首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The anesthetic-induced depression of the main phase-transition temperature of phospholipid membranes is often analyzed according to the van't Hoff model on the freezing point depression. In this procedure, zero interaction between anesthetics and solid-gel membranes is assumed. Nevertheless, anesthetics bind to solid-gel membranes to a significant degree. It is necessary to analyze the difference in the anesthetic binding between the liquid-crystal and solid-gel membranes to probe the anesthetic action on the lipid membranes. This article describes a theory to estimate the anesthetic binding to each state at the phase-transition temperature. The equations derived here reveal the relation between the partition coefficients of anesthetics and the anesthetic effects on the transition characters: the change in the transition temperature, and the broadening of transition. The theory revealed that the width of transition temperature is determined primarily by the membrane/buffer partition coefficients of anesthetics. Our previous data on the local anesthetic action on the transition temperature of the dipalmitoylphosphatidylcholine vesicle membrane (Ueda, I., Tashiro, C. and Arakawa, K. (1977) Anesthesiology 46, 327-332) are analyzed by this method. The numerical values for the partition of local anesthetics into the liquid-crystal and solid-gel dipalmitoyl-phosphatidylcholine vesicle membranes at the phase-transition temperature are: procaine 8.0 x 10(3) and 4.7 x 10(3), lidocaine, 3.7 x 10(3) and 2.3 x 10(3), bupivacaine 4.1 x 10(4), and 2.6 x 10(4), and tetracaine 7.3 x 10(4) and 4.7 x 10(4), respectively.  相似文献   

2.
The interaction of the local anesthetic tetracaine with phosphatidylserine-containing model membranes has been studied by 2H-NMR. Charged tetracaine exhibited an unusually large partition coefficient into multilamellar dispersions of phosphatidylserine. The 2H-NMR spectra consisted of a Pake doublet and a narrow line, with the former corresponding to tetracaine in the bilayer and the latter to tetracaine free in solution. A strong pH dependence of the quadrupole splittings indicated different membrane locations for charged and uncharged tetracaine. In equimolar mixtures of phosphatidylserine and phosphatidylcholine the partition coefficients and 2H-NMR spectra were much more like those observed in neat phosphatidylcholine than in neat phosphatidylserine. Dilution studies at pH 5.5 indicated that in phosphatidylserine/phosphatidylcholine mixtures tetracaine experiences a three-site exchange similar to that found earlier for tetracaine in phosphatidylcholine. Tetracaine is in fast exchange between sites weakly bound to membrane and free in solution, and in slow exchange with a strongly bound site in the membrane.  相似文献   

3.
Electrometric titrations and spin label data demonstrate changes in the experimentally determined apparent pK of an ionizable drug in the presence of membranes. This effect is attributed to the difference in partition coefficients for the charged and uncharged forms of the drug. Investigation of the binding of a local anesthetic, tetracaine, to egg phosphatidylcholine membranes indicates that the drug apparent pK decreases in the presence of membranes, the decrease being a function of membrane concentration. The agreement between titration and spin label studies is very good and could be simulated by calculating membrane-bound and free populations of charged and uncharged tetracaine from the independently-measured partition coefficients for the two forms.  相似文献   

4.
The interaction between tetracaine and egg phosphatidylcholine (egg PC) multibilayers was examined. ESR spectra of an ester spin label indicate that at low uncharged anesthetic: lipid ratios, membrane organization decreases. At higher ratios, saturation and phase separation occur, as suggested by a second spectral component which appears when the water solubility of tetracaine is reached. However, experiments with the drug in the absence and in the presence of membranes, making use of a phospholipid spin label, suggest that the new phase does not consist of solid tetracaine alone. Location of the new phase in the membrane would require a change in partition coefficient, while its location outside would imply a mechanism whereby the anesthetic would come off the membrane as an aggregate containing spin probe and phospholipid. Charged tetracaine forms micelles which disrupt-unilamellar egg PC vesicles (Fernandez, M.S. (1981) Biochim. Biophys. Acta 646, 27-30). Micellar tetracaine added to bilayers containing a PC spin probe changes the spectrum from one typical of a bilayer into one typical of micelles, indicating the formation of a tetracaine-egg PC mixed micelle. The effect is reversible upon dilution to concentrations below the critical micelle concentration of tetracaine. When membranes are prepared in the presence of a water-soluble spin label, TEMPOcholine, ascorbate destroys the signal of untrapped label; when mixed phospholipid-tetracaine are formed by addition of micellar tetracaine, this leads to a complete loss of the ESR signal. High drug concentrations are often used for anesthesia and could be related to morphological nerve damage caused by large doses of anesthetics.  相似文献   

5.
Electrometric titrations and spin label data demonstrate changes in the experimentally determined apparent pK of an ionizable drug in the presence of membranes. This effect is attributed to the difference in partition coefficients for the charged and uncharged forms of the drug. Investigation of the binding of a local anesthetic, tetracaine, to egg phosphatidylcholine membranes indicates that the drug apparent pK decreases in the presence of membranes, the decrease being a function of membrane concentration. The agreement between titration and spin label studies is very good and could be simulated by calculating membrane-bound and free populations of charged and uncharged tetracaine from the independently-measured partition coefficients for the two forms.  相似文献   

6.
The effects of lipid-phase separation on the filipin action on pellicle membranes of ergosterol-replaced Tetrahymena pyriformis cells were studied by freeze-fracture electron microscopy. The pellicle membranes with phase separations induced by chilling from 34 degrees C (growth temperature) to lower temperatures (30, 22 and 15 degrees C) were treated with filipin. This produced filipin-induced lesions ("pits") only in the particulated (liquid) regions along the margin between solid and liquid domains, while they were produced in the particle-free (solid) areas when membranes were chilled to 15 degrees C. The pellicle membranes with lesions induced by filipin at 34 degrees C were chilled to 22 degrees C. This chilling raised larger particle-free areas and more condensed particle-aggregations on the membranes than on the membranes without the filipin treatment. These results suggest that the membrane fluidity affects induction and development of the ergosterol-filipin complex in the membrane.  相似文献   

7.
Anesthetics bound to model membranes were observed directly by means of deuterium nuclear magnetic resonance (NMR). The specifically deuterated local anesthetics procaine and tetracaine were synthesized, and their partition coefficients (water:phosphatidylcholine) and pKa values determined. The interaction of these anesthetics with lamellar dispersions of egg phosphatidylcholine was studied by 2H nuclear magnetic resonance and by electron spin resonance (ESR) of a spin-labelled phospholipid at low (5.5) and high (9.5) pH. The ESR experiments suggest that tetracaine intercalates in the membrane and that it equilibrates between water and the phospholipid bilayers of the multilamellar system. The NMR results are consistent with a model where the anesthetic is (1) free in water, (2) weakly bound, and (3) strongly bound to the membrane. A fast exchange exists between the two first sites, but exchange is slow with the third site. Binding of type 3 is observed only at high pH for procaine, whereas it is found both at low and high pH for tetracaine. Calculations of the partition coefficients for the charged and uncharged forms of tetracaine indicate that both sites, 2 and 3, are occupied by the charged form at low pH and by the uncharged form at high pH. The partition coefficient for the weakly bound species was estimated from an analysis of the dependence of line width on the lipid to water ratio. The NMR data suggest that the binding sites for the strongly bound charged and uncharged species are different, the former probably being closer to the membrane-water interface. Estimates of molecular order parameters for the strongly bound species indicate that it is located with its long molecular axis approximately parallel to the director for ordering of the fatty acyl chains. A small increase in lipid ordering by tetracaine is observed at low pH, as evidenced by 2H NMR of the deuterated N-methyl groups of phosphatidylcholine; the reverse occurs at high pH.  相似文献   

8.
Interactions of the local anesthetic tetracaine with unilamellar vesicles made of dimyristoyl or dipalmitoyl phosphatidylcholine (DMPC or DPPC), the latter without or with cholesterol, were examined by following changes in the drug's fluorescent properties. Tetracaine's location within the membrane (as indicated by the equivalent dielectric constant around the aromatic fluorophore), its membrane:buffer partition coefficients for protonated and base forms, and its apparent pK(a) when adsorbed to the membrane were determined by measuring, respectively, the saturating blue shifts of fluorescence emission at high lipid:tetracaine, the corresponding increases in fluorescence intensity at this lower wavelength with increasing lipid, and the dependence of fluorescence intensity of membrane-bound tetracaine (TTC) on solution pH. Results show that partition coefficients were greater for liquid-crystalline than solid-gel phase membranes, whether the phase was set by temperature or lipid composition, and were decreased by cholesterol; neutral TTC partitioned into membranes more strongly than the protonated species (TTCH(+)). Tetracaine's location in the membrane placed the drug's tertiary amine near the phosphate of the headgroup, its ester bond in the region of the lipids' ester bonds, and associated dipole field and the aromatic moiety near fatty acyl carbons 2-5; importantly, this location was unaffected by cholesterol and was the same for neutral and protonated tetracaine, showing that the dipole-dipole and hydrophobic interactions are the critical determinants of tetracaine's location. Tetracaine's effective pK(a) was reduced by 0.3-0.4 pH units from the solution pK(a) upon adsorption to these neutral bilayers, regardless of physical state or composition. We propose that the partitioning of tetracaine into solid-gel membranes is determined primarily by its steric accommodation between lipids, whereas in the liquid-crystalline membrane, in which the distance between lipid molecules is larger and steric hindrance is less important, hydrophobic and ionic interactions between tetracaine and lipid molecules predominate.  相似文献   

9.
Mondal M  Chakrabarti A 《FEBS letters》2002,532(3):396-400
The quinoline-based tertiary amine dibucaine has been shown to bind the membrane skeletal protein spectrin with a dissociation constant of 3.5x10(-5) M at 25 degrees C. Such binding is detected by monitoring the quenching of the tryptophan fluorescence intensity with increasing concentrations of dibucaine only and not with the benzene-based local anesthetics procaine, tetracaine and lidocaine. Binding of dibucaine also indicated changes in the tertiary structure of spectrin indicated by a circular dichroism spectrum in the near-UV region due to absorption of the aromatic side chains. The thermodynamic parameters associated with the binding indicated the interaction of dibucaine and spectrin to be enthalpy-driven and insensitive to an increase in the ionic strength of the buffer.  相似文献   

10.
The local anesthetics dibucaine and tetracaine inhibit the (Ca2+ + Mg2+)-ATPase from skeletal muscle sarcoplasmic reticulum [DeBoland, A. R., Jilka, R. L., & Martonosi, A. N. (1975) J. Biol. Chem. 250, 7501-7510; Suko, J., Winkler, F., Scharinger, B., & Hellmann, G. (1976) Biochim. Biophys. Acta 443, 571-586]. We have carried out differential scanning calorimetry and fluorescence measurements to study the interaction of these drugs with sarcoplasmic reticulum membranes and with purified (Ca2+ + Mg2+)-ATPase. The temperature range of denaturation of the (Ca2+ + Mg2+)-ATPase in the sarcoplasmic reticulum membrane, determined from our scanning calorimetry experiments, is ca. 45-55 degrees C and for the purified enzyme ca. 40-50 degrees C. Millimolar concentrations of dibucaine and tetracaine, and ethanol at concentrations higher than 1% v/v, lower a few degrees (degrees C) the denaturation temperature of the (Ca2+ + Mg2+)-ATPase. Other local anesthetics reported to have no effect on the ATPase activity, such as lidocaine and procaine, did not significantly alter the differential scanning calorimetry pattern of these membranes up to a concentration of 10 mM. The order parameter of the sarcoplasmic reticulum membranes, calculated from measurements of the polarization of the fluorescence of diphenylhexatriene, is not significantly altered at the local anesthetic concentrations that shift the denaturation temperature of the (Ca2+ + Mg2+)-ATPase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The interaction between Nystatin and small unilamellar vesicles of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, both in gel (T = 21 degrees C) and in liquid-crystalline (T = 45 degrees C) phases, was studied by steady-state and time-resolved fluorescence measurements by taking advantage of the intrinsic tetraene fluorophore present in this antibiotic. It was shown that Nystatin aggregates in aqueous solution with a critical concentration of 3 microM. The enhancement in the fluorescence intensity of the antibiotic was applied to study the membrane binding of Nystatin, and it was shown that the antibiotic had an almost fivefold higher partition coefficient for the vesicles in a gel (P = (1.4 +/- 0.1) x 10(3)) than in a liquid-crystalline phase (P = (2.9 +/- 0.1) x 10(2)). Moreover, a time-resolved fluorescence study was used to examine Nystatin aggregation in the membrane. The emission decay kinetics of Nystatin was described by three and two exponentials in the lipid membrane at 21 degrees C and 45 degrees C, respectively. Nystatin mean fluorescence lifetime is concentration-dependent in gel phase lipids, increasing steeply from 11 to 33 ns at an antibiotic concentration of 5-6 microM, but the fluorescence decay parameters of Nystatin were unvarying with the antibiotic concentration in fluid lipids. These results provide evidence for the formation of strongly fluorescent antibiotic aggregates in gel-phase membrane, an interpretation that is at variance with a previous study. However, no antibiotic self-association was detected in a liquid-crystalline lipid bilayer within the antibiotic concentration range studied (0-14 microM).  相似文献   

12.
M Auger  H C Jarrell  I C Smith 《Biochemistry》1988,27(13):4660-4667
The interactions of the local anesthetic tetracaine with multilamellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol have been investigated by deuterium nuclear magnetic resonance of specifically deuteriated tetracaines, DMPC and cholesterol. Experiments were performed at pH 5.5, when the anesthetic is primarily charged, and at pH 9.5, when it is primarily uncharged. The partition coefficients of the anesthetic in the membrane have been measured at both pH values for phosphatidylcholine bilayers with and without cholesterol. The higher partition coefficients obtained at pH 9.5 reflect the hydrophobic interactions between the uncharged form of the anesthetic and the hydrocarbon region of the bilayer. The lower partition coefficients for the DMPC/cholesterol system at both pH values suggest that cholesterol, which increases the order of the lipid chains, decreases the solubility of tetracaine into the bilayer. For phosphatidylcholine bilayers, it has been proposed [Boulanger, Y., Schreier, S., & Smith, I. C. P. (1981) Biochemistry 20, 6824-6830] that the charged tetracaine at low pH is located mostly at the phospholipid headgroup level while the uncharged tetracaine intercalates more deeply into the bilayer. The present study suggests that the location of tetracaine in the cholesterol-containing system is different from that in pure phosphatidylcholine bilayers: the anesthetic sits higher in the membrane. An increase in temperature results in a deeper penetration of the anesthetic into the bilayer. Moreover, the incorporation of the anesthetic into DMPC bilayers with or without cholesterol results in a reduction of the lipid order parameters both in the plateau and in the tail regions of the acyl chains, this effect being greater with the charged form of the anesthetic.  相似文献   

13.
The partition equilibria of sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate between water and bilayer membranes were investigated with isothermal titration calorimetry and spectroscopic methods (light scattering, (31)P-nuclear magnetic resonance) in the temperature range of 28 degrees C to 56 degrees C. The partitioning of the dodecyl sulfate anion (DS(-)) into the bilayer membrane is energetically favored by an exothermic partition enthalpy of Delta H(O)(D) = -6.0 kcal/mol at 28 degrees C. This is in contrast to nonionic detergents where Delta H(O)(D) is usually positive. The partition enthalpy decreases linearly with increasing temperature and the molar heat capacity is Delta C(O)(P) = -50 +/- 3 cal mol(-1) K(-1). The partition isotherm is nonlinear if the bound detergent is plotted versus the free detergent concentration in bulk solution. This is caused by the electrostatic repulsion between the DS(-) ions inserted into the membrane and those free in solution near the membrane surface. The surface concentration of DS(-) immediately above the plane of binding was hence calculated with the Gouy-Chapman theory, and a strictly linear relationship was obtained between the surface concentration and the extent of DS(-) partitioning. The surface partition constant K describes the chemical equilibrium in the absence of electrostatic effects. For the SDS-membrane equilibrium K was found to be 1.2 x 10(4) M(-1) to 6 x 10(4) M(-1) for the various systems and conditions investigated, very similar to data available for nonionic detergents of the same chain length. The membrane-micelle phase diagram was also studied. Complete membrane solubilization requires a ratio of 2.2 mol SDS bound per mole of total lipid at 56 degrees C. The corresponding equilibrium concentration of SDS free in solution is C (sat)(D,F) approximately 1.7 mM and is slightly below the critical micelles concentration (CMC) = 2.1 mM (at 56 degrees C and 0.11 M buffer). Membrane saturation occurs at approximately 0.3 mol SDS per mol lipid and the equilibrium SDS concentration is C (sat)(D,F)approximately equal 2.2 mM +/- 0.6 mM. SDS translocation across the bilayer is slow at ambient temperature but increases at high temperatures.  相似文献   

14.
The fluorescent probe Prodan has been widely used as a probe of model and biological membranes. Its fluorescent maxima in phospholipid bilayers vary as a function of phase state, with maxima at 485 for the liquid crystal Lalpha, 435 nm for the gel L'beta, and 507 nm for the interdigitated gel LbetaI phase, with excitation at 359 nm. These spectral changes have been used for the detection of phase changes among these phases. In the present study, the fluorescent properties and partition coefficients of Prodan in model membranes of phosphatidylcholines and phosphatidylethanols have been studied as a function of lipid phase state and cholesterol content. It is shown that the Prodan spectrum in the presence of cholesterol no longer reflects the known phase state of the lipid; in each phase state, the presence of cholesterol leads to a spectrum with the maximum at 435 nm, characteristic of the noninterdigitated gel phase. The partition coefficient of Prodan into these lipids also varies with the phase state, giving values of 0.35 x 10(4) in the interdigitated gel, 1.8 x 10(4) in the noninterdigitated gel, and 7. 6 x 10(4) in the liquid crystal phase. In the presence of cholesterol these partition coefficients are increased to 13 x 10(4) for the liquid crystal and the gel phase, and 5.1 x 10(4) in the presence of 100 mg/ml ethanol. These results suggest that Prodan has preferential interactions with cholesterol, and is thus not a randomly distributed fluorescent reporter probe in membranes containing cholesterol. These results suggest that Prodan should be used only with great caution in complex lipid mixtures, particularly biological membranes.  相似文献   

15.
The aim of this work was to elicit correlations between physical structure and physiological functions in excitable membranes. Freshly dissected pike olfactory nerves were studied by synchrotron radiation X-ray scattering experiments and their physiological properties were tested by electrophysiological techniques. The scattering spectra contained a sharply oriented equatorial component (i.e. normal to the nerve axis), and an isotropic background. After background subtraction, the equatorial component displayed a weak and fairly sharp spectrum of oriented microtubules, and a strong and diffuse band of almost the same shape and position as the band computed for an isolated myelin membrane. We ascribed this spectrum to the axonal membranes. Under the action of temperature and of two local anesthetics, the spectrum underwent a contraction (or expansion) in the s-direction, equivalent to the structure undergoing an expansion (or contraction) in the direction perpendicular to the plane of the membrane. The main observations were: (i) with increasing temperature, membrane thickness decreased with a thermal expansion coefficient equal to -0.97(+/-0.19) 10(-3) degrees C(-1). The polarity and amplitude of this coefficient are typical of lipid-containing systems with the hydrocarbon chains in a disordered conformation. The amplitude and propagation velocity of the compound action potentials were drastically and reversibly reduced by lowering the temperature from 20 degrees C to 5 degrees C. (ii) Exposing the nerve to two local anesthetics (tetracaine and dibucaine) had the effect of decreasing membrane thickness. Action potentials were fully inhibited by these anesthetics. (iii) Upon depolarization, induced by replacing NaCl with KCl in the outer medium, approximately 25 % of the membranes were found to associate by apposing their outer faces. Electrophysiological activity was reversibly impaired by the KCl treatment. (iv) No detectable structural effect was observed upon exposing the nerves to tetrodotoxin or veratridine. Electrophysiological activity was fully impaired by tetrodotoxin and partially impaired by veratridine. The main conclusions of this work are that axonal membranes yield highly informative X-ray scattering spectra, and that these spectra are sensitive to the functional state of the nerve. These results pave the way to further studies of more direct physiological significance.  相似文献   

16.
Calcium modulates fatty acid dynamics in rat liver plasma membranes   总被引:1,自引:0,他引:1  
Modulation of free fatty acid binding in isolated rat liver plasma membranes was evaluated using the fluorescent fatty acids trans-parinaric and cis-parinaric acid as analogues for saturated and unsaturated fatty acids, respectively. Binding of trans-parinarate but not cis-parinarate was inhibited by physiological levels of Ca2+. The effect was reversed by addition of excess EGTA. Calcium decreased the aqueous to lipid partition coefficient, Kp, of trans-parinaric acid for liver plasma membranes while increasing the Kp for cis-parinaric acid. In addition, Ca2+ also altered the fluorescence lifetime, the quantum yield, and the relative partitioning of trans-parinaric and cis-parinaric acid into fluid and solid phases. Calcium and EGTA did not affect the binding of 1,6-diphenyl-1,3,5-hexatriene. The effect of Ca2+ on the liver plasma membrane structure was to increase the rigidity of the membrane, primarily the solid domain. The fluorescence polarization of trans-parinarate, cis-parinarate, and 1,6-diphenyl-1,3,5-hexatriene at 24 degrees C in liver plasma membranes in the absence of Ca2+ was 0.295 +/- 0.008, 0.253 +/- 0.007, and 0.284 +/- 0.005, respectively. Calcium (2.4 mM) increased the polarization of these probe molecules in liver plasma membranes by 8-10%. EGTA (3.4 mM) reversed or abolished the increase in polarization. Thus, the fluorescent fatty acids trans-parinarate and cis-parinarate may be used to monitor fatty acid binding by isolated membranes, to evaluate factors such as Ca2+ which modulate fatty acid binding, and to investigate the microenvironment in which the fatty acids residue. The data suggest that Ca2+ may be an important regulator of fatty acid uptake by the liver plasma membrane, and thereby interact with intermediary metabolism of lipids at a step not involving lipolytic or synthetic enzymes.  相似文献   

17.
Kinetics and thermodynamics of the binding of a fluorescent lipid amphiphile, Rhodamine Green(TM)-tetradecylamide (RG-C(14:0)), to bovine serum albumin were characterized in an equilibrium titration and by stopped-flow fluorimetry. The binding equilibrium of RG-C(14:0) to albumin was then used to reduce its concentration in the aqueous phase to a value below its critical micelle concentration. Under these conditions, the only two species of RG-C(14:0) in the system were the monomer in aqueous solution in equilibrium with the protein-bound species. After previous determination of the kinetic and thermodynamic parameters for association of RG-C(14:0) with albumin, the kinetics of insertion of the amphiphile into and desorption off lipid bilayer membranes in different phases (solid, liquid-ordered, and liquid-disordered phases, presented as large unilamellar vesicles) were studied by stopped-flow fluorimetry at 30 degrees C. Insertion and desorption rate constants for association of the RG-C(14:0) monomer with the lipid bilayers were used to obtain lipid/water equilibrium partition coefficients for this fluorescent amphiphile. The direct measurement of these partition coefficients is shown to provide a new method for the indirect determination of the equilibrium partition coefficient of similar molecules between two defined lipid phases if they coexist in the same membrane.  相似文献   

18.
1. The camel has insulin receptors that by multiple function criteria are very similar to those of the other mammals (rabbit and rat) and non-mammals (chicken and pigeon), with sharp pH dependence to insulin binding at pH 7.2-7.6. 2. Equilibrium binding was faster at higher temperatures (24-37 degrees C) than at lower (4 degrees C). 3. Binding data yielded curvilinear Scatchard plots with half maximal displacement of 125I-insulin at 9 x 10(-9) M, 2.5 x 10(-9) M, 6.3 x 10(-10) M for camel, rabbit, pigeon and chicken respectively, suggesting differences in mammalian and non-mammalian liver membranes. 4. Autoradiogram patterns showed the presence of an identical subunit structure with Mr 74,000 for all membranes studied. Pigeon membrane showed a band with Mr 110,000, the absence of which in other membranes could be due to the degradation factor or the concentration of disuccinimidyl suberate (DSS).  相似文献   

19.
Several lines of evidence suggest that nonspecific drug interaction with the lipid bilayer plays an important role in subsequent recognition and binding to specific receptor sites in the membrane. The interaction of Bay K 8644, a 1,4-dihydropyridine (DHP) calcium channel agonist, with model and biological membranes was examined at the molecular level using small angle x-ray diffraction. Nonspecific drug partitioning into the membrane was examined by radiochemical assay. Nonspecific binding characteristics of [3H] Bay K 8644 were determined in both dipalmitoyl phosphatidylcholine (DPPC) vesicles above and below their thermal phase transition (Tm) and rabbit skeletal muscle light sarcoplasmic reticulum (LSR). In DPPC, the partition coefficient, Kp, was 14,000 above the Tm (55 degrees C) versus 160 in the gel phase (2 degrees C). The Kp determined in LSR membranes was 10,700. These values for both DPPC and LSR membranes can be compared with Kp = 290 in the traditional octanol/buffer system. Using small-angle x-ray diffraction, the equilibrium position of the electron-dense trifluoromethyl group of Bay K 8644 in DPPC (above Tm) and purified cardiac sarcolemmal (CSL) lipid bilayers was determined to be consistently located within the region of the first few methylene segments of the fatty acyl chains of these membranes. This position is similar to that observed for the DHP calcium channel antagonists nimodipine and Bay P 8857. We suggest this particular membrane location defines a region of local drug concentration and plane for lateral diffusion to a common receptor site. Below the DPPC membrane Tm, Bay K 8644 was shown to be excluded from this energetically favored position into the interbilayer water space. Heating the DPPC bilayer above the Tm (55 degrees C) showed that this exclusion was reversible and indicates that drug-membrane interaction is dependent on the bilayer physical state. The absence of any specific protein binding sites in these systems allows us to ascertain the potentially important role that the bulk lipid phase may play in the molecular mechanism of DHP binding to the specific receptor site associated with the calcium channel.  相似文献   

20.
We investigated the influence of the local anesthetic tetracaine on the thermodynamic properties and the temperature- and pressure-dependent phase behavior of the model biomembrane 1,2-dimyristoyl-sn-glycero-3-phosphocholine by using volumetric measurements at temperatures ranging from 0 degrees to 40 degrees C and at pressures from ambient up to 1000 bar. The pVT measurements were complemented by temperature-dependent differential scanning calorimetric measurements. Information about the influence of different concentrations of the local anesthetic on the thermodynamic changes accompanying the lipid phase transitions, and on the thermal expansion coefficient, the isothermal compressibility, and the volume fluctuations of the lipids in their different phases, could be obtained from these experiments. The incorporation of tetracaine leads to an overall disordering of the membrane, as can be inferred from the depression of the main transition temperature and the reduction of the volume change at the main lipid phase transition. The expansion coefficient alpha p and the isothermal compressibility chi T of the lipid bilayer are enhanced by the addition of tetracaine and strongly enhanced values of alpha p and chi T, and the lipid volume fluctuations are found in the direct neighborhood of the main phase transition region. As tetracaine can be viewed as a model system for amphiphilic molecules, these results also provide insight into the general understanding of the physicochemical action of amphiphilic molecules on membranes. The experimental results are compared with recent theoretical predictions for the phase behavior of anesthetic-lipid systems, and the biological relevance of this study is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号