartment. The LICs subpopulation survives chemotherapy and is most probable the cause of minimal residual disease (MRD), which in turn is thought to cause relapse. The aim of this study was to determine the prognostic value of the percentage of LICs in blasts at diagnosis.

Design and methods

The percentage of LICs in the blast population was determined at diagnosis using a unique Flow-FISH analysis, which applies fluorescent in situ hybridization (FISH) analysis on flow cytometry sorted cells to distinguish LICs within the CD34+CD38- cell compartment. Fourty-five AML patients with FISH-detectable cytogenetic abnormalities treated with standardized treatment program were retrospectively included in the study. Correlations with overall survival (OS), events-free survival (EFS) and cumulative incidence of relapse (CIR) were evaluated with univariate and multivariate analysis.

Results

The percentage of LICs is highly variable in patients with acute myeloid leukemia, ranged from 0.01% to 52.8% (median, 2.1%). High LIC load (≥1%) negatively affected overall survival (2-year OS: 72.57% vs. 16.75%; P?=?0.0037) and events-free survival (2-year EFS: 67.23% vs. 16.33%; P?=?0.0018), which was due to an increased cumulative incidence of relapse (2-year CIR: 56.7% vs. 18.0%; P?=?0.021). By multivariate analysis, high LIC load retained prognostic significance for OS and EFS.

Conclusions

In the present study, we established the Flow-FISH protocol as a useful method to distinguish normal and leukemic cells within the CD34+CD38- cell subpopulation. The high percentage of LICs at diagnosis was significantly correlated with increased risk of poor clinical outcome.
  相似文献   

16.
Summary While tumor cell-derived factors have been demonstrated to hamper the in vitro differentiation and maturation of dendritic cells (DCs) from hematopoietic stem cells, their effects on DC differentiation from CD14+ plastic-adherent monocytic precursors have been controversial. To address this issue, we examined the effects of the culture supernatants from six tumor cell lines on in vitro DC differentiation and maturation from monocytes. Two tumor cell supernatants, MDA468 and 293T, were found to be able to affect the in vitro differentiation of DCs from monocytic precursors, leading to the generation of a distinct type of DC with markedly reduced expression of DC-SIGN, downregulation of CD11c, HLA-DR and CD1a, and upregulation of CD123, HLA-ABC, CD80, CD40, CD86, CD54, CD83, CD25 and CCR7. Functionally, these DCs exhibited reduced phagocytosis and enhanced allostimulatory capacity. Further investigation demonstrated that the changes in DC phenotype and functions were due to the presence of mycoplasmas in these two cell lines; eradication of mycoplasmas completely abolished the observed effects, and importantly, pure mycoplasmas in the absence of tumor cell supernatants were able to produce the same effects. Since mycoplasmas are common contamination agents in routine tissue culture, our results caution that many reported effects of DCs in culture warrant re-evaluation. The distinct effects of mycoplasmas on DC differentiation described in this report could potentially benefit future development of DC-based vaccination and therapeutic applications.Received 21 April 2004; accepted in revised form 1 August 2004 © 2005 National Science Council, Taipei  相似文献   

17.
Iodine is an essential trace element for thyroid hormone synthesis and metabolism, either low or high intake may lead to thyroid disease, but the pathogenetic mechanisms by which iodine interacts with the thyroid autoimmune are poorly understood. We investigated the dynamic changes of CD4+CD25+ regulatory T cells in NOD.H-2h4 mice with iodine-induced autoimmune thyroiditis (AIT), and explore potential immune mechanism of AIT induced by iodine. NOD.H-2h4 mice were randomly divided into two groups, and received plain water or water containing 0.005% sodium iodide. Eight weeks after iodine provision, the incidences of thyroiditis, relative weights of thyroids, and serum thyroglobulin antibody titers in the iodine-supplied groups were significantly increased compared to the control groups (p < 0.05). The AIT mice had fewer CD4+CD25+Foxp3+ T cells and reduced Foxp3 mRNA expression in splenocytes compared with the controls (p < 0.01), and maintained relatively low levels during the development of thyroiditis. The changes described above aggravated gradually with the extension of iodine treatment. These data suggest that CD4+CD25+ regulatory T cells may be involved in the pathogenesis and development of AIT induced by iodine.  相似文献   

18.
Various abnormalities in CD4+CD25+ regulatory T cells (Tregs) in systemic lupus erythematosus (SLE) include increased Foxp3+ cells that are CD25 negative. Barring methodological technical factors, these cells could be atypical Tregs or activated non-Treg CD4+ cells that express Foxp3. Two groups have reached opposite conclusions that could possibly reflect the subjects studied. One group studied untreated new-onset SLE and suggested that these T cells were mostly CD25-Foxp3+ non-Tregs. The other group studied patients with long-standing disease and suggested that these cells are mostly dysfunctional Tregs. A third group reported increased Foxp3+CD4+CD25dim rather than CD25- cells in active SLE and these were also non-Tregs. Thus, it is likely that not all Foxp3+ T cells in SLE have protective suppressive activity.  相似文献   

19.
“Cancer stem cells” that resist conventional treatments may be a cause of therapeutic failure in melanoma. We report a subpopulation of clonogenic melanoma cells that are characterized by high prominin-1/CD133 expression in melanoma and melanoma cell lines. These cells have enhanced clonogenicity and self-renewal in vitro, and serve as a limited in vitro model for melanoma stem cells. In some cases clonogenic CD133+ melanoma cells show increased expression of some cancer/testis (CT) antigens. The expression of NY-ESO-1 in an HLA-A2 expressing cell line allowed CD133+ clonogenic melanoma cells to be targeted for killing in vitro by NY-ESO-1-specific CD8+ T-lymphocytes. Our in vitro findings raise the hypothesis that if melanoma stem cells express CT antigens in vivo that immune targeting of these antigens may be a viable clinical strategy for the adjuvant treatment of melanoma. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Accumulating evidence suggests that regulatory T cells play a crucial role in preventing autoimmunity. Recently, a naturally occurring CD4+CD25+ T-cell subset that is anergic and also suppressive has been shown to suppress autoimmunity in several animal models. We used proteoglycan-induced arthritis (PGIA) as a study model to investigate the role of the CD4+CD25+ regulatory T cells in autoimmune arthritis. There was no significant change in the percentage of CD4+CD25+ T cells during the immunization period when proteoglycan- or ovalbumin-immunized BALB/c and C57BL/6 mice were compared. An adoptive transfer study showed that the CD4+CD25+ T cells did not protect severe combined immunodeficient mice from arthritis when they were cotransferred with splenocytes from arthritic animals. Similarly, depletion of the CD4+CD25+ T cells did not enhance the onset of the disease or disease severity in severe combined immunodeficient mice. Moreover, CD28-deficient mice, which have very few CD4+CD25+ T cells, were highly resistant to PGIA. These findings indicate that the CD4+CD25+ regulatory T cells may not play a critical role in controlling PGIA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号