首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
Taiwanese aborigines have been deemed the ancestors of Austronesian speakers which are currently distributed throughout two‐thirds of the globe. As such, understanding their genetic distribution and diversity as well as their relationship to mainland Asian groups is important to consolidating the numerous models that have been proposed to explain the dispersal of Austronesian speaking peoples into Oceania. To better understand the role played by the aboriginal Taiwanese in this diaspora, we have analyzed a total of 451 individuals belonging to nine of the tribes currently residing in Taiwan, namely the Ami, Atayal, Bunun, Paiwan, Puyuma, Rukai, Saisiyat, Tsou, and the Yami from Orchid Island off the coast of Taiwan across 15 autosomal short tandem repeat loci. In addition, we have compared the genetic profiles of these tribes to populations from mainland China as well as to collections at key points throughout the Austronesian domain. While our results suggest that Daic populations from Southern China are the likely forefathers of the Taiwanese aborigines, populations within Taiwan show a greater genetic impact on groups at the extremes of the current domain than populations from Indonesia, Mainland, or Southeast Asia lending support to the “Out of Taiwan” hypothesis. We have also observed that specific Taiwanese aboriginal groups (Paiwan, Puyuma, and Saisiyat), and not all tribal populations, have highly influenced genetic distributions of Austronesian populations in the pacific and Madagascar suggesting either an asymmetric migration out of Taiwan or the loss of certain genetic signatures in some of the Taiwanese tribes due to endogamy, isolation, and/or drift. Am J Phys Anthropol 150:551–564, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Mitochondrial DNA (mtDNA) polymorphisms in the D-loop region and the intergenic COII/tRNA(Lys) 9-bp deletion were examined in 180 individuals from all nine aboriginal Taiwanese groups: Atayal, Saisiat, Bunun, Tsou, Rukai, Paiwan, Ami, Puyuma, and Yami. A comparison of 563-bp sequences showed that there were 61 different sequence types, of which 42 types were specific to respective aboriginal groups. D-loop sequence variation and phylogenetic analysis enabled the 180 aboriginal lineages to be classified into eight monophyletic clusters (designated C1-C8). Phylogeographic analysis revealed that two (C2 and C4) of the eight clusters were new characteristic clusters of aboriginal Taiwanese and accounted for 8.3% and 13.9% of the aboriginal lineages, respectively. From the estimated coalescent times for the two unique clusters, the mtDNA lineages leading to such clusters were inferred to have been introduced into Taiwan approximately 11,000-26,000 years ago, suggesting ancient immigrations of the two mtDNA lineages. Genetic distances, based on net nucleotide diversities between populations, revealed three distinct clusters that were comprised of northern mountain (Atayal and Saisiat), southern mountain (Rukai and Paiwan), and middle mountain/east coast (Bunun, Tsou, Ami, Puyuma, and Yami) groups, respectively. Furthermore, phylogenetic analysis of 16 human populations (including six other Asian populations and one African population) confirmed that the three clusters for aboriginal Taiwanese had remained largely intact. Each of the clusters (north, south, and middle-east coast) was characterized by a high frequency of a particular lineage (C4, C2, and 9-bp deletion, respectively). This may result from random genetic drift among the aboriginal groups after a single introduction of all the mtDNA lineages into Taiwan, but another plausible explanation is that at least three genetically distinct ancestral populations have contributed to the maternal gene pool of aboriginal Taiwanese.  相似文献   

3.
The frequencies of occurrence of 17 tooth crown traits in the living Ami tribe, which inhabits the east coast of Taiwan, were investigated and compared with other East Asian populations based on Turner's (1987) Mongoloid dental variation theory. Principal coordinate analysis based on Smith's mean measure of divergence using frequencies of the 17 traits suggests that the Ami tribe together with the Yami tribe and the Bunun tribe is included in the sinodont group typical of the Chinese mainland and northeast Asia. In light of these results and the estimated distribution of sinodonty and sundadonty in the past and the present, we speculate that the gene flow from Chinese mainlanders to native sundadonts, who seem to have migrated northward to Taiwan, contributed significantly to the formation of the living Taiwan aboriginal groups, sinodonts. Among the aboriginal tribes of Taiwan, the Ami have characteristics intermediate between those of the Yami and the Bunun. The relative positions of these tribes in East Asian populations suggests that the extent of sinodontification and of genetic isolation is one of the causes of the intertribal variation.  相似文献   

4.
In the attempt to reconstruct the prehistory of Pacific and Indian Ocean populations, Taiwan's aborigines appear to be of particular interest. Linguistic and archeological evidence indicates that the dispersal of Austronesian speakers throughout the islands of Oceania and Southeast Asia may have originated from Taiwan about 5,000 years ago. The Ami are Taiwan's largest aboriginal group. Here, we report on six polymorphic point mutation loci in Ami individuals and compare allelic frequencies to worldwide populations. In order to examine the genetic characteristics and relationships of the Ami aborigines, we used the allelic frequency data to generate expected heterozygosities, power of discrimination values, maximum likelihood phylogenetic trees, principal component maps, and centroid gene flow plots. These analyses argue for the genetic isolation and uniqueness of the Ami people. Data supportive of limited gene flow and/or small population size, as well as genetic similarities to Native Americans, were observed.  相似文献   

5.
Sixteen microsatellite loci on chromosomes 7 and 8 of Han-Taiwanese and six Taiwan aboriginal populations were systematically analyzed by a high-resolution multiple-fluorescence-based polymerase chain reaction technique. Analysis of allele frequency distribution indicated the genetic divergence among these populations. Several alleles were unique to specific tribes. Only the D8S556 locus deviated from Hardy-Weinberg equilibrium in all tribes. Its FIS level, as calculated with the Nei method, was also higher and more homozygous than expected. Therefore, with the exception of D8S556, these variable number of tandem repeats (VNTR) loci are suitable genetic markers for forensic and paternal testing. The FST level, as the proportion of the total variation among these tribes, ranged from 1.4% at the D7S484 locus to 6.8% at the D7S550 locus. The average FST was 3.9%, suggesting that there were substantial variations among these populations. The genetic identity analysis and the genetic distance analysis reached the same conclusions, viz., that the Ami and the Paiwan tribes were genetically close to each other, that the Atayal tribe was relatively unique compared with other tribes, and that the Saisiat tribe was relatively close to the Han-Taiwanese. A dendrogram for these tribes was further constructed by the UPGMA method. These VNTR data not only facilitate forensic and paternity testing, but also provide anthropometric information for further elucidating the relationship of Taiwan populations to the Austronesian family. Received: 12 August 1998 / Accepted: 30 January 1999  相似文献   

6.
The Austronesian expansion has left its fingerprint throughout two thirds of the circumference of the globe reaching the island of Madagascar in East Africa to the west and Easter Island, off the coast of Chile, to the east. To date, several theories exist to explain the current genetic distribution of Austronesian populations, with the “slow boat” model being the most widely accepted, though other conjectures (i.e., the “express train” and “entangled bank” hypotheses) have also been widely discussed. In the current study, 158 Y chromosomes from the Polynesian archipelagos of Samoa and Tonga were typed using high resolution binary markers and compared to populations across Mainland East Asia, Taiwan, Island Southeast Asia, Melanesia and Polynesia in order to establish their patrilineal genetic relationships. Y-STR haplotypes on the C2 (M38), C2a (M208), O1a (M119), O3 (M122) and O3a2 (P201) backgrounds were utilized in an attempt to identify the differing sources of the current Y-chromosomal haplogroups present throughout Polynesia (of Melanesian and/or Asian descent). We find that, while haplogroups C2a, S and K3-P79 suggest a Melanesian component in 23%-42% of the Samoan and Tongan Y chromosomes, the majority of the paternal Polynesian gene pool exhibits ties to East Asia. In particular, the prominence of sub-haplogroup O3a2c* (P164), which has previously been observed at only minimal levels in Mainland East Asians (2.0-4.5%), in both Polynesians (ranging from 19% in Manua to 54% in Tonga) and Ami aborigines from Taiwan (37%) provides, for the first time, evidence for a genetic connection between the Polynesian populations and the Ami.  相似文献   

7.
本文研究与整理海峡两岸汉民族与南岛民族的肤纹数据,来比较与探讨目前他们的肤纹形态上的异同。研究群体包含台湾的汉人与原住民族群,以及大陆的汉族与海南的回辉人。研究结果显示两岸非官话(亦作北方方言)区汉族虽然在肤纹参数上有些许不同,但皆属于北方群。而南岛民族的回辉人和台湾原住民则分属南方和北方群,并且在肤纹参数上有非常显著的不同。这是第一个两岸南岛民族的肤纹比较研究,也是第一个非官话区汉人群体的肤纹比较研究。  相似文献   

8.
The aborigines of Taiwan represent the indigenous inhabitants of the island at the time of the arrival of the Chinese from the mainland. Linguistically, the aboriginal Taiwanese are related to the Malayo-Polynesian-speaking inhabitants of Indonesia and the Philippines. Three tribes occupied lowland areas while six tribes occupied highland areas. Previous studies indicate that genetic markers associated with malaria occur in lowland populations. Though the GM haplotypes are demonstrated to be very useful in the measure of population affinities, the possibility of malarial selection on this locus could affect studies of population affinity. The present work is a case study to see whether a subdivided insular population under a possible selective load will provide divergent clustering analysis depending on the population sampled. Immunoglobulin allotype (GM and KM) profiles were generated on 230 lowland and 407 highland Taiwan Aborigines from the nine tribes. A highly significant difference in GM haplotype distribution was detected between lowland and highland populations (adjusted G = 69.408, 2 df [degrees of freedom], p < 0.00001). There were no significant differences in KM*1 frequency by altitude. The Taiwan Aboriginal GM and KM frequencies were compared to data from Indonesians, Vietnamese, Thai, Malay, Chinese from Taiwan, and Ryukyu Islanders from Okinawa using cluster analysis. The lowland populations plot among the Thai (N, NC) and Malayan Aborigines. In contrast, the highland and total Taiwan Aborigine samples plot with the Indonesian, Vietnamese, and Malayan Negrito samples. Thus, depending on the populations of Taiwan Aborigines used, different conclusions could be reached. The highland population supports the published linguistic ties; however, the lowland population does not support the linguistic relationship with Indonesian populations but is more closely related to Thai and Malays, or reflects a similar selection history.  相似文献   

9.
Genetic affinities between aboriginal Taiwanese and populations from Oceania and Southeast Asia have previously been explored through analyses of mitochondrial DNA (mtDNA), Y chromosomal DNA, and human leukocyte antigen loci. Recent genetic studies have supported the “slow boat” and “entangled bank” models according to which the Polynesian migration can be seen as an expansion from Melanesia without any major direct genetic thread leading back to its initiation from Taiwan. We assessed mtDNA variation in 640 individuals from nine tribes of the central mountain ranges and east coast regions of Taiwan. In contrast to the Han populations, the tribes showed a low frequency of haplogroups D4 and G, and an absence of haplogroups A, C, Z, M9, and M10. Also, more than 85% of the maternal lineages were nested within haplogroups B4, B5a, F1a, F3b, E, and M7. Although indicating a common origin of the populations of insular Southeast Asia and Oceania, most mtDNA lineages in Taiwanese aboriginal populations are grouped separately from those found in China and the Taiwan general (Han) population, suggesting a prevalence in the Taiwanese aboriginal gene pool of its initial late Pleistocene settlers. Interestingly, from complete mtDNA sequencing information, most B4a lineages were associated with three coding region substitutions, defining a new subclade, B4a1a, that endorses the origin of Polynesian migration from Taiwan. Coalescence times of B4a1a were 13.2 ± 3.8 thousand years (or 9.3 ± 2.5 thousand years in Papuans and Polynesians). Considering the lack of a common specific Y chromosomal element shared by the Taiwanese aboriginals and Polynesians, the mtDNA evidence provided here is also consistent with the suggestion that the proto-Oceanic societies would have been mainly matrilocal.  相似文献   

10.
Human population characteristics at the genetic level are integral to both forensic biology and population genetics. This study evaluates biparental microsatellite markers in five Austronesian-speaking groups to characterize their intra- and interpopulation differences. Genetic diversity was analyzed using 15 short tandem repeat (STR) loci from 338 unrelated individuals from 5 Pacific islands populations, including the aboriginal Ami and Atayal groups from Taiwan, Bali and Java in Indonesia, and the Polynesian islands of Samoa. Allele frequencies from the STR profiles were determined and compared to other geographically targeted worldwide populations procured from recent literature. Hierarchical AMOVA analysis revealed a large number of loci that exhibit significant correspondence to linguistic partitioning among groups of populations. A pronounced divide exists between Samoa and the East (Formosa) and Southeast Asian (Bali and Java) islands. This is clearly illustrated in the topology of the neighbor-joining tree. Phylogenetic analyses also indicate clear distinctions between the Ami and Atayal and between Java and Bali, which belie the respective geographic proximities of the populations in each set. This differentiation is supported by the higher interpopulation variance components of the Austronesian populations compared to other Asian non-Austronesian groups. Our phylogenetic data indicate that, despite their linguistic commonalities, these five groups are genetically distinct. This degree of genetic differentiation justifies the creation of population-specific databases for human identification.  相似文献   

11.
Previous studies of mtDNA variation in indigenous Taiwanese populations have suggested that they held an ancestral position in the spread of mtDNAs throughout Southeast Asia and Oceania (Melton et al. 1995; Sykes et al. 1995), but the question of an absolute proto-Austronesian homeland remains. To search for Asian roots for indigenous Taiwanese populations, 28 mtDNAs representative of variation in four tribal groups (Ami, Atayal, Bunun, and Paiwan) were sequenced and were compared with each other and with mtDNAs from 25 other populations from Asia and Oceania. In addition, eight polymorphic Alu insertion loci were analyzed, to determine if the pattern of mtDNA variation is concordant with nuclear DNA variation. Tribal groups shared considerable mtDNA sequence identity (P>.90), where gene flow is believed to have been low, arguing for a common source or sources for the tribes. mtDNAs with a 9-bp deletion have considerable mainland-Asian diversity and have spread to Southeast Asia and Oceania through a Taiwanese bottleneck. Only four Taiwanese mtDNA haplotypes without the 9-bp deletion were shared with any other populations, but these shared types were widely dispersed geographically throughout mainland Asia. Phylogenetic and principal-component analyses of Alu loci were concordant with conclusions from the mtDNA analyses; overall, the results suggest that the Taiwanese have temporally deep roots, probably in central or south China, and have been isolated from other Asian populations in recent history.  相似文献   

12.
From 1974 to 1989, a total of 24,500 aborigines at 67 villages in ten mountainous districts/towns in Taiwan were examined for the Taiwan Taenia infection and 12% were found to be infected. In order to define the clinical manifestations of taeniasis caused by the Taiwan Taenia, 1661 aborigines in ten mountainous districts were surveyed. The overall clinical rate was 76%. The clinical rate was highest among Atayal aborigines (81%), followed by Bunun (66%) and Yami (61%) aborgines and lowest among Ami aborigines (40%). Among 1153 infected people, 10% had passed gravid segments in the faeces for less than 1 year, 24% for 1-3 years, 17% for 4-5 years, 23% for 6-10 years, 16% for 11-20 years, 7% for 21-30 years, and 3% over 30 years. Twenty-six occurrences of gastrointestinal and neurological symptoms were reported by 1258 infected persons. Passing proglottides in the faeces (95%) was the most frequent sign, followed by pruritis ani (77%), nausea (46%), abdominal pain (45%), dizziness (42%), increased appetite (30%), headache (26%), etc.  相似文献   

13.
A group of Taiwan aborigines, the Toroko, was typed for 21 classical genetic loci. This is part of an ongoing program aimed at a comprehensive study of Taiwan aborigines. In this first paper a short summary of historical, archeological, and anthropological data in the literature is made, and results of the present survey are compared with older results from other aborigine tribes. An analysis of other neighboring populations from southeast Asia has also been carried out in order to give a preliminary answer to the question of origin of Taiwanese aborigines. Fifteen populations were studied for 13 loci by tree analysis, principal components, and isolation by distance. Tree analysis and principal component analysis gave results in fairly good agreement and indicate three major population clusters: a northeast cluster (Ainu, Korea, Japan, and Ryukyu); a southeast cluster (south China, Thailand, Vietnam, Philippines, Taiwan, and Toroko); and a third cluster including Malaya and Borneo. The positions of Polynesia, Micronesia, and Melanesia are somewhat peripheral. Analysis of the tree shows some potential cases of convergence, perhaps owing to admixture, and of divergence. The analysis of isolation by distance shows that geographic propinquity is a reasonably good predictor of general similarity in this area.  相似文献   

14.
We have investigated glucose-6-phosphate dehydrogenase (G6PD) deficiency in 220 unrelated aboriginal male subjects who belong to three different tribes (Saisiat, Ami, and Yami) in Taiwan. Our results show that the G6PD deficiency rates for Saisiat, Ami, and Yami people are 9.0% (6/67), 6.1% (6/99), and 0% (0/54), respectively. Among these deficiency cases, 4 of 6 (66.7%) Saisiat subjects have the 493 AG mutation and one carries the 1376 GT mutation, whereas, in Ami subjects, we found that four of six (66.7%) affected males have the 592 CT mutation and one carries the 493 AG mutation. These results contrast with our previous findings for Taiwan Chinese, in whom the 1376 GT mutation is the major mutant allele and accounts for 52.3% of the deficiency cases. This is the first report of G6PD deficiency characterized at the DNA level in Taiwan aboriginal populations.  相似文献   

15.
Tuberculosis incidence among aborigines is significantly higher than for Han Chinese in Taiwan, but the extent to which Mycobacterium tuberculosis (MTB) strain characteristics contribute to this difference is not well understood. MTB isolates from aborigines and Han Chinese living in eastern and southern Taiwan, the major regions of aborigines, were analyzed by spoligotyping and 24-loci MIRU-VNTR. In eastern Taiwan, 60% of aboriginal patients were ≤20 years old, significantly younger than the non-aboriginal patients there; aborigines were more likely to have clustered MTB isolates than Han Chinese (odds ratio (OR) = 5.98, p<0.0001). MTB lineages with high clustering were EAI (54.9%) among southern people, and Beijing (62.5%) and Haarlem (52.9%) among eastern aborigines. Resistance to first-line drugs and multidrug resistance (MDR) were significantly higher among eastern aborigines (≥15%) than in any other geographic and ethnic group (p<0.05); MDR was detected in 5 of 28 eastern aboriginal patients ≤20 years old. Among patients from the eastern region, clustered strains (p = 0.01) and aboriginal ethnicity (p = 0.04) were independent risk factors for MDR. The lifestyles of aborigines in eastern Taiwan may explain why the percentage of infected aborigines is much higher than for their Han Chinese counterparts. The significantly higher percentage of the MDR-MTB strains in the aboriginal population warrants close attention to control policy and vaccination strategy.  相似文献   

16.
Gout is a disorder of uric-acid metabolism. The Pacific Austronesian population, including Taiwanese aborigines, has a remarkably high prevalence of hyperuricemia and gout, which suggests a founder effect across the Pacific region. We report here a genomewide linkage study of 21 multiplex pedigrees with gout from an aboriginal tribe in Taiwan. From observations of familial clustering, early onset of gout, and clinically severe manifestations, we hypothesized that a major gene plays a role in this trait. Using 382 random polymorphic markers spread across 22 autosomes, we demonstrated a highly significant linkage for gout at marker D4S2623 on chromosome 4q25 (P=.0002 by nonparametric linkage [the NPL(all) statistic]; empirical P=.0006; LOD=4.3, P=4.4x10-6 by logistic regression). When alcohol consumption was included as a covariate in the model, the LOD score increased to 5.66 (P=1.3x10-6). Quantitative traits, including serum uric acid and creatinine, also showed a moderate linkage to this region. To our knowledge, this is the first genome-scan report to identify a genetic locus harboring a gout-susceptibility gene.  相似文献   

17.
Alpha-thalassemia in the four major aboriginal groups in Taiwan   总被引:3,自引:0,他引:3  
A total of 1309 unrelated blood samples from four major Taiwan aboriginal groups, including 522 of the Ami, 246 of the Bunun, 227 of the Atayal, and 214 of the Paiwan groups, were collected. Subjects with a mean corpuscular volume below 85 fl and Hb A2 values below 3.5% were further studied with Southern hybridization to determine the status of -globin genes. In the Ami, 43 (4.1%) chromosomes had -thalassemia 1 and 43 (4.1%) had -thalassemia 2. Of the 43 -thalassemia 1 chromosomes, 33 were of the Thailand, one of the Philippine, and nine of the Southeast Asian deletion. Of the 43 -thalassemia 2 chromosomes, 42 were of the type I rightward deletion and one was of leftward deletion. In the Bunun group, one chromosome (0.2%) was of the Thailand deletion and two (0.4%) were of type I rightward deletion. In the Atayal group, only one chromosome (0.2%) was of the Philippine deletion. In the Paiwan group, four chromosomes (0.9%) were of the Southeast Asian deletion and three (0.7%) were of the Thailand deletion. Among the four groups, the Ami had the highest prevalence of -thalassemia, which was also higher than that of the Chinese living in Taiwan.  相似文献   

18.
A Taiwan origin for the expansion of the Austronesian languages and their speakers is well supported by linguistic and archaeological evidence. However, human genetic evidence is more controversial. Until now, there had been no ancient skeletal evidence of a potential Austronesian-speaking ancestor prior to the Taiwan Neolithic ∼6,000 years ago, and genetic studies have largely ignored the role of genetic diversity within Taiwan as well as the origins of Formosans. We address these issues via analysis of a complete mitochondrial DNA genome sequence of an ∼8,000-year-old skeleton from Liang Island (located between China and Taiwan) and 550 mtDNA genome sequences from 8 aboriginal (highland) Formosan and 4 other Taiwanese groups. We show that the Liangdao Man mtDNA sequence is closest to Formosans, provides a link to southern China, and has the most ancestral haplogroup E sequence found among extant Austronesian speakers. Bayesian phylogenetic analysis allows us to reconstruct a history of early Austronesians arriving in Taiwan in the north ∼6,000 years ago, spreading rapidly to the south, and leaving Taiwan ∼4,000 years ago to spread throughout Island Southeast Asia, Madagascar, and Oceania.  相似文献   

19.
Y chromosomal evidence for the origins of oceanic-speaking peoples.   总被引:8,自引:0,他引:8  
A number of alternative hypotheses seek to explain the origins of the three groups of Pacific populations-Melanesians, Micronesians, and Polynesians-who speak languages belonging to the Oceanic subfamily of Austronesian languages. To test these various hypotheses at the genetic level, we assayed diversity within the nonrecombining portion of the Y chromosome, which contains within it a relatively simple record of the human past and represents the most informative haplotypic system in the human genome. High-resolution haplotypes combining binary, microsatellite, and minisatellite markers were generated for 390 Y chromosomes from 17 Austronesian-speaking populations in southeast Asia and the Pacific. Nineteen paternal lineages were defined and a Bayesian analysis of coalescent simulations was performed upon the microsatellite diversity within lineages to provide a temporal aspect to their geographical distribution. The ages and distributions of these lineages provide little support for the dominant archeo-linguistic model of the origins of Oceanic populations that suggests that these peoples represent the Eastern fringe of an agriculturally driven expansion initiated in southeast China and Taiwan. Rather, most Micronesian and Polynesian Y chromosomes appear to originate from different source populations within Melanesia and Eastern Indonesia. The Polynesian outlier, Kapingamarangi, is demonstrated to be an admixed Micronesian/Polynesian population. Furthermore, it is demonstrated that a geographical rather than linguistic classification of Oceanic populations best accounts for their extant Y chromosomal diversity.  相似文献   

20.
The gene pool structure was studied for the indigenous population of the Sakha Republic (Yakutia). The composition and frequencies of Y-chromosome haplotypes in Yakuts were characterized. Six haplogroups were observed: C3×M77, C3c, N*, N2, N3a, and R1a1, N3a being the most common (89%). The gene diversity computed from the haplogroup frequencies was low in all samples examined. Gene differentiation was analyzed by AMOVA with two marker systems (haplogroup frequencies and Y-chromosomal microsatellite haplotypes) and was estimated at 0.24 and 2.85%, respectively. The frequencies and molecular phylogeny of the YSTR haplotypes were studied for the N3a haplogroup. In total, 40 haplotypes were found in Yakuts. Evenks and Yakuts displayed highly specific overlapping N3a haplotype spectra, atypical for other Siberian ethnic groups. Cluster analysis with N3a YSTR haplotypes showed that Yakuts are isolated from other Turkic-speaking populations of Southern Siberia. The genetic diversity generation time was estimated at 4450 ± 1960 years for the Yakut haplotype spectrum. In contrast to mtDNA data, the results suggest a significant contribution of the local Paleolithic component to the Y-chromosome gene pool of Yakuts. Ethnogenetic reconstructions were inferred from the diversity and phylogeography of the N3a haplogroup in Siberia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号