首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
High-performance liquid chromatography was used to separate Cr(III) and Cr(VI) in samples with detection by inductively coupled plasma mass spectrometry(ICP-MS). The separation was achieved on a weak anion exchange column. The mobile phase was pH 7.0 ammonium nitrate solution. The redox reaction between Cr(III) and Cr(VI) was avoided during separation and determination. This separation method could be used to separate the samples with large concentration differences between Cr(III) and Cr(VI). The alkaline digestion was used to extract chromium in solid sample, which had no effect on the retention time and the peak area of the Cr(VI). However, the conversion of Cr(VI) from Cr(III) was observed during alkaline digestion, which displayed positive relation with the ratio of Cr(III) and Cr(VI) in samples. Both Cr(III) and Cr(VI) contents of chromium yeasts cultured in media with different chromium additions were determined. The spike recoveries of Cr(VI) for chromium yeasts were in the range of 95–108 %.  相似文献   

3.
At variance with Cr(III), Cr(VI) compounds easily cross cell membranes and exert genotoxic effects. No metabolic oxidation of Cr(III) could be detected, whereas Cr(VI) reduction was observed in the presence of body fluids and subcellular fractions of various tissues from several animal species. The differential efficiency of this process may account for the selection of target tissues in Cr(VI) carcinogenesis. For instance, reduction by saliva and gastric juice may explain a lack of carcinogenicity by the oral route; reduction inside erythrocytes may explain a lack of carcinogenicity at a distance from administration sites; reduction by the epithelial-lining fluid of terminal airways and by alveolar macrophages may be consistent with the occurrence of thresholds in lung carcinogenesis. Liver preparations displayed the top efficiency in reducing Cr(VI), whereas skeletal muscle, i.e., a typical target in experimental Cr(VI) carcinogenesis, had no detectable activity. Bronchial tree and peripheral lung parenchyma preparations from almost 100 individuals reduced Cr(VI) to a variable extent. The efficiency of lung parenchyma and of isolated alveolar macrophages was enhanced in cigarette smokers. In rats, Cr(VI) reduction by lung preparations was significantly stimulated by the repeated i.t. instillation of Cr(VI) itself. Among the electron donors (chiefly GSH) and enzymatic mechanisms responsible for the intracellular Cr(VI) reduction, such as cytochrome P-450 reductase, glutathione redactase, and aldehyde oxidase, an important role can be ascribed to cytosolic DT diaphorase activity, usually catalyzing a 2-electron reduction.  相似文献   

4.
The aim of this study was to investigate the potential to remove chromium (Cr) from aqueous solutions using the fruiting body of Auricularia polytricha. Batch experiments were conducted under various conditions, and different models were used to characterize the biosorption process. Results showed that, for both fresh and dried fruiting bodies of A. polytricha, removal efficiencies of Cr(VI) and total Cr reached maximum values at pH values of 1 and 2, respectively. The process of Cr(VI) removal by A. polytricha included the sorption process as well as the reduction of Cr(VI) to Cr(III). Spectra of X-ray photoelectron spectroscopy of the biosorbent revealed that most of the Cr loaded on the biomass surface was in the trivalent form. The Freundlich model fitted the isotherm process better than the Langmuir model in the concentration range examined. The pseudo-second-order model well described the adsorption process of Cr onto the biomass. The biosorption capacity of Cr(VI) by fruiting bodies was much higher than that by most of other biosorbents reported. The results suggest that the fruiting bodies of A. polytricha should be a promising biomaterial for Cr removal from water contaminated by the heavy metal.  相似文献   

5.
6.
Potential application of chromium reducing bacteria for industrial scale wastewater treatment demands that effect of presence of other metal ions on rate of Cr(VI) reduction be investigated, as industrial wastewaters contain many toxic metal ions. In the current study, the effect of different heavy metal ions (nickel, zinc, cadmium, copper, lead, iron) on chromium reduction by a novel strain of Acinetobacter sp. Cr-B2 that shows high tolerance up to 1,100 mg/L and high Cr(VI) reducing capacity was investigated. The alteration in Cr(VI) reduction capacity of Cr-B2 was studied both in presence of individual metal ions and in the presence of multi-metal ions at different concentrations. The study showed that the Cr(VI) reduction rates decreased in presence of Ni2+, Zn2+ and Cd2+ when present individually. Pb2+ at lower concentration did not show significant effect while Cu2+ and Fe3+ stimulated the rate of Cr(VI) reduction. In the studies on multi-metal ions, it was observed that in presence of Cu2+ and Fe3+, the inhibiting effect of Ni2+, Zn2+, Cd2+ and Pb2+ on Cr(VI) reduction was reduced. Each of these metals affect the overall rate of Cr(VI) reduction by Cr-B2. This work highlights the need to consider the presence of other heavy metal ions in wastewater when assessing the bioreduction of Cr(VI) and while designing the bioreactors for the purpose, as rate of reduction is altered by their presence.  相似文献   

7.
8.
Cystic fibrosis transmembrane conductance regulator (CFTR) acts as a cAMP-dependent chloride channel, has been studied in various types of cells. CFTR is abundantly expressed in vascular smooth muscle cells and closely linked to vascular tone regulation. However, the functional significance of CFTR in basilar vascular smooth muscle cells (BASMCs) remains elusive. Accumulating evidence has shown the direct role of CFTR in cell apoptosis that contributes to several main pathological events in CF, such as inflammation, lung injury and pancreatic insufficiency. We therefore investigated the role of CFTR in BASMC apoptotic process induced by hydrogen peroxide (H2O2). We found that H2O2-induced cell apoptosis was parallel to a significant decrease in endogenous CFTR protein expression. Silencing CFTR with adenovirus-mediated CFTR specific siRNA further enhanced H2O2-induced BASMC injury, mitochondrial cytochrome c release into cytoplasm, cleaved caspase-3 and -9 protein expression and oxidized glutathione levels; while decreased cell viability, the Bcl-2/Bax ratio, mitochondrial membrane potential, total glutathione levels, activities of superoxide dismutase and catalase. The pharmacological activation of CFTR with forskolin produced the opposite effects. These results strongly suggest that CFTR may modulate oxidative stress-related BASMC apoptosis through the cAMP- and mitochondria-dependent pathway and regulating endogenous antioxidant defense system.  相似文献   

9.
10.
11.
To compare the mRNA level of angiogenic factor vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMP)-2, and MMP-9 in cultured human brain arteriovenous malformation (AVM) endothelial cells (ECs) and normal brain endothelial cells (BECs). Tissue explants both from deformed vessels of AVM and normal microvessel were put into culture for endothelial cells. After the monolayer adherent ECs reached confluence, they were tested with endothelial specific marker CD34 and von Willebrand factor (vWF) by immunochemical assay. mRNA levels of VEGF-A, MMP-2, and MMP-9 in AVM endothelial cells (AVMECs) and BECs were measured by PCR. Immunostaining confirmed that more than 95 % of the cultured cells were CD34 (Fig. 1b) and/or vWF positive. Expression levels of VEGF-A and MMP-2 mRNAs were significantly higher in AVMECs than in BECs. The MMP-9 level was also increased in AVMECs, but the difference was not statistically significant. Vascular tissue explants adherent method is a better approach for isolation and culture of AVMECs. Cultured AVMECs expressed higher angiogenic factors (VEGF, MMP-2) than the controlled BECs, implicating angiogenesis plays an important role in the pathogenesis of AVM.  相似文献   

12.
Obsessive compulsive disorder (OCD) and attention deficit hyperactivity disorder (ADHD) are two of the most common neuropsychiatric diseases in paediatric populations. The high comorbidity of ADHD and OCD with each other, especially of ADHD in paediatric OCD, is well described. OCD and ADHD often follow a chronic course with persistent rates of at least 40–50 %. Family studies showed high heritability in ADHD and OCD, and some genetic findings showed similar variants for both disorders of the same pathogenetic mechanisms, whereas other genetic findings may differentiate between ADHD and OCD. Neuropsychological and neuroimaging studies suggest that partly similar executive functions are affected in both disorders. The deficits in the corresponding brain networks may be responsible for the perseverative, compulsive symptoms in OCD but also for the disinhibited and impulsive symptoms characterizing ADHD. This article reviews the current literature of neuroimaging, neurochemical circuitry, neuropsychological and genetic findings considering similarities as well as differences between OCD and ADHD.  相似文献   

13.
Twenty varieties of maize (Zea mays, Poaceae) were studied through 11 attributes in three to seven randomly selected plants of each variety with a view to understanding the effect of cob characters on technologically desirable grain qualities. Canonical discriminant analysis showed thatproductivity (determined by total grain weight/cob, cob diameter and average grain weight) was the most discriminating among varieties followed by round grains fraction (represented by whole top and middle flat grains, number of rows and grain count/surface area), middle flat grains (composed of middle flat grains and grain count/surface area) and shape of the cob (determined by shape index, total grain weight/cob and cob diameter), which accounted for 35.1, 18.3, 12.2, and 9.8% of the total variance, respectively. In the light of these results, tentative norms have been suggested to evolve maize varieties of superior technological properties and yet retain high productivity. A cylindrical cob of large diameter with highest number of grains/area and smallest possible number of rows together constituted an ideal combination to achieve the objectives. Such possibilities in the light of available information are discussed.  相似文献   

14.
This study was conducted to determine effects of dietary supplementation with 1 % l-glutamine for 14 days on the abundance of intestinal bacteria and the activation of intestinal innate immunity in mice. The measured variables included (1) the abundance of Bacteroidetes, Firmicutes, Lactobacillus, Streptococcus and Bifidobacterium in the lumen of the small intestine; (2) the expression of toll-like receptors (TLRs), pro-inflammatory cytokines, and antibacterial substances secreted by Paneth cells and goblet cells in the jejunum, ileum and colon; and (3) the activation of TLR4-nuclear factor kappa B (NF-κB), mitogen-activated protein kinases (MAPK), and phosphoinositide-3-kinases (PI3K)/PI3K-protein kinase B (Akt) signaling pathways in the jejunum and ileum. In the jejunum, glutamine supplementation decreased the abundance of Firmicutes, while increased mRNA levels for antibacterial substances in association with the activation of NF-κB and PI3K-Akt pathways. In the ileum, glutamine supplementation induced a shift in the Firmicutes:Bacteroidetes ratio in favor of Bacteroidetes, and enhanced mRNA levels for Tlr4, pro-inflammatory cytokines, and antibacterial substances participating in NF-κB and JNK signaling pathways. These results indicate that the effects of glutamine on the intestine vary with its segments and compartments. Collectively, dietary glutamine supplementation of mice beneficially alters intestinal bacterial community and activates the innate immunity in the small intestine through NF-κB, MAPK and PI3K-Akt signaling pathways.  相似文献   

15.
An elevated level of tumor necrosis factor (TNF)-α is implicated in several cardiovascular diseases including heart failure. Numerous reports have demonstrated that TNF-α activates nuclear factor (NF)-kappaB, resulting in the upregulation of several genes that regulate inflammation, proliferation, and apoptosis of cardiomyocytes. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, a major source of reactive oxygen species (ROS), is also activated by TNF-α and plays a crucial role in redox-sensitive signaling pathways. The present study investigated whether NADPH oxidase mediates TNF-α-induced NF-kappaB activation and NF-kappaB-mediated gene expression. Human cardiomyocytes were treated with recombinant TNF-α with or without pretreatment with diphenyleneiodonium (DPI) and apocynin, inhibitors of NADPH oxidase. TNF-α-induced ROS production was measured using 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate assay. TNF-α-induced NF-kappaB activation was also examined using immunoblot; NF-kappaB binding to its binding motif was determined using a Cignal reporter luciferase assay and an electrophoretic mobility shift assay. TNF-α-induced upregulation of interleukin (IL)-1β and vascular cell adhesion molecule (VCAM)-1 was investigated using real-time PCR and immunoblot. TNF-α-induced ROS production in cardiomyocytes was mediated by NADPH oxidase. Phosphorylation of IKK-α/β and p65, degradation of IkappaBα, binding of NF-kappaB to its binding motif, and upregulation of IL-1β and VCAM-1 induced by TNF-α were significantly attenuated by treatment with DPI and apocynin. Collectively, these findings demonstrate that NADPH oxidase plays a role in regulation of TNF-α-induced NF-kappaB activation and upregulation of proinflammatory cytokines, IL-1β and VCAM-1, in human cardiomyocytes.  相似文献   

16.
Interleukin-13 (IL-13) is associated with the production of collagen in airway remodelling of asthma. Yet, the molecular mechanisms underlying IL-13 induction of collagen remain unclear; the aim of this study is to address this issue. IL-13 dose- and time-dependently-induced collagen I production in primary cultured airway fibroblasts; this was accompanied with the STAT6 phosphorylation, and pre-treatment of cells with JAK inhibitor suppressed IL-13-induced collagen I production. Further study indicated that IL-13 stimulated JAK/STAT6-dependent PDGF production and subsequent ERK1/2 MAPK activation in airway fibroblasts, and the presence of either PDGF receptor blocker or MEK inhibitor partially suppressed IL-13-induced collagen I production. Taken together, our study suggests that activation of JAK/STAT6 signal pathway and subsequent PDGF generation and resultant ERK1/2 MAPK activation mediated IL-13-induced collagen I production in airway fibroblasts.  相似文献   

17.
As a part of ongoing studies to elucidate pharmacologically active components of Schisandra chinensis, we isolated and studied α-iso-cubebene. The neuroprotective mechanisms of α-iso-cubebene in human neuroblastoma SH-SY5Y cells were investigated. α-Iso-cubebene significantly inhibited cytotoxicity and apoptosis due to 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in dopaminergic SH-SY5Y cells. Pretreatment of cells with α-iso-cubebene reduced intracellular accumulation of ROS and calcium in response to 6-OHDA. The neuroprotective effects of α-iso-cubebene were found to result from protecting the mitochondrial membrane potential. Notably, α-iso-cubebene inhibited the release of apoptosis-inducing factor from the mitochondria into the cytosol and nucleus after 6-OHDA treatment. α-Iso-cubebene also induced the activation of PKA/PKB/CREB/Nrf2 and suppressed 6-OHDA-induced neurotoxicity. α-Iso-cubebene was found to induce phosphorylation of PKA and PKB and activate Nrf2 and CREB signaling pathways in a dose-dependent manner. Additionally, α-iso-cubebene stimulated the expression of the antioxidant response genes NQO1 and HO-1. Finally, α-iso-cubebene-mediated neuroprotective effects were found to be reversible after transfection with CREB and Nrf2 small interfering RNAs.  相似文献   

18.
Transient receptor potential vanilloid type 4 (TRPV4) channels are expressed in the central nervous system, but their role in regulating the aging process under physiological and pathological conditions is still largely unknown. To identify age-related changes in the TRPV4 channel that contribute to the central nervous system, we investigated the distribution of TRPV4 in the brain and spinal cord regions of adult and aged rats. The expression of TRPV4 in the brain and spinal cord of adult and aged Sprague–Dawley rats was compared using immunohistochemistry performed with antibodies recognizing TRPV4 on free floating sections and western blotting analysis. TRPV4 immunoreactivity was significantly increased in the cerebral cortex, hippocampal formation, thalamus, basal nuclei, cerebellum and spinal cord of aged rats compared with adult control rats. In the cerebral cortex, TRPV4 immunoreactivity was significantly increased in pyramidal cells of aged rats. In addition, TRPV4 immunoreactivity was increased in the spinal cord, hippocampal formation, thalamus, basal nuclei and cerebellum of aged rats. This first demonstration of age-related increases in TRPV4 expression in the brain and spinal cord may provide useful data for investigating the pathogenesis of age-related neurodegenerative diseases. The exact regulatory mechanism and its functional significance require further elucidation.  相似文献   

19.
20.
Here, we present a simple method for controlling the density of Au nanoparticles (Au NPs) on a modified silicon substrate, by destabilizing the colloidal Au NPs with 3-mercaptopropyltrimethoxylsilane (3-MPTMS) for microelectromechanical-system-based applications to reduce tribological issues. A silicon surface was pretreated with a 3-MPTMS solution, immediately after which thiolated Au NPs were added to it, resulting in their uniform deposition on the silicon substrate. Without any material property change of the colloidal Au NPs, we observed the formation of large clusters Au NPs on the modified silicon surface. Analysis by scanning electron microscopy with energy dispersive X-ray spectroscopy indicated that the addition of 3-MPTMS resulted in an alternation of the chemical characteristics of the solution. Atomic force microscopy imaging supported the notion that silicon surface modification is the most important factor on tribological properties of materials along with ligand-modified Au NPs. The density of Au NPs on a silicon surface was significantly dependent on several factors, including the concentration of colloidal Au NPs, deposition time, and concentration of 3-MPTMS solution, while temperature range which was used throughout experiment was determined to have no significant effect. A relatively high density of Au NPs forms on the silicon surface as the concentrations of Au NPs and 3-MPTMS are increased. In addition, the maximum deposition of Au NPs on silicon wafer was observed at 3 h, while the effects of temperature variation were minimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号