首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rab family, the largest branch of Ras small GTPases, plays a crucial role in the vesicular transport in plants. The members of Rab family act as molecular switches that regulate the fusion of vesicles with target membranes through conformational changes. However, little is known about the Rab5 gene involved in fruit ripening and stress response. In this study, the MiRab5 gene was isolated from stress-induced Mangifera indica. The full-length cDNA sequence was 984 bp and contained an open reading frame of 600 bp, which encoded a 200 amino acid protein with a molecular weight of 21.83 kDa and a theoretical isoelectric point of 6.99. The deduced amino acid sequence exhibited high homology with tomato (91% similarity) and contains all five characteristic Rab motifs. Real-time quantitative RT-PCR analysis demonstrated that MiRab5 was ubiquitously expressed in various mango tree tissues at different levels. The expression of MiRab5 was up-regulated during later stages of fruit ripening. Moreover, MiRab5 was generally up-regulated in response to various abiotic stresses (cold, salinity, and PEG treatments). Recombinant MiRab5 protein was successfully expressed and purified. SDS-PAGE and western blot analysis indicated that the expressed protein was recognized by the anti-6-His antibody. These results provide insights into the role of the MiRab5 gene family in fruit ripening and stress responses in the mango plant.  相似文献   

2.
3.
The full-length cDNA sequence (1158 bp) encoding a ribosomal L5 protein, designated as TaL5, was firstly isolated from common wheat (Triticum aestivum L.) using the rapid amplification of cDNA ends method (RACE). The open reading frame (ORF) of TaL5 gene was 906 bp, and its deduced amino acid sequence (301 residues) shared high similarity to those of other higher plant L5 proteins. TaL5 protein contained a putative 5S binding region (74 amino acids). TaL5 DNA sequence was further cloned, and sequence analysis showed that it contained 7 introns and 8 exons. Predicated using TargetP software, TaL5 protein was putatively located in mitochondria and contains a transit peptide of 12 amino acids. During grain filling period, temporal expression pattern of TaL5 gene was approximately consistent with the rates of starch accumulation in grains. Additionally, TaL5 gene was dramatically induced by salt, drought and freezing stresses, exogenous abscisic acid (ABA) and salicylic acid (SA) in wheat seedlings. These implied that TaL5 gene could function in growth, development and abiotic stresses in wheat plants.  相似文献   

4.
5.
6.
The Tibetan antelope (Pantholops hodgsonii) is a hypoxia-tolerant species that lives at an altitude of 4000–5000 m above sea level on the Qinghai–Tibetan plateau. Myoglobin is an oxygen-binding cytoplasmic hemoprotein that is abundantly expressed in oxidative skeletal and cardiac myocytes. Numerous studies have implicated that hypoxia regulates myoglobin expression to allow adaptation to conditions of hypoxic stress. Few studies have yet looked at the effect of myoglobin on the adaptation to severe environmental stress on TA. To investigate how the Tibetan antelope (TA) has adapted to a high altitude environment at the molecular level, we cloned and analyzed the myoglobin gene from TA, compared the expression of myoglobin mRNA and protein in cardiac and skeletal muscle between TA and low altitude sheep. The results indicated that the full-length myoglobin cDNA is composed of 1154 bp with a 111 bp 5′ untranslated region (UTR), a 578 bp 3′ UTR and a 465 bp open reading frame (ORF) encoding a polypeptide of 154 amino acid residues with a predicted molecular weight of 17.05 kD. The TA myoglobin cDNA sequence and the deduced amino acid sequence were highly homologous with that of other species. When comparing the myoglobin sequence from TA with the Ovis aries myoglobin sequence, variations were observed at codons 21 (GGT → GAT) and 78 (GAA → AAG), and these variations lead to changes in the corresponding amino acids, i.e., Gly → Asp and Glu → Lys, respectively. But these amino acid substitutions are unlikely to effect the ability of binding oxygen because their location is less important, which is revealed by the secondary structure and 3D structure of TA myoglobin elaborated by homology modeling. However, the results of myoglobin expression in cardiac and skeletal muscles showed that they were both significantly higher than that in plain sheep not only in mRNA but also protein level. We speculated that the higher expression of myoglobin in TA cardiac and skeletal muscles improves their ability to obtain and store oxygen under hypoxic conditions. This study indicated that TA didn't improve the ability of carrying oxygen by changing the molecular structure of myoglobin, but through increasing the expression of myoglobin in cardiac and skeletal muscles.  相似文献   

7.
8.
9.
10.
11.
12.
Carboxylesterase (EC 3.1.1.1) is a member of the carboxyl/cholinesterase (CCE) superfamily, which is widely distributed in animals, plants and microorganisms. This enzyme has been known to be associated with insecticide resistance and detoxification. Although CCEs have been extensively studied in insects, including lepidopterans, the research on butterflies, a major subgroup in Lepidoptera, is still poor. In the present study, we cloned a CCE gene (McCCE1) from the Glanville fritillary butterfly (Melitaea cinxia, Lepidoptera: Nymphalidae). The full-length cDNA encoding McCCE1 was 1786 bp, containing a 1641 bp open reading frame encoding 546 amino acids, a 38 bp 5′-untranslated region (5′-UTR), and a 107 bp 3′-UTR with a poly(A) tail. The functionally conserved amino acids in McCCE1 shared the 55% identity with the cytoplasmic esterase CCE017a in Helicoverpa armigera (Lepidoptera: Noctuidae), which has been associated with detoxification. Assays in vitro showed that the recombinant McCCE1 could hydrolyze α- and β-naphthyl acetate. Thus, the present study adds to the body of knowledge concerning the detoxification of pesticides by lepidopterans.  相似文献   

13.
High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n = 4x = 28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs.  相似文献   

14.
15.
Tissue inhibitors of metalloproteinases (TIMPs) are nature inhibitors of matrix metalloproteinases and play a vital role in the regulation of extracellular matrix turnover, tissue remodeling and bone formation. In this study, the molecular characterization of TIMP and its potential function in nacre formation was described in pearl oyster Pinctada martensii. The cDNA of TIMP gene in P. martensii (Pm-TIMP) was 901 bp long, containing a 5′ untranslated region (UTR) of 51 bp, a 3′ UTR of 169 bp, and an open reading fragment (ORF) of 681 bp encoding 226 amino acids with an estimated molecular mass of 23.37 kDa and a theoretical isoelectric point of 5.42; The predicted amino acid sequence had a signal peptide, 13 cysteine residues, a N-terminal domain and a C-terminal domain, similar to that from other species. Amino acid multiple alignment showed Pm-TIMP had the highest (41%) identity to that from Crassostrea gigas. Tissue expression analysis indicated Pm-TIMP was highly expressed in nacre formation related-tissues, including mantle and pearl sac. After decreasing Pm-TIMP gene expression by RNA interference (RNAi) technology in the mantle pallium, the inner nacreous layer of the shells showed a disordered growth. These results indicated that the obtained Pm-TIMP in this study participated in nacre formation.  相似文献   

16.
17.
The INU1 gene (Accession number: JX073660) encoding exo-inulinase from Cryptococcus aureus HYA was cloned and characterized. The gene had an open reading frame (ORF) of 1653 bp long encoding an inulinase. The coding region of the gene was not interrupted by any intron. It encoded 551 amino acid residues of a protein with a putative signal peptide of 23 amino acids and the calculated molecular mass of 59.5 kDa. The protein sequence deduced from the inulinase structural gene contained the inulinase consensus sequences (WMNDPNGL), (RDP), ECP, FS and Q. It also had two conserved putative N-glycosylation sites. The inulinase from C. aureus HYA was found to be closely related to that from Kluyveromyces marxianus and Pichia guilliermondii. The inulinase gene without the signal sequence was subcloned into pPICZaA expression vector and expressed in Pichia pastoris X-33. The expressed fusion protein was analyzed by SDS-PAGE and western blotting and a specific band with molecular mass of about 60 kDa was found. Enzyme activity assay verified the recombinant protein as an inulinase. A maximum inulinase activity of 16.3 ± 0.24 U/ml was obtained from the culture supernatant of P. pastoris X-33 harboring the inulinase gene. The optimal temperature and pH for action of the enzyme were 50 °C and 5.0, respectively. A large amount of monosaccharides were detected after the hydrolysis of inulin with the purified recombinant inulinase.  相似文献   

18.
We have isolated and in silico characterized a cold regulated plastocyanin encoding gene from Lepidium latifolium L designated as LlaDRT. Its cDNA sequence (JN214346) consists of a 504 bp ORF, 48 and 205 bp of 5′ and 3′ UTR regions, respectively encoding a protein of 17.07 KDa and pI 4.95. In silico and phylogenetic analysis of LlaDRT suggested that the protein has features of a typical plastocyanin family member and of a nearest relative of the predominant isoform of Arabidopsis (PETE2) plastocyanin. Validation of stress response of LlaDRT by qPCR under different abiotic stress regulators viz salicylic acid, jasmonic acid, calcium chloride, ethylene and abscisic acid revealed its possible regulation and crosstalk amongst different pathways.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号