首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
It is well known that oxidative stress participates in neuronal cell death caused production of reactive oxygen species (ROS). The increased ROS is a major contributor to the development of ischemic injury. Indoleamine 2,3-dioxygenase 1 (IDO-1) is involved in the kynurenine pathway in tryptophan metabolism and plays a role as an anti-oxidant. However, whether IDO-1 would inhibit hippocampal cell death is poorly known. Therefore, we explored the effects of cell permeable Tat-IDO-1 protein against oxidative stress-induced HT-22 cells and in a cerebral ischemia/reperfusion injury model. Transduced Tat-IDO-1 reduced cell death, ROS production, and DNA fragmentation and inhibited mitogen-activated protein kinases (MAPKs) activation in H2O2 exposed HT-22 cells. In the cerebral ischemia/reperfusion injury model, Tat-IDO-1 transduced into the brain and passing by means of the blood-brain barrier (BBB) significantly prevented hippocampal neuronal cell death. These results suggest that Tat-IDO-1 may present an alternative strategy to improve from the ischemic injury.  相似文献   

2.
Glutamate-induced excitotoxicity and oxidative stress is a major causative factor in neuronal cell death in acute brain injuries and chronic neurodegenerative diseases. The prevention of oxidative stress is a potential therapeutic strategy. Therefore, in the present study, we aimed to examine a potential therapeutic agent and its protective mechanism against glutamate-mediated cell death. We first found that chebulinic acid isolated from extracts of the fruit of Terminalia chebula prevented glutamate-induced HT22 cell death. Chebulinic acid significantly reduced intracellular reactive oxygen species (ROS) production and Ca2+ influx induced by glutamate. We further demonstrated that chebulinic acid significantly decreased the phosphorylation of mitogen-activated protein kinases (MAPKs), including ERK1/2, JNK, and p38, as well as inhibiting pro-apoptotic Bax and increasing anti-apoptotic Bcl-2 protein expression. Moreover, we demonstrated that chebulinic acid significantly reduced the apoptosis induced by glutamate in HT22 cells. In conclusion, our results in this study suggest that chebulinic acid is a potent protectant against glutamate-induced neuronal cell death via inhibiting ROS production, Ca2+ influx, and phosphorylation of MAPKs, as well as reducing the ratio of Bax to Bcl-2, which contribute to oxidative stress-mediated neuronal cell death.  相似文献   

3.
Glutamate is the major excitatory neurotransmitter in the central nervous system and is involved in oxidative stress during neurodegeneration. In the present study, casuarinin prevented glutamate-induced HT22 murine hippocampal neuronal cell death by inhibiting intracellular reactive oxygen species (ROS) production. Moreover, casuarinin reduced chromatin condensation and annexin-V-positive cell production induced by glutamate. We also confirmed the underlying protective mechanism of casuarinin against glutamate-induced neurotoxicity. Glutamate markedly increased the phosphorylation of extracellular signal regulated kinase (ERK)-1/2 and p38, which are crucial in oxidative stress-mediated neuronal cell death. Conversely, treatment with casuarinin diminished the phosphorylation of ERK1/2 and P38. In conclusion, the results of this study suggest that casuarinin, obtained from natural products, acts as potent neuroprotective agent by suppressing glutamate-mediated apoptosis through the inhibition of ROS production and activation of the mitogen activated protein kinase (MAPK) pathway. Thus, casuarinin can be a potential therapeutic agent in the treatment of neurodegenerative diseases.  相似文献   

4.
Neuronal cell death caused by oxidative stress is common in a variety of neural diseases and can be investigated in detail in cultured HT22 neuronal cells, where the amino acid glutamate at high concentrations causes glutathione depletion by inhibition of the glutamate/cystine antiporter system, intracellular accumulation of reactive oxygen species (ROS) and eventually oxidative stress-induced neuronal cell death. Using this paradigm, we have previously reported that resveratrol (3,5,4′-trans-trihydroxystilbene) protects HT22 neuronal cells from glutamate-induced oxidative stress by inducing heme oxygenase (HO)-1 expression. Piceatannol (3,5,4′,3′-trans-trihydroxystilbene), which is a hydroxylated resveratrol analog and one of the resveratrol metabolites, is estimated to exert neuroprotective effect similar to that of resveratrol. The aim of this study, thus, is to determine whether piceatannol, similarly to resveratrol, would protect HT22 neuronal cells from glutamate-induced oxidative stress. Glutamate at high concentrations induced neuronal cell death and ROS formation. Piceatannol reduced glutamate-induced cell death and ROS formation. The observed cytoprotective effect was much higher when HT22 neuronal cells were pretreated with piceatannol for 6 or 12 h prior to glutamate treatment than when pretreated for 0.5 h. Piceatannol also increased HO-1 expression and HO activity via its activation of nuclear factor-E2-related factor 2 (Nrf2). Interestingly, neuroprotective effect of piceatannol was partly (but not completely) abolished by either down-regulation of HO-1 expression or blockage of HO-1 activity. Taken together, our results suggest that piceatannol, similar to resveratrol, is capable of protecting HT22 neuronal cells against glutamate-induced cell death, at least in part, by inducing Nrf2-dependent HO-1 expression.  相似文献   

5.
Glutamate-mediated excitotoxicity, which is associated with reactive oxygen species (ROS), is hypothesized to be a major contributor to pathological cell death in the mammalian central nervous system, and to be involved in many acute and chronic brain diseases. Here, we showed that isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis (Gu), one of the most frequently prescribed oriental herbal medicines, protected HT22 hippocampal neuronal cells from glutamate-induced oxidative stress. In addition, we clarified the molecular mechanisms by which it protects against glutamate-induced neuronal cell death. ISL reversed glutamate-induced ROS production and mitochondrial depolarization, as well as glutamate-induced changes in expression of the apoptotic regulators Bcl-2 and Bax. Pretreatment of HT22 cells with ISL suppresses the release of apoptosis-inducing factor from mitochondria into the cytosol. Taken together, our results suggest that ISL may protect against mitochondrial dysfunction by limiting glutamate-induced oxidative stress. In conclusion, our results demonstrated that ISL isolated from Gu has protective effects against glutamate-induced mitochondrial damage and hippocampal neuronal cell death. We expect ISL to be useful in the development of drugs to prevent or treat neurodegenerative diseases.  相似文献   

6.
Parkinson’s disease (PD) is a neurodegenerative disability caused by a decrease of dopaminergic neurons in the substantia nigra (SN). Although the etiology of PD is not clear, oxidative stress is believed to lead to PD. Catalase is antioxidant enzyme which plays an active role in cells as a reactive oxygen species (ROS) scavenger. Thus, we investigated whether PEP-1-Catalase protects against 1-methyl-4-phenylpyridinium (MPP+) induced SH-SY5Y neuronal cell death and in a 1-methyl-4-phenyl-1,2,3,6-trtrahydropyridine (MPTP) induced PD animal model. PEP-1-Catalase transduced into SH-SY5Y cells significantly protecting them against MPP+-induced death by decreasing ROS and regulating cellular survival signals including Akt, Bax, Bcl-2, and p38. Immunohistochemical analysis showed that transduced PEP-1-Catalase markedly protected against neuronal cell death in the SN in the PD animal model. Our results indicate that PEP-1-Catalase may have potential as a therapeutic agent for PD and other oxidative stress related diseases. [BMB Reports 2015; 48(7): 395-400]  相似文献   

7.
Yoon SW  Kang S  Ryu SE  Poo H 《Cell proliferation》2010,43(6):584-593
Objectives: Nitration of tyrosine residues in protein is a post‐translational modification, which occurs under oxidative stress, and is associated with several neurodegenerative diseases. To understand the role of nitrated proteins in oxidative stress‐induced cell death, we identified nitrated proteins and checked correlation of their nitration in glutamate‐induced HT22 cell death. Materials and methods: Nitrated proteins were detected by western blotting using an anti‐nitrotyrosine antibody, extracted from matching reference 2‐dimensional electrophoresis gels, and identified with matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Results: Glutamate treatment induced apoptosis in HT22 cells, while reactive oxygen species (ROS) inhibitor or neuronal nitric oxide synthase (nNOS) inhibitor blocked glutamate‐induced HT22 cell death. Nitration levels of 13 proteins were increased after glutamate stimulation; six of them were involved in regulation of energy production and two were related to apoptosis. The other nitrated proteins were associated with calcium signal modulation, ER dysfunction, or were of unknown function. Conclusions: The 13 tyrosine‐nitrated proteins were detected in these glutamate‐treated HT22 cells. Results demonstrated that cell death, ROS accumulation and nNOS expression were related to nitration of protein tyrosine in the glutamate‐stimulated cells.  相似文献   

8.
Human carbonyl reductase 1 (CBR1) is a member of the NADPH-dependent short-chain dehydrogenase/reductase superfamily that is known to play an important role in neuronal cell survival via its antioxidant function. Oxidative stress is one of the major causes of degenerative disorders including ischemia. However, the role CBR1 plays with regard to ischemic injury is as yet poorly understood. Protein transduction domains such as PEP-1 are well known and now commonly used to deliver therapeutic proteins into cells. In this study, we prepared PEP-1–CBR1 protein and examined whether it protects against oxidative-stress-induced neuronal cell damage. PEP-1–CBR1 protein was efficiently transduced into hippocampal neuronal HT-22 cells and protected against hydrogen peroxide (H2O2)-induced neuronal cell death. Transduced PEP-1–CBR1 protein drastically inhibited H2O2-induced reactive oxygen species production, the oxidation of intracellular macromolecules, and the activation of mitogen-activated protein kinases, as well as cellular apoptosis. Furthermore, we demonstrated that transduced PEP-1–CBR1 protein markedly protected against neuronal cell death in the CA1 region of the hippocampus resulting from ischemic injury in an animal model. In addition, PEP-1–CBR1 protein drastically reduced activation of glial cells and lipid peroxidation in an animal model. These results indicate that PEP-1–CBR1 protein significantly protects against oxidative-stress-induced neuronal cell death in vitro and in vivo. Therefore, we suggest that PEP-1–CBR1 protein may be a therapeutic agent for the treatment of ischemic injuries as well as oxidative-stress-induced cell damage and death.  相似文献   

9.

Background

Oxidative stress is a leading cause of various diseases, including ischemia and inflammation. Peroxiredoxin2 (PRX2) is one of six mammalian isoenzymes (PRX1–6) that can reduce hydrogen peroxide (H2O2) and organic hydroperoxides to water and alcohols.

Methods

We produced PEP-1-PRX2 transduction domain (PTD)-fused protein and investigated the effect of PEP-1-PRX2 on oxidative stress-induced neuronal cell death by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Western blot, immunofluorescence microscopy, and immunohistochemical analysis.

Results

Our data showed that PEP-1-PRX2, which can effectively transduce into various types of cells and brain tissues, could be implicated in suppressing generation of reactive oxygen species, preventing depolarization of the mitochondrial membrane, and inhibiting the apoptosis pathway in H2O2-stimulated HT22, murine hippocampal neuronal cells, likely resulting in protection of HT22 cells against H2O2-induced toxicity. In addition, we found that in a transient forebrain ischemia model, PEP-1-PRX2 inhibited the activation of astrocytes and microglia in the CA1 region of the hippocampus and lipid peroxidation and also prevented neuronal cell death against ischemic damage.

Conclusions

These findings suggest that the transduced PEP-1-PRX2 has neuroprotective functions against oxidative stress-induced cell death in vitro and in vivo.

General significance

PEP-1-PRX2 could be a potential therapeutic agent for oxidative stress-induced brain diseases such as ischemia.  相似文献   

10.
11.
Oxidative stress after ischaemia impairs the function of transplanted stem cells. Increasing evidence has suggested that either salidroside (SAL) or hypoxia regulates growth of stem cells. However, the role of SAL in regulating function of hypoxia‐pre–conditioned stem cells remains elusive. Thus, this study aimed to determine the effect of SAL and hypoxia pre‐conditionings on the proliferation, migration and tolerance against oxidative stress in rat adipose‐derived stem cells (rASCs). rASCs treated with SAL under normoxia (20% O2) or hypoxia (5% O2) were analysed for the cell viability, proliferation, migration and resistance against H2O2‐induced oxidative stress. In addition, the activation of Akt, Erk1/2, LC3, NF‐κB and apoptosis‐associated pathways was assayed by Western blot. The results showed that SAL and hypoxia treatments synergistically enhanced the viability (fold) and proliferation of rASCs under non‐stressed conditions in association with increased autophagic flux and activation of Akt, Erk1/2 and LC3. H2O2‐induced oxidative stress, cytotoxicity, apoptosis, autophagic cell death and NF‐κB activation were inhibited by SAL or hypoxia, and further attenuated by the combined SAL and hypoxia pre‐treatment. The SAL and hypoxia pre‐treatment also enhanced the proliferation and migration of rASCs under oxidative stress in association with Akt and Erk1/2 activation; however, the combined pre‐treatment exhibited a more profound enhancement in the migration than proliferation. Our data suggest that SAL combined with hypoxia pre‐conditioning may enhance the therapeutic capacity of ASCs in post‐ischaemic repair.  相似文献   

12.
1‐O‐Hexyl‐2,3,5‐trimethylhydroquinone (HTHQ), a lipophilic phenolic agent, has an antioxidant activity and reactive oxygen species (ROS) scavenging property. However, the role of HTHQ on cerebral ischaemic/reperfusion (I/R) injury and the underlying mechanisms remain poorly understood. In the present study, we demonstrated that HTHQ treatment ameliorated cerebral I/R injury in vivo, as demonstrated by the decreased infarct volume ration, neurological deficits, oxidative stress and neuronal apoptosis. HTHQ treatment increased the levels of nuclear factor erythroid 2–related factor 2 (Nrf2) and its downstream antioxidant protein, haeme oxygenase‐1 (HO‐1). In addition, HTHQ treatment decreases oxidative stress and neuronal apoptosis of PC12 cells following hypoxia and reperfusion (H/R) in vitro. Moreover, we provided evidence that PC12 cells were more vulnerable to H/R‐induced oxidative stress after si‐Nrf2 transfection, and the HTHQ‐mediated protection was lost in PC12 cells transfected with siNrf2. In conclusion, these results suggested that HTHQ possesses neuroprotective effects against oxidative stress and apoptosis after cerebral I/R injury via activation of the Nrf2/HO‐1 pathway.  相似文献   

13.
Methylglyoxal (MG), a metabolite of glucose, is the major precursor of protein glycation and induces apoptosis. MG is associated with neurodegeneration, including oxidative stress and impaired glucose metabolism, and is efficiently metabolized to S-D-lactoylglutathione by glyoxalase (GLO). Although GLO has been implicated as being crucial in various diseases including ischemia, its detailed functions remain unclear. Therefore, we investigated the protective effect of GLO (GLO1 and GLO2) in neuronal cells and an animal ischemia model using Tat-GLO proteins. Purified Tat-GLO protein efficiently transduced into HT-22 neuronal cells and protected cells against MG- and H2O2-induced cell death, DNA fragmentation, and activation of caspase-3 and mitogen-activated protein kinase. In addition, transduced Tat-GLO protein increased D-lactate in MG- and H2O2-treated cells whereas glycation end products (AGE) and MG levels were significantly reduced in the same cells. Gerbils treated with Tat-GLO proteins displayed delayed neuronal cell death in the CA1 region of the hippocampus compared with a control. Furthermore, the combined neuroprotective effects of Tat-GLO1 and Tat-GLO2 proteins against ischemic damage were significantly higher than those of each individual protein. Those results demonstrate that transduced Tat-GLO protein protects neuronal cells by inhibiting MG- and H2O2-mediated cytotoxicity in vitro and in vivo. Therefore, we suggest that Tat-GLO proteins could be useful as a therapeutic agent for various human diseases related to oxidative stress including brain diseases.  相似文献   

14.
Oxidative stress can trigger neuronal cell death and has been implicated in several chronic neurological diseases and in acute neurological injury. Oxidative toxicity can be induced by glutamate treatment in cells that lack ionotrophic glutamate receptors, such as the immortalized HT22 hippocampal cell line and immature primary cortical neurons. Previously, we found that neuroprotective effects of geldanamycin, a benzoquinone ansamycin, in HT22 cells were associated with a down-regulation of c-Raf-1, an upstream activator of the extracellular signal-regulated protein kinases (ERKs). ERK activation, although often attributed strictly to neuronal cell survival and proliferation, can also be associated with neuronal cell death that occurs in response to specific insults. In this report we show that delayed and persistent activation of ERKs is associated with glutamate-induced oxidative toxicity in HT22 cells and immature primary cortical neuron cultures. Furthermore, we find that U0126, a specific inhibitor of the ERK-activating kinase, MEK-1/2, protects both HT22 cells and immature primary cortical neuron cultures from glutamate toxicity. Glutamate-induced ERK activation requires the production of specific arachidonic acid metabolites and appears to be downstream of a burst of reactive oxygen species (ROS) accumulation characteristic of oxidative stress in HT22 cells. However, inhibition of ERK activation reduces glutamate-induced intracellular Ca(2+) accumulation. We hypothesize that the precise kinetics and duration of ERK activation may determine whether downstream targets are mobilized to enhance neuronal cell survival or ensure cellular demise.  相似文献   

15.
Oxidative stress is a major cause of cellular injury in a variety of human diseases including neurodegenerative disorders. Thus, removal of excessive reactive oxygen species (ROS) or suppression of ROS generation may be effective in preventing oxidative stress‐induced cell death. This study was designed to investigate the effect of icariside II (ICS II), a novel phosphodiesterase 5 inhibitor, on hydrogen peroxide (H2O2)‐induced death of highly differentiated rat neuronal PC12 cells, and to further examine the underlying mechanisms. We found that ICS II pre‐treatment significantly abrogated H2O2‐induced PC12 cell death as demonstrated by the increase of the number of metabolically active cells and decrease of intracellular lactate dehydrogenase (LDH) release. Furthermore, ICS II inhibited H2O2‐induced cell death through attenuating intracellular ROS production, mitochondrial impairment, and activating glycogen synthase kinase‐3β (GSK‐3β) as demonstrated by reduced intracellular and mitochondrial ROS levels, restored mitochondrial membrane potential (MMP), decreased p‐tyr216‐GSK‐3β level and increased p‐ser9‐GSK‐3β level respectively. The GSK‐3β inhibitor SB216763 abrogated H2O2‐induced cell death. Moreover, ICS II significantly inhibited H2O2‐induced autophagy by the reducing autophagosomes number and the LC3‐II/LC3‐I ratio, down‐regulating Beclin‐1 expression, and up‐regulating p62/SQSTM1 and HSP60 expression. The autophagy inhibitor 3‐methyl adenine (3‐MA) blocked H2O2‐induced cell death. Altogether, this study demonstrated that ICS II may alleviate oxidative stress‐induced autophagy in PC12 cells, and the underlying mechanisms are related to its antioxidant activity functioning via ROS/GSK‐3β/mitochondrial signalling pathways.  相似文献   

16.
The in vitro neuronal cell death model based on the HT22 mouse hippocampal cell model is a convenient means of identifying compounds that protect against oxidative glutamate toxicity which plays a role in the development of certain neurodegenerative diseases. Functionalized acridin-9-yl-phenylamines were found to protect HT22 cells from glutamate challenge at submicromolar concentrations. The Aryl1-NH-Aryl2 scaffold that is embedded in these compounds was the minimal pharmacophore for activity. Mechanistically, protection against the endogenous oxidative stress generated by glutamate did not involve up-regulation of glutathione levels but attenuation of the late stage increases in mitochondrial ROS and intracellular calcium levels. The NH residue in the pharmacophore played a crucial role in this regard as seen from the loss of neuroprotection when it was structurally modified or replaced. That the same NH was essential for radical scavenging in cell-free and cell-based systems pointed to an antioxidant basis for the neuroprotective activities of these compounds.  相似文献   

17.
Oxidative stress is recognized as one of the pathogenic mechanisms involved in neurodegenerative disease. However, recent evidence has suggested that regulation of cellular fate in response to oxidative stress appears to be dependent on the stress levels. In this study, using HT22 cells, we attempted to understand how an alteration in the oxidative stress levels would influence neuronal cell fate. HT22 cell viability was reduced with exposure to high levels of oxidative stress, whereas, low levels of oxidative stress promoted cell survival. Erk1/2 activation induced by a low level of oxidative stress played a role in this cell protective effect. Intriguingly, subtoxic level of H2O2 induced expression of a growth factor, progranulin (PGRN), and exogenous PGRN pretreatment attenuated HT22 cell death induced by high concentrations of H2O2 in Erk1/2-dependent manner. Together, our study indicates that two different cell protection mechanisms are activated by differing levels of oxidative stress in HT22 cells.  相似文献   

18.
Antioxidant enzymes are considered to have beneficial effects against various diseases mediated by reactive oxygen species (ROS). Ischemia is characterized by both oxidative stress and changes in the antioxidant defense system. Catalase (CAT) and superoxide dismutase (SOD) are major antioxidant enzymes by which cells counteract the deleterious effects of ROS. To investigate the protective effects of CAT, we constructed PEP-1–CAT cell-permeative expression vectors. When PEP-1–CAT fusion proteins were added to the culture medium of neuronal cells, they rapidly entered the cells and protected them against oxidative stress-induced neuronal cell death. Immunohistochemical analysis revealed that PEP-1–CAT prevented neuronal cell death in the hippocampus induced by transient forebrain ischemia. Moreover, we showed that the protective effect of PEP-1–CAT was observed in neuronal cells treated with PEP-1–SOD. Therefore, we suggest that transduced PEP-1–CAT and PEP-1–SOD fusion proteins could be useful as therapeutic agents for various human diseases related to oxidative stress, including stroke.  相似文献   

19.
This study aimed to investigate the protective effect of the M9 region (residues 290–562) of amino-Nogo-A fused to the human immunodeficiency virus trans-activator TAT in an in vitro model of ischemia–reperfusion induced by oxygen–glucose deprivation (OGD) in HT22 hippocampal neurons, and to investigate the role of NADPH oxidase in this protection. Transduction of TAT-M9 was analyzed by immunofluorescence staining and western blot. The biologic activity of TAT-M9 was assessed by its effects against OGD-induced HT22 cell damage, compared with a mutant M9 fusion protein or vehicle. Cellular viability and lactate dehydrogenase (LDH) release were assessed. Neuronal apoptosis was evaluated by flow cytometry. The Bax/Bcl-2 ratio was determined by western blotting. Reactive oxygen species (ROS) levels and NADPH oxidase activity were also measured in the presence or absence of an inhibitor or activator of NADPH oxidase. Our results confirmed the delivery of the protein into HT22 cells by immunofluorescence and western blot. Addition of 0.4 μmol/L TAT-M9 to the culture medium effectively improved neuronal cell viability and reduced LDH release induced by OGD. The fusion protein also protected HT22 cells from apoptosis, suppressed overexpression of Bax, and inhibited the reduction in Bcl-2 expression. Furthermore, TAT-M9, as well as apocynin, decreased NADPH oxidase activity and ROS content. The protective effects of the TAT-M9 were reversed by TBCA, an agonist of NADPH oxidase. In conclusion, TAT-M9 could be successfully transduced into HT22 cells, and protected HT22 cells against OGD damage by inhibiting NADPH oxidase-mediated oxidative stress. These findings suggest that the TAT-M9 protein may be an efficient therapeutic agent for neuroprotection.  相似文献   

20.
RNF4, a poly‐SUMO‐specific E3 ubiquitin ligase, is associated with protein degradation, DNA damage repair and tumour progression. However, the effect of RNF4 in cardiomyocytes remains to be explored. Here, we identified the alteration of RNF4 from ischaemic hearts and oxidative stress‐induced apoptotic cardiomyocytes. Upon myocardial infarction (MI) or H2O2/ATO treatment, RNF4 increased rapidly and then decreased gradually. PML SUMOylation and PML nuclear body (PML‐NB) formation first enhanced and then degraded upon oxidative stress. Reactive oxygen species (ROS) inhibitor was able to attenuate the elevation of RNF4 expression and PML SUMOylation. PML overexpression and RNF4 knockdown by small interfering RNA (siRNA) enhanced PML SUMOylation, promoted p53 recruitment and activation and exacerbated H2O2/ATO‐induced cardiomyocyte apoptosis which could be partially reversed by knockdown of p53. In vivo, knockdown of endogenous RNF4 via in vivo adeno‐associated virus infection deteriorated post‐MI structure remodelling including more extensive interstitial fibrosis and severely fractured and disordered structure. Furthermore, knockdown of RNF4 worsened ischaemia‐induced cardiac dysfunction of MI models. Our results reveal a novel myocardial apoptosis regulation model that is composed of RNF4, PML and p53. The modulation of these proteins may provide a new approach to tackling cardiac ischaemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号