首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Cytotoxic T lymphocyte associated antigen4 (CTLA4) is a candidate susceptibility gene for the study of autoimmune diseases. The present study sought to explore the expression profile of the CTLA4 gene in autoimmune patients, such as rheumatoid arthritis (RA), systemic lupus erythematous (SLE) and Hashimoto's thyroiditis (HT), compared to healthy controls (HCs). A total of 88 (22 RA, 22 SLE 22 HT, 22 HCs) age-, gender- and ethnicity-matched individuals were recruited. The hypersensitive capillary electrophoresis method was employed to detect the CTLA4 splice variants. PCRs of the patient's cDNA using CTLA4-specific primers followed by cloning and sequencing were used to distinguish the various splice variants. The biochemical properties of all known CTLA4 variants were analysed using the ExPASy and ESEfinder programmes. Six alternatively spliced variants of the CTLA4 gene were detected in this study. These included mCTLA4-672, sCTLA4-562, N-CTLA4-292, L-CTLA4-277, ssCTLA4-214 and K-CTLA4-142 bp. K-CTLA4-142 bp and N-CTLA4-292 bp represented two novel splice variants of the CTLA4 gene. A reduction in the frequency of mCTLA4-672 bp and sCTLA4-562 bp was observed in SLE and RA patients compared to healthy controls. The shortest splice variant, K-CTLA4-142 bp, was predominantly detected in all of the tested cohorts, while the decreased expression of the N-CTLA4-292 bp variant was observed in the autoimmune subjects. The exonic splice enhancer motifs of the SRp40 protein were found exactly at the splice junction of wCTLA4 (-ACAGAGC-, 2.7) and K-CTLA4 (-TGAAAAG-, 3.37), and that of the SRp55 protein was found at the splice junction of L-CTLA4 (-TGTGTG-, 2.82). Our study highlights the discrepancies in the expression spectrum of the CTLA4 gene in autoimmune patients and healthy subjects. The abnormal expression pattern of the CTLA4 gene in autoimmune patients suggests that in addition to allelic variation, the expression pattern of CTLA4 could contribute to autoimmunity.  相似文献   

5.
RIG-I (retinoic acid-inducible gene I) is an essential cytosolic pathogen recognition receptor that binds to a variety of viral RNA or DNA to induce type I interferons. In the present study, insert–deletion polymorphisms in promoter and introns of CiRIG-I (Ctenopharyngodon idella RIG-I) were explored, their associations with resistance/susceptibility to grass carp reovirus (GCRV) were analyzed. To this end, genomic sequence of CiRIG-I gene was obtained, and twenty pairs of primers were prepared for the detection of insert–deletion polymorphisms. Five insert–deletion mutations were found, a 2-bp mutation and an 8-bp mutation existed in the promoter and other three sizes in 74 bp, 146 bp and 53 bp were sited in the intron 8. After a challenge experiment, only the genotype and allele of − 740 insert–deletion mutation in the promoter and allele of 6804 insert–deletion mutation were significantly associated with resistance/susceptibility to GCRV among the five mutations (P < 0.05). To further identify this correlation, another independent challenge test was carried out. The result revealed that the cumulative mortality in ins/ins genotype individuals (43.75%) at − 740 insert–deletion mutation was significantly lower than that in ins/del (72.09%) and del/del (74.19%) genotypes (P < 0.05). Linkage disequilibrium and haplotype analysis showed 6610 insert–deletion mutation and 6804 insert–deletion mutation were linkage disequilibrium. The haplotype ins–ins (6610ins–6804ins) was significantly susceptible to GCRV, and ins–del (6610ins–6804del) was significantly resistant to GCRV (P < 0.05). Those could be potential gene markers for the future molecular selection of strains that are resistant to GCRV.  相似文献   

6.
7.
Autosomal dominant polycystic kidney disease is the most common human monogenic disorder and is caused by mutations in the PKD1 or PKD2 genes. Most patients with the disease present mutations in PKD1, and a considerable number of these alterations are single base substitutions within the coding sequence that are usually predicted to lead to missense or synonymous mutations. There is growing evidence that some of these mutations can be detrimental by affecting the pre-mRNA splicing process. The aim of our study was to test PKD1 mutations, described as missense or synonymous in the literature or databases, for their effects on exon inclusion. Bioinformatics tools were used to select mutations with a potential effect on pre-mRNA splicing. Mutations were experimentally tested using minigene assays. Exons and adjacent intronic sequences were PCR-amplified and cloned in the splicing reporter minigene, and selected mutations were introduced by site-directed mutagenesis. Minigenes were transfected into kidney derived cell lines. RNA from cultured cells was analyzed by RT-PCR and DNA sequencing. Analysis of thirty-three PKD1 exonic mutations revealed three mutations that induce splicing defects. The substitution c.11156G > A, previously predicted as missense mutation p.R3719Q, abolished the donor splice site of intron 38 and resulted in the incorporation of exon 38 with 117 bp of intron 38 and skipping of exon 39. Two synonymous variants, c.327A > T (p.G109G) and c.11257C > A (p.R3753R), generated strong donor splice sites within exons 3 and 39 respectively, resulting in incorporation of incomplete exons. These three nucleotide substitutions represent the first PKD1 exonic mutations that induce aberrant mRNAs. Our results strengthen the importance to evaluate the consequences of presumed missense and synonymous mutations at the mRNA level.  相似文献   

8.
The relationship between male infertility and AZFc micro-deletions that remove multiple genes of the Y chromosome varies among countries and populations. The purpose of this study was to analyze the prevalence and the characteristics of different Deleted in azoospermia (DAZ) gene copy deletions and their association with spermatogenic failure and male infertility in Tunisian men. 241 infertile men (30.7% azoospermic (n = 74), 31.5% oligozoospermic (n = 76) and 37.7% normozoospermic (n = 91)) and 115 fertile healthy males who fathered at least one child were included in the study. Three DAZ-specific single nucleotide variant loci and six bi-allelic DAZ-SNVs (I–VI) were analyzed using polymerase chain reaction (PCR)–restriction fragment length polymorphism and PCR. Our findings showed high frequencies of infertile men (73.85%) and controls (78.26%) having only three DAZ gene copies (DAZ1/DAZ2/DAZ3 or DAZ1/DAZ3/DAZ4 variants); so deletion of DAZ2 or DAZ4 were frequent both in infertile (36.5% and 37.3%, respectively) and fertile groups (33.9% and 44.3%, respectively) and removing DAZ4 copy was significantly more frequent in oligospermic than in normospermic men (p = 0.04) in infertile group. We also report for the first time that simultaneous deletion of both DAZ2 and DAZ4 copies was significantly more common in infertile men (12.4%) than in fertile men (4.3%) (p = 0.01). However, deletions of DAZ1/DAZ2 and DAZ3/DAZ4 clusters were very rare. Analysis of DAZ gene copies in Tunisian population, suggested that the simultaneous deletion of DAZ2 and DAZ4 gene copies is associated with male infertility, and that oligospermia seems to be promoted by removing DAZ4 copy.  相似文献   

9.
10.
11.
Spinal muscular atrophy (SMA) is a common and lethal autosomal recessive neurodegenerative disorder, which is caused by mutations of the survival motor neuron 1 (SMN1) gene. Additionally, the phenotype is modified by several genes nearby SMN1 in the 5q13 region. In this study, we analyzed mutations in SMN1 and quantified the modifying genes, including SMN2, NAIP, GTF2H2, and H4F5 by polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP), multiplex ligation-dependent probe amplification (MLPA), TA cloning, allele-specific long-range PCR, and Sanger sequencing in 157 SMA patients. Most SMA patients (94.90%) possessed a homozygous SMN1 deletion, while 10 patients demonstrated only the absence of exon 7, but the presence of exon 8. Two missense mutations (c.689 C > T and c.844 C > T) were identified in 2 patients who both carried a single copy of SMN1. We found inverse correlations between SMN2, the NAIP copy number, and the clinical severity of the disease. Furthermore, 7 severe type I patients possessed large-scale deletions, including SMN1, NAIP, and GTF2H2. We conclude that SMN1 gene conversion, SMN1 subtle mutations, SMN2 copy number, and the extent of deletion in the 5q13 region should all be considered in the genotype–phenotype analysis of SMA.  相似文献   

12.
13.
Bunostomum trigonocephalum and Bunostomum phlebotomum are blood-feeding hookworms of sheep and cattle, causing considerable economic losses to the live stock industries. Studying genetic variability within and among hookworm populations is critical to addressing epidemiological and ecological questions. Mitochondrial (mt) DNA is known to provide useful markers for investigations of population genetics of hookworms, but mt genome sequence data are scant. In the present study, the complete mitochondrial DNA (mtDNA) sequences of the sheep and goat hookworm B. trigonocephalum were determined for the first time, and the mt genome of B. phlebotomum from yak in China was also sequenced for comparative analyses of their gene contents and genome organizations. The lengths of mt DNA sequences of B. trigonocephalum sheep isolate, B.trigonocephalum goat isolate and B. phlebotomum China yak isolate were 13,764 bp, 13,771 bp and 13,803 bp in size, respectively. The identity of the mt genomes was 99.7% between B. trigonocephalum sheep isolate and B. trigonocephalum goat isolate. The identity of B. phlebotomum China yak isolate mt genomes was 85.3% with B. trigonocephalum sheep isolate, and 85.2% with B. trigonocephalum goat isolate. All the mt genes of the two hookworms were transcribed in the same direction and gene arrangements were consistent with those of the GA3 type, including 12 protein-coding genes, 2 rRNA genes and 22 tRNA genes, but lacking ATP synthetase subunit 8 gene. The mt genomes of B. trigonocephalum and B. phlebotomum were similar to prefer bases A and T, the contents of A + T are 76.5% (sheep isolate), 76.4% (goat isolate) and 76.9% (China yak isolate), respectively. Phylogenetic relationships reconstructed using concatenated amino acid sequences of 12 protein-coding genes with three methods (maximum likelihood, Bayesian inference and neighbor joining) revealed that the B. trigonocephalum and B. phlebotomum represent distinct but closely-related species. These data provide novel and useful genetic markers for studying the systematics, and population genetics of the two ruminant hookworms.  相似文献   

14.
Reactive oxygen species are considered to play a role in the development of type 2 diabetes mellitus (T2DM) and its complications. 8-Oxoguanine, which is one of the major oxidation base lesions produced by reactive oxygen species, may cause G:C to T:A transversion mutations because it can mispair with adenine. hMTH1 (human mutT homolog 1), hOGG1 (human 8-oxoguanine glycosylase 1) and MUTYH (human mutY homolog) genes constitute the 8-oxoG repair pathway. In this study, we screened for the polymorphism variants Val83Met (c.247G>A, rs4866) in hMTH1; c.-53G>C (rs56387615), c.-23A>G (rs1801129) and c.-18G>T (rs1801126) in the 5′-UTR of hOGG1; and AluYb8 insertion in MUTYH (AluYb8MUTYH, rs10527342) and investigated their synergistic effect on the risk of T2DM in the Chinese population. The genotypes were determined by electrophoresis, a high-resolution melting technique and sequencing of PCR products. Our results showed that the c.247G>A variant in the hMTH1 gene increased the risk of T2DM in > 55 years of age groups (OR = 1.579; 95%CI: 1.029–2.421). The set of c.-53G>C, c.-23A>G and c.-18G>T variants detected in the 5′-UTR of the hOGG1 gene and the AluYb8 insertion in the MUTYH gene were each associated with an increased risk of T2DM (OR = 1.507, 95%CI: 1.122–2.024; OR = 1.229, 95%CI: 1.030–1.466, respectively). Combined analysis of the variations among the three genes suggested that the c.247G>A variant in hMTH1 combined with AluYb8MUTYH variant had a synergistic effect on increasing the risk of T2DM (OR = 1.635; 95%CI: 1.147–2.330). This synergy was also observed between the variants in the 5′-UTR of the hOGG1 and the AluYb8MUTYH variant (OR = 1.804; 95%CI: 1.254–2.595). Our results suggest, for the first time, the combined effects of AluYb8MUTYH with either hMTH1 c.247G>A or variants in the 5′-UTR of the hOGG1 on the risk of T2DM.  相似文献   

15.
A population based case–control study was designed to explore the genetic risk factors for hepatitis B virus (HBV) related liver disease susceptibility. A total of 424 subjects comprising 210 controls, 50 acute HBV (AVH), 84 chronic HBV (CHBV), 25 HBV related cirrhosis and 55 HBV related hepatocellular carcinoma (HCC) cases were included in the study. PCR-RFLP was used for the genotyping of Cyp2E1*5B, hOGG1 codon 326 and XRCC1 codon 399. Compared to controls, Cyp2E1 rsaI variant c2 genotype increased the risk of HBV related liver disease severity by 2.68 fold, the highest for HCC cases (3.981 folds, p = 0.106); and was associated with higher histology activity index (HAI) (p < 0.001) in CHBV patients. Cyp2E1 and hOGG1 variants were independently associated with a significantly higher fibrosis score in CHBV group. Analysis of gene–gene interaction studies showed an increased risk of HCC, cirrhosis and CHBV in a Cyp2E1 variant + XRCC1 variant combination (p < 0.001); and hOGG1 variants + XRCC1 variants. A mutually independent heterozygous hOGG1 and XRCC1 combination resulted in a decreased risk of HBV related liver disease. On the other hand, a wild-type hOGG1 and XRCC1 combination was associated with a significantly higher risk of AVH (p = 0.010) but a lower risk of CHBV (p = 0.032) and HCC (p = 0.006). The gene–gene interactions were also associated with a significant increase in HAI and fibrosis score in CHBV patients. Cyp2E1, hOGG1 and XRCC1 genotypes significantly alter the risk of HBV related liver disease susceptibility and severity, independently or through gene–gene interaction.  相似文献   

16.
17.
18.
19.

Aim

As a tumor suppressor, FEN1 plays an essential role in preventing tumorigenesis. Two functional germline variants (-69G > A and 4150G > T) in the FEN1 gene have been associated with DNA damage levels in coke-oven workers and multiple cancer risk in general populations. However, it is still unknown how these genetic variants are involved in breast cancer susceptibility.

Methods

We investigated the association between these polymorphisms and breast cancer risk in two independent case–control sets consisted of a total of 1100 breast cancer cases and 1400 controls. The influence of these variations on FEN1 expression was also examined using breast normal tissues.

Results

It was found that the FEN1-69GG genotypes were significantly correlated to increased risk for developing breast cancer compared with the -69AA genotype in both sets [Jinan set: odds ratios (OR) = 1.41, 95% confidence interval (CI) = 1.20–1.65, P = 1.9×10− 5; Huaian set: OR = 1.51, 95% CI = 1.22–1.86, P = 1.7×10− 4]. Similar results were observed for 4150G > T polymorphism. The genotype–phenotype correlation analyses demonstrated that the -69G or 4150G allele carriers had more than 2-fold decreased FEN1 expression in breast tissues compared with -69A or 4150T carriers, suggesting that lower FEN1 expression may lead to higher risk for malignant transformation of breast cells.

Conclusion

Our findings highlight FEN1 as an important gene in human breast carcinogenesis and genetic variants in FEN1 confer susceptibility to breast cancer.  相似文献   

20.
In this study, hypoxia inducible factor-1α (HIF-1α) and hypoxia inducible factor-1β (HIF-1β) from small abalone Haliotis diversicolor were cloned. The cDNA of H. diversicolor HIF-1α (HdHIF-1α) is 2833 bp encoding a protein of 711aa and H. diversicolor HIF-1β (HdHIF-1β) is 1919 bp encoding a protein of 590aa. Similar to other species' HIF-1, HdHIF-1 has one basic helix–loop–helix (bHLH) domain and two Per-Arnt-Sim (PAS) domains, and HdHIF-1α has a oxygen-dependent degradation domain (ODDD) with two proline hydroxylation motifs and a C-terminal transactivation domain (C-TAD) with an asparagine hydroxylation motif. Under normoxic conditions, HdHIF-1α and HdHIF-1β mRNAs were constitutively present in all examined tissues. Under hypoxia (2.0 mg/L DO at 25 °C) stress, HdHIF-1α expression was up-regulated in gills at 4 h, 24 h and 96 h, and in hemocytes at 24 h and 96 h, while HdHIF-1β remained relatively constant. Under thermal stress (31 °C), HdHIF-1α expression was significantly increased in gills at 4 h, and hemocytes at 0 h and 4 h, while HdHIF-1β expression still remained relatively constant. These results suggested that HIF-1α may play an important role in adaption to poor environment in H. diversicolor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号