首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reproducible method of Agrobacterium-mediated transformation was developed for Cicer arietinum (chickpea). Initial explants consisted of longitudinal slices from embryonic axes of imbibed, mature seed. The plasmid contained a bi-functional fusion gene conferring both -glucuronidase and neomycin phosphotransferase activities, under the control of a 35S35SAMV promoter. Using a series of tissue culture media for co-cultivation, shoot initiation and rooting, we recovered transgenic plants from approximately 1.3% of the sliced embryo axes. The addition of a shoot elongation medium to the protocol improved the success rate to 3.1% but increased the time in tissue culture. Inheritance of the gus gene was followed through four generations, both through expression and Southern hybridization assays, and showed the expected Mendelian inheritance pattern.NRCC Grant No. 46589.  相似文献   

2.
Summary Arachis hypogaea L. peanut, has been a difficult species to manipulate in tissue culture. Lack of a reliable and quick regeneration method for peanuts has proven to be one of the hindrances in the application of transformation protocols to the crop. A protocol to initiate shoot apex elongation and rooting of these shoots is described. This protocol was successful with two peanut cultivars. Shoot apices were isolated from germinated seedlings and placed on Murashige and Skoog salts containing N6-benzyladenine for shoot initiation. Once shoot elongation occurred, the explant was transferred to a rooting medium containing Murashige and Skoog salts and only one plant growth regulator, α-naphthalene acetic acid. In as few as 3 weeks, the explants began to root and could be transferred to soil. Forty-five percent of explants isolated from germinating peanut seeds would root on this medium. Elongation and rooting of the shoot apices were not hindered by the addition of an antibiotic to the medium, indicating that the regeneration method could be useful inAgrobacterium tume-faciens-mediated transformation protocols.  相似文献   

3.
Plant transformation has emerged as an important tool to integrate foreign genes in the plant genome to modify the plants for desired traits. Though many techniques of plant transformation are available; getting single copy transgenic events and cost associated remains a big challenge. Thus Agrobacterium-mediated transformation remains the method of choice due to multiple advantages. In the present work a tissue culture free protocol of Agrobacterium-mediated transformation was optimized in safflower, an oil seed crop recalcitrant to transformation. As a proof of concept we selected pCAMBIA2300 gene cassette containing Arabidopsis specific delta 15 desaturase (FAD3) downstream to truncated seed specific promoter beta-conglycinin and optimized tissue culture free protocol of Agrobacterium-mediated transformation using embryos as explants. Addition of silwet L-77, sonication treatment, vacuum infiltration in infection medium and use of paper wicks in co-cultivation period increased the transformation efficiency to 19.3%. Further, success in transformation was confirmed via product accumulation in 21 independent transgenic events wherein oil in transformed seeds showed significant accumulation of alpha-linolenic acid (ALA; 18:3; n3) which is generated from linoleic acid (LA; 18:2; n3) in a FAD3 catalyzed reaction. The present protocol can be utilized to produce transgenic safflower with different desired characters.  相似文献   

4.
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important legume crops planted worldwide, but despite decades of effort, cowpea transformation is still challenging due to inefficient Agrobacterium-mediated transfer DNA delivery, transgenic selection and in vitro shoot regeneration. Here, we report a highly efficient transformation system using embryonic axis explants isolated from imbibed mature seeds. We found that removal of the shoot apical meristem from the explants stimulated direct multiple shoot organogenesis from the cotyledonary node tissue. The application of a previously reported ternary transformation vector system provided efficient Agrobacterium-mediated gene delivery, while the utilization of spcN as selectable marker enabled more robust transgenic selection, plant recovery and transgenic plant generation without escapes and chimera formation. Transgenic cowpea plantlets developed exclusively from the cotyledonary nodes at frequencies of 4% to 37% across a wide range of cowpea genotypes. CRISPR/Cas-mediated gene editing was successfully demonstrated. The transformation principles established here could also be applied to other legumes to increase transformation efficiencies.  相似文献   

5.
Summary Fertile transgenic plants of the annual pasture legume Medicago truncatula were obtained by Agrobacterium-mediated transformation, utilising a disarmed Ti plasmid and a binary vector containing the kanamycin resistance gene under the control of the cauliflower mosaic virus 35S promoter. Factors contributing to the result included an improved plant regeneration protocol and the use of explants from a plant identified as possessing high regeneration capability from tissue culture. Genes present on the T-DNA of the Ri plasmid had a negative effect on somatic embryogenesis. Only tissue inoculated with Agrobacterium strains containing a disarmed Ti plasmid lacking the T-DNA region or a Ri plasmid with an inactivated rol A gene regenerated transgenic plants. Fertile transgenic plants were only obtained with disarmed A. tumefaciens, and the introduced NPT II gene was transmitted to R1 progeny.Abbreviations BAP 6-benzylaminopurine - NAA 1-naphthaleneacetic acid - NPT neomycin phosphotransferase  相似文献   

6.
Lack of competence of seedling explants for efficient shoot proliferation in recalcitrant grain legume cowpea restricts its genetic manipulation for crop improvement. This study aimed at establishing a protocol to increase the shoot proliferation efficiency during the regeneration of transgenic cowpea plants. Here, we describe how seedling preconditioning in thidiazuron (TDZ) could stimulate the transformation process (by 3.5-fold), shoot proliferation potential of cotyledonary node (by a factor of fourfold) and accelerate the transgenic shoot regeneration. We investigated the effect of TDZ and 6-benzyladenine (BA) at high dose (5?C20???M) in the induction phase of regeneration by preconditioning seedlings for different durations (2?C6?days) with the aim of improving shoot proliferation competence from cultured explants. Cotyledonary node explants from preconditioned seedlings were cultured on MSB5 medium supplemented with 5???M BA and 0.5???M kinetin for 4?weeks. Best response in terms of maximum shoot proliferation (7.1 shoots per explants), and greatest shoot length (2.6?cm) were obtained with explants derived from seedlings preconditioned in 10???M TDZ for 4?days. This enhanced shoot proliferation ability was maintained through three subsequent 4-week long regeneration passages. On comparison of the transformation rate in absence and presence of seedling preconditioning (in 10???M TDZ for 4?days), a significant enhancement from 0.6 to 2.1% was observed. The promotive effect of seedling preconditioning had a direct beneficial effect on transgenic plant recovery time leading to a reduction of more than 2?weeks. The protocol was found applicable to seven cowpea genotypes.  相似文献   

7.
For pulse legume research to fully capitalise on developments in plant molecular genetics, a high throughput genetic transformation methodology is required. In Western Australia the dominant grain legume is Lupinus angustifolius L. (narrow leafed lupin; NLL). Standard transformation methodology utilising Agrobacterium tumefaciens on wounded NLL seedling shoot apices, in combination with two different herbicide selections (phosphinothricin and glyphosate) is time consuming, inefficient, and produces chimeric shoots that often fail to yield transgenic progeny. Investigation of hygromycin as an alternative selection in combination with expression of green fluorescent protein indicated that transformation of NLL apical cells was not the rate limiting step to achieve transgenic shoot materials. In this research it was identified that despite ready transformation, apical cells were not competent to regenerate. However a deep and broad wounding procedure to expose underlying axillary shoot and vascular cells to Agrobacterium, in combination with delayed selection proved successful, increasing initial explants transformation efficiency up to 75?% and generating axillary shoots with significant transgenic content. Based on knowledge gained from studies of plant chimeras, further subculture of these initial axillary shoots will result in development of low chimeric transgenic materials with heritable content. Furthermore, the method was also tested successfully on other Lupinus species, faba bea and field pea. These results demonstrate that development of a high yielding transformation methodology for pulse legume crops is achievable.  相似文献   

8.
9.
The effect of several β-lactam antibiotics on shoot regeneration, growth and rooting of carnation (Dianthus caryophyllus L.), and their use in combination with kanamycin in Agrobacterium-mediated genetic transformation studies, was determined. Carbenicillin, cefotaxime and ticarcillin increased the regeneration rate when added alone in non-inoculated explants; whereas, with inoculated explants, this effect was only observed in ticarcillin-containing medium. Cefotaxime inhibited root growth in both transgenic and non-transgenic shoots. Rooting of non-transgenic shoots was completely inhibited in all culture media containing kanamycin. The different antibiotics used, alone or in combination, did not prevent the occurrence of false positive shoots, but it was possible to select transgenic shoots when rooting was induced in a kanamycin + ticarcillin-containing medium. Regenerated transformed shoots were free of Agrobacterium after culturing in rooting medium, as was proven by the PCR analysis for the nptI gene, the antibiogram and the culture of tissue pieces of transgenic shoots on LB broth. The use of kanamycin and timentin with or without carbenicillin, was very useful in the transformation procedure, for the elimination of Agrobacterium in regenerated shoots before their transfer to greenhouse conditions and also in the selection of transgenic versus false-positive shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
 Substantial improvement in peppermint (Mentha x piperita L. var. Black Mitcham) genetic transformation has been achieved so that the frequency of transgenic plants regenerated (percent of leaf explants that produced transformed plants) was 20-fold greater than with the original protocol. Essential modifications were made to conditions for Agrobacterium tumefaciens co-cultivation that enhanced infection, and for selection of transformed cells and propagules during regeneration. A systematic evaluation of co-cultivation parameters established that deletion of coconut water from the co-cultivation medium resulted in substantially increased transient β-Glucuronidase (GUS) activity, in both the frequency of explants expressing gusA and the number of GUS foci per explant (>700 explants). Co-cultivation on a tobacco cell feeder layer also enhanced A. tumefaciens infection. Enhanced transformation efficiencies were further facilitated by increased selection pressure mediated by higher concentrations of kanamycin in the medium during shoot induction, regeneration, and rooting: from 20 to 50 mg/l in shoot induction/regeneration medium and from 15 to 30 mg/l in rooting medium. Raising the concentration of kanamycin in media substantially lowered the number of "escapes" without significant reduction in plant regeneration. These modifications to the protocol yielded an average transformation frequency of about 20% (>2000 explants) based on expression of GUS activity or the tobacco antifungal protein, osmotin, in transgenic plants. Genetic transformation of peppermint has been enhanced to the extent that biotechnology is a viable alternative to plant breeding and clonal selection for improvement of this crop. Received: 7 December 1998 / Revision received: 27 April 1999 / Accepted: 14 May 1999  相似文献   

11.
Summary An efficient and reproducible protocol for the regeneration of shoots at high frequency was developed by using explants derived from the axillary meristems from the cotyledonary nodes of in vitro-germinated seedlings of chickpea (Cicer arietinum L.). Culture conditions for various stages of adventitious shoot regeneration including the induction, elongation, and rooting of the elongated shoots were optimized. The medium for synchronous induction of multiple shoot buds consisted of Murashige and Skoog basal medium (MS) with low concentrations of thidiazuron (TDZ), 2-isopentenyladenine (2-iP), and kinetin. Exclusion of TDZ and lowering the concentration of 2-iP and kinetin in the elongation medium resulted in faster and enhanced frequency of elongated shoots. Cultivation of the stunted shoots on MS with giberellic acid (GA3) increased the number of elongated shoots from the responding explants. pH of the medium played a very crucial role in the regeneration of multiple shoot buds from the explants derived from cotyledonary nodes. A novel rooting system was developed by placing the elongated shoot on a filter paper bridge immersed in liquid rooting medium that resulted in rooting frequency of up to 90%. A comprehensive protocol for successful transplantation of the in vitro-produced plants is reported. This method will be very useful for the genetic manipulation of chickpea for its agronomic improvement.  相似文献   

12.
Halesia carolina L., a small, ornamentally valuable tree, is difficult to propagate due to the complexity of seed propagation and the unavailability of propagules for conventional vegetative propagation. A micropropagation system was developed to facilitate easy propagation of this species. Actively growing shoot tips achieved optimum shoot proliferation from axillary buds when placed on Woody Plant Medium supplemented with 1.0 to 2.5 mg/l benzyladenine. The addition of 0.1 mg/l naphthaleneacetic acid had little effect on culture performance. Murashige and Skoog medium was incapable of supporting vigorous shoot proliferation. Non-sterile rooting conditions provided better rooting and subsequent plantlet growth, when compared to an in vitro rooting method. The seasonal fluctuations in the stock plant dramatically affected the shoot proliferating potential of the explants in vitro. Rapidly elongating shoots formed shoot proliferating cultures more slowly than explants taken either before or after the rapid elongation phase.  相似文献   

13.
Cowpeas are nutritious grains that provide the main source of protein, highly digestible energy and vitamins to some of the world's poorest people. The demand for cowpeas is high but yields remain critically low, largely because of insect pests. Cowpea germplasm contains little or no resistance to major insect pests and a gene technology approach to adding insect protection traits is now a high priority. We have adapted features of several legume and other transformation systems and reproducibly obtained transgenic cowpeas that obey Mendelian rules in transmitting the transgene to their progeny. Critical parameters in this transformation system include the choice of cotyledonary nodes from developing or mature seeds as explants and a tissue culture medium devoid of auxins in the early stages, but including the cytokinin BAP at low levels during shoot initiation and elongation. Addition of thiol-compounds during infection and co-culture with Agrobacterium and the choice of the bar gene for selection with phosphinothricin were also important. Transgenic cowpeas that transmit the transgenes to their progeny can be recovered at a rate of one fertile plant per thousand explants. These results pave the way for the introduction of new traits into cowpea and the first genes to be trialled will include those with potential to protect against insect pests.  相似文献   

14.
An efficient and reproducible Agrobacterium-mediated genetic transformation of Withania coagulans was achieved using leaf explants of in vitro multiple shoot culture. The Agrobacterium strain LBA4404 harboring the binary vector pIG121Hm containing β-glucuronidase gene (gusA) under the control of CaMV35S promoter was used in the development of transformation protocol. The optimal conditions for the Agrobacterium-mediated transformation of W. coagulans were found to be the co-cultivation of leaf explants for 20 min to agrobacterial inoculum (O.D. 0.4) followed by 3 days of co-cultivation on medium supplemented with 100 μM acetosyringone. Shoot bud induction as well as differentiation occurred on Murashige and Skoog medium supplemented with 10.0 μM 6-benzylaminopurine, 8.0 μM indole 3-acetic acid, and 50.0 mgl?1 kanamycin after three consecutive cycles of selection. Elongated shoots were rooted using a two-step procedure involving root induction in a medium containing 2.5 μM indole 3-butyric acid for 1 week and then transferred to hormone free one-half MS basal for 2 weeks. We were successful in achieving 100 % frequency of transient GUS expression with 5 % stable transformation efficiency using optimized conditions. PCR analysis of T0 transgenic plants showed the presence of gusA and nptII genes confirming the transgenic event. Histochemical GUS expression was observed in the putative transgenic W. coagulans plants. Thin layer chromatography showed the presence of similar type of withanolides in the transgenic and non-transgenic regenerated plants. A. tumefaciens mediated transformation system via leaf explants developed in this study will be useful for pathway manipulation using metabolic engineering for bioactive withanolides in W. coagulans, an important medicinal plant.  相似文献   

15.
Eucalyptus globulus is one of the most economically important plantation hardwoods for paper making. However, its low transformation frequency has prevented genetic engineering of this species with useful genes. We found the hypocotyl section with a shoot apex has the highest regeneration ability among another hypocotyl sections, and have developed an efficient Agrobacterium-mediated transformation method using these materials. We then introduced a salt tolerance gene, namely a bacterial choline oxidase gene (codA) with a GUS reporter gene, into E. globulus. The highest frequency of transgenic shoot regeneration from hypocotyls with shoot apex was 7.4% and the average frequency in four experiments was 4.0%, 12-fold higher than that from hypocotyls without shoot apex. Using about 10,000 explants, over 250 regenerated buds were confirmed as transformants by GUS analysis. Southern blot analysis of 100 elongated shoots confirmed successful generation of stable transformants. Accumulation of glycinebetaine was investigated in 44 selected transgenic lines, which showed 1- to 12-fold higher glycinebetaine levels than non-transgenic controls. Rooting of 16 transgenic lines was successful using a photoautotrophic method under enrichment with 1,000 ppm CO2. The transgenic whole plantlets were transplanted into potting soil and grown normally in a growth room. They showed salt tolerance to 300 mM NaCl. The points of our system are using explants with shoot apex as materials, inhibiting the elongation of the apex on the selection medium, and regenerating transgenic buds from the side opposite to the apex. This approach may also solve transformation problems in other important plants.  相似文献   

16.
A reproducible protocol developed for in vitro regeneration of Milletia pinnata using hypocotyl segments. Multiple shoots were induced from hypocotyl explants through direct adventitious shoot bud regeneration. The proximal end of hypocotyls was responsive for shoot bud induction. Silver nitrate and adenine sulphate had a positive effect on shoot bud induction and elongation. The maximum response and number of shoot bud produced in media supplemented with 8.88 μM BAP with 108.6 μM adenine sulphate and 11.84 μM silver nitrate. Elongated shoots were harvested and successful rooting of microshoots achieved on MS media supplemented with 9.84 μM IBA, with 81.1 % rooting. Remaining shoot buds sub-cultured for further multiplication and elongation. Each subculture produced eight to nine elongated microshoots up to four subcultures. The rooted microshoots were successfully hardened and transferred to field.  相似文献   

17.
Effects of age and orientation of the explant on callus induction and de novo shoot regeneration from cotyledonary leaf segments of Jatropha curcas were studied. The callus induction and shoot regeneration capacity of cotyledonary leaf segments were found significantly related to the age of the explants and their orientation in culture medium. The youngest explant, derived from the cotyledonary leaf of germinated seed induced the highest regeneration response as compared to one- and two-week-old explants. A gradient response with age of the explant was observed in percentage of callus induction, shoot regeneration from callus and the number of shoots per regenerating callus. The explants cultured with their abaxial side in medium showed significantly higher regeneration response. The youngest explant was found to be most amenable to Agrobacterium-mediated transformation as compared to older explants. The fact that callus induced from the edges of the explant followed by de novo shoot induction, and strong transient gus expression observed in the edges of the explant are significant for routine Agrobacterium-mediated transformation and generation of stable transgenic plants in J. curcas.  相似文献   

18.
We report a highly efficient protocol for the Agrobacterium-mediated genetic transformation of a miniature dwarf tomato (Lycopersicon esculentum), Micro-Tom, a model cultivar for tomato functional genomics. Cotyledon explants of tomato inoculated with Agrobacterium tumefaciens (Rhizobium radiobacter) C58C1Rif(R) harboring the binary vector pIG121Hm generated a mass of chimeric non-transgenic and transgenic adventitious buds. Repeated shoot elongation from the mass of adventitious buds on selection media resulted in the production of multiple transgenic plants that originated from independent transformation events. The transformation efficiency exceeded 40% of the explants. This protocol could become a powerful tool for functional genomics in tomato.  相似文献   

19.

Key message

An efficient protocol of transformation and selection of transgenic lines of Micro-tom, a widespread model cultivar for tomato, is reported. RNA interference silencing efficiency and stability have been investigated and correlated with the number of insertions.

Abstract

Given its small size and ease of cultivation, the tomato (Solanum lycopersicon) cultivar Micro-tom is of widespread use as a model tomato plant. To create and screen transgenic plants, different selectable markers are commonly used. The bar marker carrying the resistance to the herbicide glufosinate/Basta, has many advantages, but it has been little utilised and with low efficiency for identification of tomato transgenic plants. Here we describe a procedure for accurate selection of transgenic Micro-tom both in vitro and in soil. Immunoblot, Southern blot and phenotypic analyses showed that 100 % of herbicide-resistant plants were transgenic. In addition, regeneration improvement has been obtained by using 2 mg/l Gibberellic acid in the shoot elongation medium; rooting optimisation on medium containing 1 mg/l IAA allowed up to 97 % of shoots developing strong and very healthy roots after only 10 days. Stable transformation frequency by infection of leaf explants with Agrobacterium reached 12 %. Shoots have been induced by combination of 1 mg/l zeatin-trans and 0.1 mg/l IAA. Somatic embryogenesis of cotyledon on medium containing 1 mg/l zeatin + 2 mg/l IAA is described in Micro-tom. The photosynthetic psbS gene has been used as reporter gene for RNA silencing studies. The efficiency of gene silencing has been found equivalent using three different target gene fragments of 519, 398 and 328 bp. Interestingly, silencing efficiency decreased from T0 to the T3 generation in plants containing multiple copies of the inserted T-DNA, while it was stable in plants containing a single insertion.  相似文献   

20.
Transgenic plant development relies on the introduction of marker genes along with the gene(s) of interest to select and/or identify transgenic regenerants. Due to public concerns and regulatory issues, it would be advantageous to eliminate these marker genes once they are no longer needed. The chemical-inducible Cre-LoxP system is especially suitable for clonally-propagated plants, such as fruit trees, as no sexual crosses or rounds of transformation are required for marker-gene elimination. In this study, four transgenic pX6-GFP apricot (Prunus armeniaca L.) (cv. Helena) lines, carrying the gfp reporter gene encoding for the green fluorescent protein, were obtained following Agrobacterium tumefaciens-mediated transformation of leaf explants. The DNA site-specific recombination was precise and tightly controlled by the inducer ??-estradiol. Expression of the gfp gene was only detected when 3???M ??-estradiol was added to the medium. When nodal explants were incubated on a meristem development medium supplemented with 3???M ??-estradiol, marker gene elimination was observed in buds of all four transgenic lines, at an average frequency of 11.3?%, based on GFP expression. Further molecular analyses of four GFP-positive shoots, a single shoot from each transgenic line, revealed that DNA recombination was complete in two of shoots, but incomplete in the other two shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号