首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 262 毫秒
1.
Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8 g/L vs. 19.4 g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28 g/L·h vs. 0.16 g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53 g/L·h vs. 0.26 g/L·h) and yield (0.32 g/g vs. 0.28 g/g). When the initial total sugar concentration was ~120 g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4 g/L, yield of 0.43 g/g sugar consumed, productivity of 0.87 g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass.  相似文献   

2.
Thermobifida fusca not only produces cellulases, hemicellulases and xylanases, but also excretes butyric acid. In order to achieve a high yield of butyric acid, the effect of different carbon sources: mannose, xylose, lactose, cellobiose, glucose, sucrose and acetates, on butyric acid production was studied. The highest yield of butyric acid was 0.67 g/g C (g-butyric acid/g-carbon input) on cellobiose. The best stir speed and aeration rate for butyric acid production were found to be 400 rpm and 2 vvm in a 5-L fermentor. The maximum titer of 2.1 g/L butyric acid was achieved on 9.66 g/L cellulose. In order to test the production of butyric acid on lignocellulosic biomass, corn stover was used as the substrate, on which there was 2.37 g/L butyric acid produced under the optimized conditions. In addition, butyric acid synthesis pathway was identified involving five genes that catalyzed reactions from acetyl-CoA to butanoyl-CoA in T. fusca.  相似文献   

3.
The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield (YP/S) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.  相似文献   

4.
Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.  相似文献   

5.
Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142 g/L with production yield of 0.89 g/g and productivity of 3.55 g L−1 h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.  相似文献   

6.
Butanol and butyric acid produced from acetone-butanol-ethanol (ABE) fermentation can be used to produce butyl butyrate, an important fragrance ester. However, low levels of butanol and butyric acid need to be purified from culture media first with energy-intensive distillation processes. In this study, a triphasic (organic/aqueous/fluorous) system is developed to esterify butanol and butyric acid in spent culture media into butyl butyrate directly without purification. The produced butyl butyrate forms a distinct organic phase floating on top and can then be separated easily. In a model system containing 37.1 g/L of butanol and 44.1 g/L of butyric acid, 57% of the butanol is converted to butyl butyrate after 8 h of esterification. With multiple cycles of esterification and product removal, butanol conversion can be further increased to 86%. When spent culture medium containing 7.12 g/L of butanol and 4.81 g/L of butyric acid is used for esterification, 38% of butanol (0.36 mmol) is consumed and 0.33 mmol of butyl butyrate is produced. However, when ABE fermentation and esterification are carried out simultaneously, only 0.042 mmol of butyl butyrate is produced, probably due to the incompatible pH requirements for cell growth (pH 5–7) and esterification (pH 2–3).  相似文献   

7.
In wild-type Escherichia coli, 1 mol of CO2 was fixated in 1 mol of succinic acid generation anaerobically. The key reaction in this sequence, catalyzed by phosphoenolpyruvate carboxylase (PPC), is carboxylation of phosphoenolpyruvate to oxaloacetate. Although inactivation of pyruvate formate-lyase and lactate dehydrogenase is found to enhance the PPC pathway for succinic acid production, it results in excessive pyruvic acid accumulation and limits regeneration of NAD+ from NADH formed in glycolysis. In other organisms, oxaloacetate is synthesized by carboxylation of pyruvic acid by pyruvate carboxylase (PYC) during glucose metabolism, and in E. coli, nicotinic acid phosphoribosyltransferase (NAPRTase) is a rate-limiting enzyme of the NAD(H) synthesis system. To achieve the NADH/NAD+ ratio decrease as well as carbon flux redistribution, co-expression of NAPRTase and PYC in a pflB, ldhA, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production under anaerobic conditions. After 72 h, 14.5 g L−1 of glucose was consumed to generate 12.08 g L−1 of succinic acid. Furthermore, under optimized condition of CO2 supply, the succinic acid productivity and the CO2 fixation rate reached 223.88 mg L−1 h−1 and 83.48 mg L−1 h−1, respectively.  相似文献   

8.
9.
The production of the chemical solvents acetone and butanol by the bacterium Clostridium acetobutylicum was one of the first large-scale industrial processes to be developed, and in the first part of the last century ranked second in importance only to ethanol production. After a steep decline in its industrial use, there has been a recent resurgence of interest in the acetone–butanol–ethanol (ABE) fermentation process, with a particular emphasis on butanol production. In order to generate strains suitable for efficient use on an industrial scale, metabolic engineering is required to alter the AB ratio in favour of butanol, and eradicate the production of unwanted products of fermentation. Using ClosTron technology, a large-scale targeted mutagenesis in C. acetobutylicum ATCC 824 was carried out, generating a set of 10 mutants, defective in alcohol/aldehyde dehydrogenases 1 and 2 (adhE1, adhE2), butanol dehydrogenases A and B (bdhA, bdhB), phosphotransbutyrylase (ptb), acetate kinase (ack), acetoacetate decarboxylase (adc), CoA transferase (ctfA/ctfB), and a previously uncharacterised putative alcohol dehydrogenase (CAP0059). However, inactivation of the main hydrogenase (hydA) and thiolase (thl) could not be achieved. Constructing such a series of mutants is paramount for the acquisition of information on the mechanism of solvent production in this organism, and the subsequent development of industrial solvent producing strains. Unexpectedly, bdhA and bdhB mutants did not affect solvent production, whereas inactivation of the previously uncharacterised gene CAP0059 resulted in increased acetone, butanol, and ethanol formation. Other mutants showed predicted phenotypes, including a lack of acetone formation (adc, ctfA, and ctfB mutants), an inability to take up acids (ctfA and ctfB mutants), and a much reduced acetate formation (ack mutant). The adhE1 mutant in particular produced very little solvents, demonstrating that this gene was indeed the main contributor to ethanol and butanol formation under the standard batch culture conditions employed in this study. All phenotypic changes observed could be reversed by genetic complementation, with exception of those seen for the ptb mutant. This mutant produced around 100 mM ethanol, no acetone and very little (7 mM) butanol. The genome of the ptb mutant was therefore re-sequenced, together with its parent strain (ATCC 824 wild type), and shown to possess a frameshift mutation in the thl gene, which perfectly explained the observed phenotype. This finding reinforces the need for mutant complementation and Southern Blot analysis (to confirm single ClosTron insertions), which should be obligatory in all further ClosTron applications.  相似文献   

10.
Succinic acid (SA) is a four carbon dicarboxylic acid of great industrial interest that can be produced by microbial fermentation. Here we report development of a high-yield homo-SA producing Mannheimia succiniciproducens strain by metabolic engineering. The PALFK strain (ldhA-, pta-, ackA-, fruA-) was developed based on optimization of carbon flux towards SA production while minimizing byproducts formation through the integrated application of in silico genome-scale metabolic flux analysis, omics analyses, and reconstruction of central carbon metabolism. Based on in silico simulation, utilization of sucrose would enhance the SA production and cell growth rates, while consumption of glycerol would reduce the byproduct formation rates. Thus, sucrose and glycerol were selected as dual carbon sources to improve the SA yield and productivity, while deregulation of catabolite-repression was also performed in engineered M. succiniciproducens. Fed-batch fermentations of PALFK with low- and medium-density (OD600 of 0.4 and 9.0, respectively) inocula produced 69.2 and 78.4 g/L of homo-SA with yields of 1.56 and 1.64 mol/mol glucose equivalent and overall volumetric SA productivities of 2.50 and 6.02 g/L/h, respectively, using sucrose and glycerol as dual carbon sources. The SA productivity could be further increased to 38.6 g/L/h by employing a membrane cell recycle bioreactor system. The systems metabolic engineering strategies employed here for achieving homo-SA production with the highest overall performance indices reported to date will be generally applicable for developing superior industrial microorganisms and competitive processes for the bio-based production of other chemicals as well.  相似文献   

11.
2,2-Bis(hydroxymethyl)butyric acid (BHMB) is an important multifunctional chemical for the emerging bio-based polymer industry. It can be produced from trimethylolpropane (TMP) by selective oxidation using growing cells of Corynebacterium sp. ATCC 21245. However, this process is limited by the low volumetric productivity and low concentration of the final product. In the present study, we performed sequential batch operation with cell recycling in media containing glycerol, acetic acid, and increasing concentrations of yeast extract. This approach enhanced the conversion of 10 and 15 g/L TMP to 11.0 and 16.3 g/L BHMB at rates of 0.50 and 0.20 g/L.h, respectively. Applying a cell bleeding strategy resulted in an overall 10-fold improvement in productivity. The consequently prolonged biocatalyst viability resulted in a quantitative conversion of 20 g/L TMP to 22.3 g/L BHMB and a yield of 1.10 gBHMB/gTMP (100% molar yield). This work facilitates further studies of the selective oxidation on other industrially important polyols.  相似文献   

12.
3-Hydroxypropionic acid (3-HP) is a promising platform chemical which can be used for the production of various value-added chemicals. In this study,Corynebacterium glutamicum was metabolically engineered to efficiently produce 3-HP from glucose and xylose via the glycerol pathway. A functional 3-HP synthesis pathway was engineered through a combination of genes involved in glycerol synthesis (fusion of gpd and gpp from Saccharomyces cerevisiae) and 3-HP production (pduCDEGH from Klebsiella pneumoniae and aldehyde dehydrogenases from various resources). High 3-HP yield was achieved by screening of active aldehyde dehydrogenases and by minimizing byproduct synthesis (gapAA1GΔldhAΔpta-ackAΔpoxBΔglpK). Substitution of phosphoenolpyruvate-dependent glucose uptake system (PTS) by inositol permeases (iolT1) and glucokinase (glk) further increased 3-HP production to 38.6 g/L, with the yield of 0.48 g/g glucose. To broaden its substrate spectrum, the engineered strain was modified to incorporate the pentose transport gene araE and xylose catabolic gene xylAB, allowing for the simultaneous utilization of glucose and xylose. Combination of these genetic manipulations resulted in an engineered C. glutamicum strain capable of producing 62.6 g/L 3-HP at a yield of 0.51 g/g glucose in fed-batch fermentation. To the best of our knowledge, this is the highest titer and yield of 3-HP from sugar. This is also the first report for the production of 3-HP from xylose, opening the way toward 3-HP production from abundant lignocellulosic feedstocks.  相似文献   

13.
The aim of this study was to determine if decanter cake waste from a palm oil mill could be used as a renewable substrate for biobutanol production. Decanter cake waste was first hydrolyzed to fermentable sugars by nitric acid and detoxified by activated-charcoal. The detoxified hydrolysate supplemented with whey protein and ammonium sulfate as cheap nitrogen sources, was used for butanol production by growing cells of Clostridium beijerinckii. The detoxified hydrolysate was also used as a co-substrate for direct conversion of butyric acid to butanol in a nitrogen-free medium. By these two steps, C. beijerinckii produced 3.42 g/L of butanol with a yield of 0.28 C-mol butanol/C-mol carbon in the first step and produced 6.94 g/L of butanol with a yield of 0.47 C-mol butanol/C-mol carbon in the second step. This study has showed that decanter cake waste could serve as a low-cost substrate for biobutanol production.  相似文献   

14.
The aim of this study was to develop a bioprocess for l- and d-lactic acid production from raw sweet potato through simultaneous saccharification and fermentation by Lactobacillus paracasei and Lactobacillus coryniformis, respectively. The effects of enzyme and nitrogen source concentrations as well as of the ratio of raw material to medium were investigated. At dried material concentrations of 136.36–219.51 g L−1, yields of 90.13–91.17% (w/w) and productivities of 3.41–3.83 g L−1 h−1 were obtained with lactic acid concentrations as high as 198.32 g L−1 for l-lactic acid production. In addition, d-lactic acid was produced with yields of 90.11–84.92% (w/w) and productivities of 2.55–3.11 g L−1 h−1 with a maximum concentration of 186.40 g L−1 at the same concentrations of dried material. The simple and efficient process described in this study will benefit the tuber and root-based lactic acid industries without requiring alterations in plant equipment.  相似文献   

15.
To achieve sucrose-metabolizing capability, different sucrose utilization operons have been introduced into E. coli that cannot utilize sucrose. However, these engineered strains still suffer from low growth rates and low sucrose uptake rates. In this study, cell surface display system was adopted in engineered E. coli AFP111 for succinic acid production from sucrose and molasses directly. Invertase (CscA) from E. coli W was successfully anchored to outer membrane by fusion with OmpC anchoring motif, and the displayed CscA showed high extracellular activity. Compared with the sucrose permease system, the cell surface display system consumed less ATP during sucrose metabolism. When less ATP was consumed by AFP111/pTrcC-cscA, the succinic acid productivity from sucrose was 23% higher than that by AFP111/pCR2.1-cscBKA that having the sucrose permease system. As a result, 41 g L−1 and 36.3 g L−1 succinic acid were produced by AFP111/pTrcC-cscA from sucrose and sugarcane molasses respectively at 34 h in 3-L fermentor during dual-phase fermentation. In addition, 79 g L−1 succinic acid was accumulated with recovered AFP111/pTrcC-cscA cells at the end of dual-phase fermentation in 3-L fermentor, and the overall yield was 1.19 mol mol−1 hexose.  相似文献   

16.
The entomogenous fungus Cordyceps taii, a traditional Chinese medicinal mushroom, exhibits potent important pharmacological effects and it has great potential for health foods and medicine. In this work, the effects of oxygen supply on production of biomass and bioactive helvolic acid were studied in shake-flask fermentation of C. taii mycelia. The value of initial volumetric oxygen transfer coefficient (KLa) within 10.1–33.8 h−1 affected the cell growth, helvolic acid production and expression levels of biosynthetic genes. The highest cell concentration of 17.2 g/L was obtained at 14.3 h−1 of initial KLa. The highest helvolic acid production was 9.6 mg/L at 10.1 h−1 of initial KLa. The expression levels of three genes encoding hydroxymethylglutaryl-CoA synthase, hydroxymethylglutaryl-CoA reductase and squalene synthase were down-regulated on day 2 and day 8 but up-regulated on day 14 at an initial KLa value of 10.1 h−1 vs. 33.8 h−1, which well corresponded to the helvolic acid biosynthesis in those conditions. The information obtained would be helpful for improving the biomass and helvolic acid production in large-scale fermentation of C. taii.  相似文献   

17.
Fatty acids (FAs) are promising precursors of advanced biofuels. This study investigated conversion of acetic acid (HAc) to FAs by an engineered Escherichia coli strain. We combined established genetic engineering strategies including overexpression of acs and tesA genes, and knockout of fadE in E. coli BL21, resulting in the production of ~1 g/L FAs from acetic acid. The microbial conversion of HAc to FAs was achieved with ~20% of the theoretical yield. We cultured the engineered strain with HAc-rich liquid wastes, which yielded ~0.43 g/L FAs using waste streams from dilute acid hydrolysis of lignocellulosic biomass and ~0.17 g/L FAs using effluent from anaerobic-digested sewage sludge. 13C-isotopic experiments showed that the metabolism in our engineered strain had high carbon fluxes toward FAs synthesis and TCA cycle in a complex HAc medium. This proof-of-concept work demonstrates the possibility for coupling the waste treatment with the biosynthesis of advanced biofuel via genetically engineered microbial species.  相似文献   

18.
The separate or combined effects of Pichia membranaefaciens and salicylic acid (SA) on the control of blue and green mold decay in citrus fruits were investigated. Results indicate that combining P. membranaefaciens (1 × 108 CFU ml−1) with SA (10 μg ml−1) either in a point-inoculated or dipped treatment provided a more effective control of blue and green mold than separately applying yeast or SA. SA (10 μg ml−1) did not significantly affect P. membranaefaciens growth in vitro but slightly increased the yeast population in fruit wounds. P. membranaefaciens plus SA effectively enhanced the phenylalanine ammonia-lyase, peroxidase, polyphenoloxidase, chitinase, and β-1,3-glucanase activities and stimulated the synthesis of phenolic compounds. The combined treatment did not impair quality parameters such as weight loss or titratable acidity, but resulted in low average natural infection incidence and increased total soluble solids and ascorbic acid contents in citrus fruits after 14 d at 20 °C.  相似文献   

19.
《Process Biochemistry》2014,49(1):25-32
The compound 1,2,4-butanetriol (BT) is a valuable chemical used in the production of plasticizers, polymers, cationic lipids and other medical applications, and is conventionally produced via hydrogenation of malate. In this report, BT is biosynthesized by an engineered Escherichia coli from d-xylose. The pathway: d-xylose  d-xylonate  2-keto-3-deoxy-d-xylonate  3,4-dihydroxybutanal  BT, was constructed in E. coli by recruiting a xylose dehydrogenase and a keto acid decarboxylase from Caulobacter crescentus and Pseudomonas putida, respectively. Authentic BT was detected from cultures of the engineered strain. Further improvement on the strain was performed by blocking the native d-xylose and d-xylonate metabolic pathways which involves disruption of xylAB, yjhH and yagE genes in the host chromosome. The final construct produced 0.88 g L−1 BT from 10 g L−1 d-xylose with a molar yield of 12.82%. By far, this is the first report on the direct production of BT from d-xylose by a single microbial host. This may serve as a starting point for further metabolic engineering works to increase the titer of BT toward industrial scale viability.  相似文献   

20.
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7 μg g−1 (now expressed as mg kg−1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68 μg g−1 (now mg kg−1) to <20 μg g−1 (now mg kg‐1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号