首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Structural paradox of polytene chromosomes   总被引:10,自引:0,他引:10  
C D Laird 《Cell》1980,22(3):869-874
The observation of thick chromatin fibers in interbands of Dipteran polytene chromosomes suggests that there should be 5 to 10 times more mass and DNA in interbands than is commonly thought to be present. To resolve this paradox, the chromatin content of interbands was estimated, using whole-mounted polytene chromosomes from Drosophila melanogster. Densitometry of high voltage electron microscopic negatives provides an estimate of less than 4:1 for the average ratio of cross-sectional dry mass (or mass per unit chromosome length) of bands relative to interbands. This ratio, combined with an estimate of the length of chromosome composed of interbands, indicates that at least 26% of chromosome mass is contributed by interband chromatin. Since DNA comprises a similar proportion of chromatin mass in bands and interbands (Laird et al., 1980b), these data imply that DNA sequences in interbands represent at least 26% of the euchromatic genome of D. melanogaster. This result calls for reinterpretation of some of the genetic and molecular data from Diptera. The discrepancy between this higher estimate of interband mass and DNA, and previous estimates of 3-5%, is discussed. One possibility is that previous measurements were made on prominent interbands, which are proposed here to be in regions that are delayed in DNA replication. Such interbands would be reduced in polyteny and DNA content compared with the average interband region. The concept of local variations in polyteny is also used here to explain major differences in the cross-sectional mass of bands. This leads to a revised model of polytene chromosomes in which at least three levels of polyteny, rather than one or two levels, can be present within one euchromatic region.  相似文献   

3.
4.
The most enigmatic feature of polytene chromosomes is their banding pattern, the genetic organization of which has been a very attractive puzzle for many years. Recent genome-wide protein mapping efforts have produced a wealth of data for the chromosome proteins of Drosophila cells. Based on their specific protein composition, the chromosomes comprise two types of bands, as well as interbands. These differ in terms of time of replication and specific types of proteins. The interbands are characterized by their association with "active" chromatin proteins, nucleosome remodeling, and origin recognition complexes, and so they have three functions: acting as binding sites for RNA pol II, initiation of replication and nucleosome remodeling of short fragments of DNA. The borders and organization of the same band and interband regions are largely identical, irrespective of the cell type studied. This demonstrates that the banding pattern is a universal principle of the organization of interphase polytene and non-polytene chromosomes.  相似文献   

5.
6.
7.
8.
Salivary gland polytene chromosomes demonstrate banding pattern, genetic meaning of which is an enigma for decades. Till now it is not known how to mark the band/interband borders on physical map of DNA and structures of polytene chromosomes are not characterized in molecular and genetic terms. It is not known either similar banding pattern exists in chromosomes of regular diploid mitotically dividing nonpolytene cells. Using the newly developed approach permitting to identify the interband material and localization data of interband-specific proteins from modENCODE and other genome-wide projects, we identify physical limits of bands and interbands in small cytological region 9F13-10B3 of the X chromosome in D. melanogaster, as well as characterize their general molecular features. Our results suggests that the polytene and interphase cell line chromosomes have practically the same patterns of bands and interbands reflecting, probably, the basic principle of interphase chromosome organization. Two types of bands have been described in chromosomes, early and late-replicating, which differ in many aspects of their protein and genetic content. As appeared, origin recognition complexes are located almost totally in the interbands of chromosomes.  相似文献   

9.
Polytene chromosome interband DNA is organized into nucleosomes   总被引:2,自引:0,他引:2  
The molecular basis that underlies the maintenance of polytene chromosome banding pattern remains unclear. To test the possibility that the decondensed state of interbands is provoked by the absence of nucleosomes, we have subjected chromatin from the previously defined 61C7/C8 interband to digestion with micrococcal nuclease. We have demonstrated that interband DNA forms nucleosomes both in salivary glands and in the bulk of larval tissues. This finding strongly suggests that the difference in compaction between DNA in polytene chromosome bands and interbands results from differences that appear at the higher levels of chromatin organization.  相似文献   

10.
11.
The JIL-1 kinase localizes to interband regions of Drosophila polytene chromosomes and phosphorylates histone H3 Ser10. Analysis of JIL-1 hypomorphic alleles demonstrated that reduced levels of JIL-1 protein lead to global changes in polytene chromatin structure. Here we have performed a detailed ultrastructural and cytological analysis of the defects in JIL-1 mutant chromosomes. We show that all autosomes and the female X chromosome are similarly affected, whereas the defects in the male X chromosome are qualitatively different. In polytene autosomes, loss of JIL-1 leads to misalignment of interband chromatin fibrils and to increased ectopic contacts between nonhomologous regions. Furthermore, there is an abnormal coiling of the chromosomes with an intermixing of euchromatic regions and the compacted chromatin characteristic of banded regions. In contrast, coiling of the male X polytene chromosome was not observed. Instead, the shortening of the male X chromosome appeared to be caused by increased dispersal of the chromatin into a diffuse network without any discernable banded regions. To account for the observed phenotypes we propose a model in which JIL-1 functions to establish or maintain the parallel alignment of interband chromosome fibrils as well as to repress the formation of contacts and intermingling of nonhomologous chromatid regions. Electronic Supplementary Material Supplementary material is available for this article at and accessible for authorised users  相似文献   

12.
The 3A and 60E regions of Drosophila melanogaster polytene chromosomes containing inserted copies of the P{lArB} transposon have been subjected to an electron microscopic (EM) analysis. We show that both inserts led to formation of new bands within the interband regions 3A4/A6 and 60E8-9/E10. This allowed us to clone DNA of these interbands. Their sequences, as well as those of DNA from other four interbands described earlier, have been analyzed. We have found that, with the exception of 60E8-9/E10 interband, all other five regions under study corresponded to 5' or 3' ends of genes. We have further obtained the evidence for 60E8-9/E10 interband to harbor the 'housekeeping' RpL19 gene, which is transcribed in many tissues, including salivary glands. Based upon the genetic heterogeneity of the interbands observed a revised model of polytene chromosome organization is discussed.  相似文献   

13.
14.
Summary In acridine orange stained chromosomes of Chironomus tentans, ribonuclease-sensitive reddish-orange fluorescence is found in all bands and in all interband regions as well as in nucleoli and Balbiani rings.Following ribonuclease digestion, deoxyribonuclease-sensitive yellowish-green fluorescence is found in all bands and in all interband regions. Banded fibres, apparent in Balbiani rings and in nucleoli, and formed by the splitting of the chromosome axis, also show no evidence of discontinuities in their yellowish-green fluorescence. From these results it is concluded that DNA is present in interbands and (at least at the level of the light microscope), is continuous through these regions of polytene chromosomes.  相似文献   

15.
Polytene interphase chromosomes are compacted into a series of bands and interbands reflecting their organization into independent chromosomal domains. In order to understand chromosomal organization, we set out to study the role of proteins that are selective for interbands. Here we describe the Drosophila melanogaster chromodomain protein Chriz that is coimmunoprecipitated with the zinc finger protein Z4. Both proteins colocalize exclusively to the interbands on Drosophila polytene chromosomes. Like Z4, Chriz is ubiquitously expressed throughout development and is associated with chromatin in all interphase nuclei. Following dissociation from chromatin, early in mitosis Chriz binds to the centrosomes and to the mitotic spindle. Newly induced amorphic Chriz alleles are early lethal, and ubiquitous overexpression of Chriz is lethal as well. Available Chriz hypomorphs which survive until pupal stage have a normal chromosomal phenotype. Reducing Z4 protein does not affect Chriz binding to polytene chromosomes and vice versa. Z4 is still chromosomally bound when Chriz protein is depleted by RNA interference.  相似文献   

16.
The ultrastructure of R-banded chromosomes   总被引:1,自引:0,他引:1  
Electron microscopy has been used to study the fine structural organization of R-banded chromosomes prepared by treatment of the chromosomes with a hot NaH2PO4 solution. The results indicate that there is a structural basis for R-banding with this technique. In comparison to untreated control chromosomes, the R-banded chromosomes had a greatly reduced electron density, suggesting that the heat treatment has a general adverse effect on chromosome structure. Chromatin fibers formed a coarse, irregular network throughout the chromosome and were often enlarged, probably as a result of the fusion of two or more native fibers. The chromatin fibers were more aggregated and had an increased electron density in the R-band regions of the chromosome than in the interbands. This indicates that the treatment has a differential effect on the structure of bands and interbands. A comparison of the ultrastructure of R- and G-banded chromosomes demonstrated that the distribution of aggregated chromatin was reversed by these two types of banding techniques; however, the treatments producing R-banding appeared to induce less extreme differences in the degree of chromatin condensation in band and interband regions than those giving rise to G-banding. It is suggested that alterations of DNA-protein interactions may arise from the differential denaturation of proteins and/or DNA in R-band and interband regions during the heat pretreatment. Such differential alterations in DNA-protein interactions may induce localized changes in the organization of chromatin and may account for the subtle morphological differences observed between the band and interband regions.  相似文献   

17.
The JIL-1 kinase localizes to Drosophila polytene chromosome interbands and phosphorylates histone H3 at interphase, counteracting histone H3 lysine 9 dimethylation and gene silencing. JIL-1 can be divided into four main domains, including an NH2-terminal domain, two separate kinase domains, and a COOH-terminal domain. In this study, we characterize the domain requirements of the JIL-1 kinase for histone H3 serine 10 (H3S10) phosphorylation and chromatin remodeling in vivo. We show that a JIL-1 construct without the NH2-terminal domain is without H3S10 phosphorylation activity despite the fact that it localizes properly to polytene interband regions and that it contains both kinase domains. JIL-1 is a double kinase, and we demonstrate that both kinase domains of JIL-1 are required to be catalytically active for H3S10 phosphorylation to occur. Furthermore, we provide evidence that JIL-1 is phosphorylated at serine 424 and that this phosphorylation is necessary for JIL-1 H3S10 phosphorylation activity. Thus, these data are compatible with a model where the NH2-terminal domain of JIL-1 is required for chromatin complex interactions that position the kinase domain(s) for catalytic activity in the context of the state of higher order nucleosome packaging and chromatin structure and where catalytic H3S10 phosphorylation activity mediated by the first kinase domain is dependent on autophosphorylation of serine 424 by the second kinase domain. Furthermore, using a lacO repeat tethering system to target mutated JIL-1 constructs with or without catalytic activity, we show that the epigenetic H3S10 phosphorylation mark itself functions as a causative regulator of chromatin structure independently of any structural contributions from the JIL-1 protein.  相似文献   

18.
Whole-mounted polytene chromosomes were isolated from nuclei by microdissection in 60% acetic acid and analyzed by electron microscopy. Elementary chromosome fibers in the interchromomeric regions and individual chromomeres can be distinguished in polytene chromosomes at low levels of polyteny (26–27 chromatids). Elementary fibers in the interbands are oriented parallel to the axis of the polytene chromosome. Their number roughly corresponds to the expected level of polyteny. These fibers have an irregular beaded structure, 100–300 Å in diameter, and there is no apparent lateral association between them in the interchromomeric regions. Most bands, in contrast, form continuous structures crossing the entire width of the chromosome. Polytene chromosomes isolated in 2% or 10% acetic acid can be reversibly dispersed in a solution for chromatin spreading. The spread chromosomes consist of long uniform deoxyribonucleoprotein (DNP) fibers with a nucleosome structure. This supports the notion that continuous DNA molecules extend through the entire length of a polytene chromosome and that the nucleosome structure exists both in bands and interbands. Analysis of the band shape and of the fibrillar pattern in the interbands emphasizes that the polytene chromosome assumes a ribbonlike structure from which the more complex three-dimensional structure of the polytene chromosome at higher levels of polyteny develops.  相似文献   

19.
The JIL-1 histone H3S10 kinase in Drosophila localizes specifically to euchromatic interband regions of polytene chromosomes and is enriched 2-fold on the male X chromosome. JIL-1 can be divided into four main domains including an NH(2)-terminal domain, two separate kinase domains, and a COOH-terminal domain. Our results demonstrate that the COOH-terminal domain of JIL-1 is necessary and sufficient for correct chromosome targeting to autosomes but that both COOH- and NH(2)-terminal sequences are necessary for enrichment on the male X chromosome. We furthermore show that a small 53-amino acid region within the COOH-terminal domain can interact with the tail region of histone H3, suggesting that this interaction is necessary for the correct chromatin targeting of the JIL-1 kinase. Interestingly, our data indicate that the COOH-terminal domain alone is sufficient to rescue JIL-1 null mutant polytene chromosome defects including those of the male X chromosome. Nonetheless, we also found that a truncated JIL-1 protein which was without the COOH-terminal domain but retained histone H3S10 kinase activity was able to rescue autosome as well as partially rescue male X polytene chromosome morphology. Taken together these findings indicate that JIL-1 may participate in regulating chromatin structure by multiple and partially redundant mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号