首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Collapsin response mediator proteins (CRMPs) are a family of neuron-enriched proteins that regulate neurite outgrowth and growth cone dynamics. Here, we show that Cdk5 phosphorylates CRMP1, CRMP2, and CRMP4, priming for subsequent phosphorylation by GSK3 in vitro. In contrast, DYRK2 phosphorylates and primes CRMP4 only. The Cdk5 and DYRK2 inhibitor purvalanol decreases the phosphorylation of CRMP proteins in neurons, whereas CRMP1 and CRMP2, but not CRMP4, phosphorylation is decreased in Cdk5(-/-) cortices. Stimulation of neuroblastoma cells with IGF1 or TPA decreases GSK3 activity concomitantly with CRMP2 and CRMP4 phosphorylation. Conversely, increased GSK3 activity is not sufficient to increase CRMP phosphorylation. However, the growth cone collapse-inducing protein Sema3A increases Cdk5 activity and promotes phosphorylation of CRMP2 (but not CRMP4). Therefore, inhibition of GSK3 alters phosphorylation of all CRMP isoforms; however, individual isoforms can be differentially regulated by their respective priming kinase. This is the first GSK3 substrate found to be regulated in this manner and may explain the hyperphosphorylation of CRMP2 observed in Alzheimer's disease.  相似文献   

2.
Collapsin response mediator protein 2 (CRMP2) binds to microtubules and regulates axon outgrowth in neurons. This action is regulated by sequential phosphorylation by the kinases cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3 (GSK3) at sites that are hyperphosphorylated in Alzheimer disease. The increased phosphorylation in Alzheimer disease could be due to increases in Cdk5 and/or GSK3 activity or, alternatively, through decreased activity of a CRMP phosphatase. Here we establish that dephosphorylation of CRMP2 at the residues targeted by GSK3 (Ser-518/Thr-514/Thr-509) is carried out by a protein phosphatase 1 family member in vitro, in neuroblastoma cells, and primary cortical neurons. Inhibition of GSK3 activity using insulin-like growth factor-1 or the highly selective inhibitor CT99021 causes rapid dephosphorylation of CRMP2 at these sites. In contrast, pharmacological inhibition of Cdk5 using purvalanol results in only a gradual and incomplete dephosphorylation of CRMP2 at the site targeted by Cdk5 (Ser-522), suggesting a distinct phosphatase targets this residue. A direct comparison of dephosphorylation at the Cdk5 versus GSK3 sites in vitro shows that the Cdk5 site is comparatively resistant to phosphatase treatment. The presence of the peptidyl-prolyl isomerase enzyme, Pin1, does not affect dephosphorylation of Ser-522 in vitro, in cells, or in Pin1 transgenic mice. Instead, the relatively high resistance of this site to phosphatase treatment is at least in part due to the presence of basic residues located nearby. Similar sequences in Tau are also highly resistant to phosphatase treatment. We propose that relative resistance to phosphatases might be a common feature of Cdk5 substrates and could contribute to the hyperphosphorylation of CRMP2 and Tau observed in Alzheimer disease.  相似文献   

3.
Collapsin response mediator proteins are ubiquitously expressed from multiple genes (CRMPs 1-5) and play important roles in dividing cells and during semaphorin 3A (Sema3A) signaling. Nonetheless, their mode of action remains opaque. Here we carried out in vivo and in vitro assays that demonstrate that CRMPs are a new class of microtubule-associated protein (MAP). In experiments with CRMP1 or CRMP2 and their derivatives, only the C-terminal region (residues 490-572) mediated microtubule binding. The in vivo microtubule association of CRMPs was abolished by taxol or epothilone B, which is highly unusual. CRMP2-depleted cells exhibited destabilized anaphase astral microtubules and altered spindle position. In a cell-based assay, all CRMPs stabilized interphase microtubules against nocodazole-mediated depolymerization, with CRMP1 being the most potent. Remarkably, a 82-residue C-terminal region of CRMP1 or CRMP2, unrelated to other microtubule binding motifs, is sufficient to stabilize microtubules. In cells, we demonstrate that glycogen synthase kinase-3β (GSK3β) inhibition potentiates this activity. Thus, CRMPs are a new class of MAP that binds through a unique motif, but in common with others such as Tau, is antagonized by GSK3β. This regulation is consistent with such kinases being critical for the Sema3A (collapsin) pathway. These findings have implications for cancer and neurodegeneration.  相似文献   

4.
Collapsin response mediator protein 2 (CRMP2) is an abundant brain-enriched protein that can regulate microtubule assembly in neurons. This function of CRMP2 is regulated by phosphorylation by glycogen synthase kinase 3 (GSK3) and cyclin-dependent kinase 5 (Cdk5). Here, using novel phosphospecific antibodies, we demonstrate that phosphorylation of CRMP2 at Ser522 (Cdk5-mediated) is increased in Alzheimer's disease (AD) brain, while CRMP2 expression and phosphorylation of the closely related isoform CRMP4 are not altered. In addition, CRMP2 phosphorylation at the Cdk5 and GSK3 sites is increased in cortex and hippocampus of the triple transgenic mouse [presenilin-1 (PS1)(M146V)KI; Thy1.2-amyloid precursor protein (APP)(swe); Thy1.2tau(P301L)] that develops AD-like plaques and tangles, as well as the double (PS1(M146V)KI; Thy1.2-APP(swe)) transgenic mouse. The hyperphosphorylation is similar in magnitude to that in human AD and is evident by 2 months of age, ahead of plaque or tangle formation. Meanwhile, there is no change in CRMP2 phosphorylation in two other transgenic mouse lines that display elevated amyloid beta peptide levels (Tg2576 and APP/amyloid beta-binding alcohol dehydrogenase). Similarly, CRMP2 phosphorylation is normal in hippocampus and cortex of Tau(P301L) mice that develop tangles but not plaques. These observations implicate hyperphosphorylation of CRMP2 as an early event in the development of AD and suggest that it can be induced by a severe APP over-expression and/or processing defect.  相似文献   

5.
Inhibitor-2 (I-2) is the most ancient protein that selectively recognizes type-1 protein phosphatase and is phosphorylated by CDK1-cyclinB during mitosis at Thr72 in a conserved PXTP site. Pin1 is a peptide prolyl cis/trans isomerase conserved among eukaryotes that specifically reacts with proteins phosphorylated at Ser/Thr-Pro sites. We tested phospho-T72-I-2 as a substrate for Pin1 and discovered that unphosphorylated I-2 bound Pin1 with micromolar affinity and phosphorylation of the PXTP site or truncation of I-2 reduced binding 10-fold. Ectopic Pin1 coprecipitated endogenous I-2 and ectopic I-2 coprecipitated endogenous Pin1, but only in the absence of detergents, which may account for the interaction not being detected previously. Endogenous I-2 and Pin1 colocalized in HeLa cells and showed nuclear-cytoplasmic redistribution in response to cell density, suggestive of their association in living cells. Recombinant Pin1 binding to different phosphoproteins in mitotic cell extracts was modulated by I-2, and binding to individual mitotic phosphoproteins was increased, decreased or unaffected by I-2, showing that I-2 allosterically modifies Pin1 specificity. This was confirmed by mutation of Ser16 to Ala in the Pin1 WW domain that eliminated I-2 binding and abrogated I-2 effects on Pin1 binding to different phosphoproteins. A S16E mutation to mimic Pin1 phosphorylation restored binding to both I-2 and phospho-T72-I-2, indicating that phosphorylation of both proteins governs their interaction. The results reveal a novel function for I-2, and suggest phosphorylation-dependent regulation of Pin1 specificity during entry and exit of mitosis, in other phases of the cell cycle, and in multiple cell signaling processes.  相似文献   

6.
Perinatal hypoxia and ischemia (HI) are a significant cause of mortality and morbidity. To understand the molecular mechanisms for HI-induced brain damage, here we used a proteomic approach to analyze the alteration and modification of proteins in neonatal mouse brain 24 h after HI treatment. Significant changes of collapsin response mediator proteins (CRMPs) were observed in HI brain. CRMPs are a family of cytosolic proteins involved in axonal guidance and neuronal outgrowth. We found that CRMP2, CRMP4 and CRMP5 proteins were altered post-translationally after HI treatment. Mass spectrometric and Western blot analyses detected hypophosphorylated CRMP proteins after HI. Further analysis of CRMP kinases indicated inactivation of cyclin dependent kinase 5 (CDK5), a priming kinase of CRMPs and a neuronal specific kinase that plays pivotal roles in neuronal development and survival. The reduction of CDK5 activity was associated with underexpression of its activator p35. Taken together, our findings reveal HI-induced dephosphorylation of CRMPs in neonatal brain and suggest a novel mechanism for this modification. Hypophosphorylated CRMPs might be implicated in the pathogenesis of HI-related neurological disorders.  相似文献   

7.
In vertebrates the collapsin response mediator proteins (CRMPs) are encoded by five highly related genes. CRMPs are cytosolic phosphoproteins abundantly expressed in developing and mature mammalian brains. CRMPs are best understood as effectors of Semaphorin 3A signaling regulating growth cone collapse in migratory neurons. Phosphorylation in the carboxyl‐terminal regulatory domain of CRMPs by several serine/threonine kinases has been described. These phoshorylation events appear to function, at least in part, to disrupt the interaction of CRMPs with tubulin heterodimers. In a large‐scale phosphoproteomic analysis of murine brain, we recently identified a number of in vivo tyrosine phosphorylation sites on CRMP isoforms. Using biochemical approaches and quantitative mass spectrometry we demonstrate that one of these sites, CRMP1 tyrosine 504 (Y504), is a primary target of the Src family of tyrosine kinases (SFKs), specifically Fyn. Y504 is adjacent to CDK5 and GSK‐3β sites that regulate the interaction of CRMPs with tubulin. Although Y504 is highly conserved among vertebrate CRMP1 orthologs, a residue corresponding to Y504 is absent in CRMP isoforms 2–5. This suggests an isoform‐specific regulatory role for CRMP1 Y504 phosphorylation and may help explain the observation that CRMP1‐deficient mice exhibit neuronal migration defects not compensated for by CRMPs 2–5. J. Cell. Biochem. 111: 20–28, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Collapsin response mediator protein (CRMP) was originally identified as a molecule involved in semaphorin3A signaling. CRMPs are now known to consist of five homologous cytosolic proteins, CRMP1–5. All of them are phosphorylated and highly expressed in the developing and adult nervous system. In vitro experiments have clearly demonstrated that CRMPs play important roles in neuronal development and maturation through the regulation of their phosphorylation. Several recent knockout mice studies have revealed in vivo roles of CRMPs in neuronal migration, neuronal network formation, synapse formation, synaptic plasticity, and neuronal diseases. Dynamic spatiotemporal regulation of phosphorylation status of CRMPs is involved in many aspects of neuronal development.  相似文献   

9.
It is important to identify the true substrates of protein kinases because this illuminates the primary function of any kinase. Here, we used bioinformatics and biochemical validation to identify novel brain substrates of the Ser/Thr kinase glycogen synthase kinase 3 (GSK3). Briefly, sequence databases were searched for proteins containing a conserved GSK3 phosphorylation consensus sequence ((S/T)PXX(S/T)P or (S/T)PXXX(S/T)P), as well as other criteria of interest (e.g. brain proteins). Importantly, candidates were highlighted if they had previously been reported to be phosphorylated at these sites by large-scale phosphoproteomic studies. These criteria identified the brain-enriched cytoskeleton-associated protein β-adducin as a likely substrate of GSK3. To confirm this experimentally, it was cloned and subjected to a combination of cell culture and in vitro kinase assays that demonstrated direct phosphorylation by GSK3 in vitro and in cells. Phosphosites were mapped to three separate regions near the C terminus and confirmed using phosphospecific antibodies. Prior priming phosphorylation by Cdk5 enhanced phosphorylation by GSK3. Expression of wild type, but not non-phosphorylatable (GSK3 insensitive), β-adducin increased axon and dendrite elongation in primary cortical neurons. Therefore, phosphorylation of β-adducin by GSK3 promotes efficient neurite outgrowth in neurons.  相似文献   

10.
AS160 (Akt substrate of 160 kDa) mediates insulin-stimulated GLUT4 (glucose transporter 4) translocation, but is widely expressed in insulin-insensitive tissues lacking GLUT4. Having isolated AS160 by 14-3-3-affinity chromatography, we found that binding of AS160 to 14-3-3 isoforms in HEK (human embryonic kidney)-293 cells was induced by IGF-1 (insulin-like growth factor-1), EGF (epidermal growth factor), PMA and, to a lesser extent, AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). AS160-14-3-3 interactions were stabilized by chemical cross-linking and abolished by dephosphorylation. Eight residues on AS160 (Ser318, Ser341, Thr568, Ser570, Ser588, Thr642, Ser666 and Ser751) were differentially phosphorylated in response to IGF-1, EGF, PMA and AICAR. The binding of 14-3-3 proteins to HA-AS160 (where HA is haemagglutinin) was markedly decreased by mutation of Thr642 and abolished in a Thr642Ala/Ser341Ala double mutant. The AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases RSK1 (p90 ribosomal S6 kinase 1), SGK1 (serum- and glucocorticoid-induced protein kinase 1) and PKB (protein kinase B) displayed distinct signatures of AS160 phosphorylation in vitro: all three kinases phosphorylated Ser318, Ser588 and Thr642; RSK1 also phosphorylated Ser341, Ser751 and to a lesser extent Thr568; and SGK1 phosphorylated Thr568 and Ser751. AMPK (AMP-activated protein kinase) preferentially phosphorylated Ser588, with less phosphorylation of other sites. In cells, the IGF-1-stimulated phosphorylations, and certain EGF-stimulated phosphorylations, were inhibited by PI3K (phosphoinositide 3-kinase) inhibitors, whereas the RSK inhibitor BI-D1870 inhibited the PMA-induced phosphorylations. The expression of LKB1 in HeLa cells and the use of AICAR in HEK-293 cells promoted phosphorylation of Ser588, but only weak Ser341 and Thr642 phosphorylations and binding to 14-3-3s. Paradoxically however, phenformin activated AMPK without promoting AS160 phosphorylation. The IGF-1-induced phosphorylation of the novel phosphorylated Ser666-Pro site was suppressed by AICAR, and by combined mutation of a TOS (mTOR signalling)-like sequence (FEMDI) and rapamycin. Thus, although AS160 is a common target of insulin, IGF-1, EGF, PMA and AICAR, these stimuli induce distinctive patterns of phosphorylation and 14-3-3 binding, mediated by at least four protein kinases.  相似文献   

11.
Site-specific phosphorylation of tau negatively regulates its ability to bind and stabilize microtubule structure. Although tau is a substrate of glycogen synthase kinase 3beta (GSK3beta), the exact sites on tau that are phosphorylated by this kinase in situ have not yet been established, and the effect of these phosphorylation events on tau-microtubule interactions have not been fully elucidated. GSK3beta phosphorylates both primed and unprimed sites on tau, but only primed phosphorylation events significantly decrease the ability of tau to bind microtubules. The focus of the present study is on determining the importance of the GSK3beta-mediated phosphorylation of a specific primed site, Thr231, in regulating tau's function. Pre-phosphorylation of Ser235 primes tau for phosphorylation by GSK3beta at Thr231. Phosphorylation by GSK3beta of wild-type tau or tau with Ser235 mutated to Ala decreases tau-microtubule interactions. However, when Thr231 alone or Thr231 and Ser235 in tau were mutated to Ala, phosphorylation by GSK3beta did not decrease the association of tau with the cytoskeleton. Further, T231A tau was still able to efficiently bind microtubules after phosphorylation by GSK3beta. Expression of each tau construct alone increased tubulin acetylation, a marker of microtubule stability. However, when cells were cotransfected with wild-type tau and GSK3beta, the level of tubulin acetylation was decreased to vector-transfected levels. In contrast, coexpression of GSK3beta with mutated tau (T231A/S235A) did not significantly decrease the levels of acetylated tubulin. These results strongly indicate that phosphorylation of Thr231 in tau by GSK3beta plays a critical role in regulating tau's ability to bind and stabilize microtubules.  相似文献   

12.
Alzheimer disease neurons are characterized by extraneuronal plaques formed by aggregated amyloid-β peptide and by intraneuronal tangles composed of fibrillar aggregates of the microtubule-associated Tau protein. Tau is mostly found in a hyperphosphorylated form in these tangles. Glycogen synthase kinase 3β (GSK3β) is a proline-directed kinase generally considered as one of the major players that (hyper)phosphorylates Tau. The kinase phosphorylates mainly (Ser/Thr)-Pro motifs and is believed to require a priming activity by another kinase. Here, we use an in vitro phosphorylation assay and NMR spectroscopy to characterize in a qualitative and quantitative manner the phosphorylation of Tau by GSK3β. We find that three residues can be phosphorylated (Ser-396, Ser-400, and Ser-404) by GSK3β alone, without priming. Ser-404 is essential in this process, as its mutation to Ala prevents all activity of GSK3β. However, priming enhances the catalytic efficacy of the kinase, as initial phosphorylation of Ser-214 by the cAMP-dependent protein kinase (PKA) leads to the rapid modification by GSK3β of four regularly spaced additional sites. Because the regular incorporation of negative charges by GSK3β leads to a potential parallel between phospho-Tau and heparin, we investigated its interaction with the heparin/low density lipoprotein receptor binding domain of human apolipoprotein E. We indeed observed an interaction between the GSK3β-promoted regular phospho-pattern on Tau and the apolipoprotein E fragment but none in the absence of phosphorylation or the presence of an irregular phosphorylation pattern by the prolonged activity of PKA. Apolipoprotein E is therefore able to discriminate and interact with specific phosphorylation patterns of Tau.  相似文献   

13.
Neurodegenerative diseases associated with the pathological aggregation of microtubule-associated protein Tau are classified as tauopathies. Alzheimer disease, the most common tauopathy, is characterized by neurofibrillary tangles that are mainly composed of abnormally phosphorylated Tau. Similar hyperphosphorylated Tau lesions are found in patients with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) that is induced by mutations within the tau gene. To further understand the etiology of tauopathies, it will be important to elucidate the mechanism underlying Tau hyperphosphorylation. Tau phosphorylation occurs mainly at proline-directed Ser/Thr sites, which are targeted by protein kinases such as GSK3β and Cdk5. We reported previously that dephosphorylation of Tau at Cdk5-mediated sites was enhanced by Pin1, a peptidyl-prolyl isomerase that stimulates dephosphorylation at proline-directed sites by protein phosphatase 2A. Pin1 deficiency is suggested to cause Tau hyperphosphorylation in Alzheimer disease. Up to the present, Pin1 binding was only shown for two Tau phosphorylation sites (Thr-212 and Thr-231) despite the presence of many more hyperphosphorylated sites. Here, we analyzed the interaction of Pin1 with Tau phosphorylated by Cdk5-p25 using a GST pulldown assay and Biacore approach. We found that Pin1 binds and stimulates dephosphorylation of Tau at all Cdk5-mediated sites (Ser-202, Thr-205, Ser-235, and Ser-404). Furthermore, FTDP-17 mutant Tau (P301L or R406W) showed slightly weaker Pin1 binding than non-mutated Tau, suggesting that FTDP-17 mutations induce hyperphosphorylation by reducing the interaction between Pin1 and Tau. Together, these results indicate that Pin1 is generally involved in the regulation of Tau hyperphosphorylation and hence the etiology of tauopathies.  相似文献   

14.
Wnt/β-catenin signaling controls a variety of cellular processes, including cell growth, oncogenesis, and development. Upon Wnt stimulation, the intracellular region of the coreceptor, LRP6 or 5, is phosphorylated by the membrane-recruited GSK3β and CK1. The cytoplasmic domain of LRP6/5 contains one Ser/Thr cluster and the PPPSP motifs, both of which are essential for propagation of the signal. While the phosphorylated PPPSP motifs are known to directly inhibit GSK3β, the biochemical role of the phosphorylated Ser/Thr cluster remains to be elucidated. Herein, we reveal that the Ser/Thr cluster plays an important role in the phosphorylation of the PPPSP motif. Interestingly, we observe that GSK3β activity on the PPPSP motif requires a high ATP concentration, close to that of the physiological condition. Taken together, these data suggest that the phosphorylated Ser/Thr cluster serves as a docking site for GSK3β to promote the phosphorylation of the PPPSP motif. Our results provide insight into the molecular mechanism for the initial events of the Wnt/β-catenin signaling.  相似文献   

15.
Collapsin response mediator protein 2 (CRMP2) is an intracellular protein that mediates signaling of Semaphorin3A (Sema3A), a repulsive axon guidance molecule. Fyn, a Src-type tyrosine kinase, is involved in the Sema3A signaling. However, the relationship between CRMP2 and Fyn in this signaling pathway is still unknown. In our research, we demonstrated that Fyn phosphorylated CRMP2 at Tyr32 residues in HEK293T cells. Immunohistochemical analysis using a phospho-specific antibody at Tyr32 of CRMP showed that Tyr32-phosphorylated CRMP was abundant in the nervous system, including dorsal root ganglion neurons, the molecular and Purkinje cell layer of adult cerebellum, and hippocampal fimbria. Overexpression of a nonphosphorylated mutant (Tyr32 to Phe32) of CRMP2 in dorsal root ganglion neurons interfered with Sema3A-induced growth cone collapse response. These results suggest that Fyn-dependent phosphorylation of CRMP2 at Tyr32 is involved in Sema3A signaling.Collapsin response mediator proteins (CRMPs)4 have been identified as intracellular proteins that mediate Semaphorin3A (Sema3A) signaling in the nervous system (1). CRMP2 is one of the five members of the CRMP family. CRMPs also mediate signal transduction of NT3, Ephrin, and Reelin (24). CRMPs interact with several intracellular molecules, including tubulin, Numb, kinesin1, and Sra1 (58). CRMPs are involved in axon guidance, axonal elongation, cell migration, synapse maturation, and the generation of neuronal polarity (1, 2, 4, 5).CRMP family proteins are known to be the major phosphoproteins in the developing brain (1, 9). CRMP2 is phosphorylated by several Ser/Thr kinases, such as Rho kinase, cyclin-dependent kinase 5 (Cdk5), and glycogen synthase kinase 3β (GSK3β) (2, 1013). The phosphorylation sites of CRMP2 by these kinases are clustered in the C terminus and have already been identified. Rho kinase phosphorylates CRMP2 at Thr555 (10). Cdk5 phosphorylates CRMP2 at Ser522, and this phosphorylation is essential for sequential phosphorylations by GSK3β at Ser518, Thr514, and Thr509 (2, 1113). These phosphorylations disrupt the interaction of CRMP2 with tubulin or Numb (2, 3, 13). The sequential phosphorylation of CRMP2 by Cdk5 and GSK3β is an essential step in Sema3A signaling (11, 13). Furthermore, the neurofibrillary tangles in the brains of people with Alzheimer disease contain hyperphosphorylated CRMP2 at Thr509, Ser518, and Ser522 (14, 15).CRMPs are also substrates of several tyrosine kinases. The phosphorylation of CRMP2 by Fes/Fps and Fer has been shown to be involved in Sema3A signaling (16, 17). Phosphorylation of CRMP2 at Tyr479 by a Src family tyrosine kinase Yes regulates CXCL12-induced T lymphocyte migration (18). We reported previously that Fyn is involved in Sema3A signaling (19). Fyn associates with PlexinA2, one of the components of the Sema3A receptor complex. Fyn also activates Cdk5 through the phosphorylation at Tyr15 of Cdk5 (19). In dorsal root ganglion (DRG) neurons from fyn-deficient mice, Sema3A-induced growth cone collapse response is attenuated compared with control mice (19). Furthermore, we recently found that Fyn phosphorylates CRMP1 and that this phosphorylation is involved in Reelin signaling (4). Although it has been shown that CRMP2 is involved in Sema3A signaling (1, 11, 13), the relationship between Fyn and CRMP2 in Sema3A signaling and the tyrosine phosphorylation site(s) of CRMPs remain unknown.Here, we show that Fyn phosphorylates CRMP2 at Tyr32. Using a phospho-specific antibody against Tyr32, we determined that the residue is phosphorylated in vivo. A nonphosphorylated mutant CRMP2Y32F inhibits Sema3A-induced growth cone collapse. These results indicate that tyrosine phosphorylation by Fyn at Tyr32 is involved in Sema3A signaling.  相似文献   

16.
Increasing evidence shows that calpain‐mediated proteolytic processing of a selective number of proteins plays an important role in neuronal apoptosis. Study of calpain‐mediated cleavage events and related functions may contribute to a better understanding of neuronal apoptosis and neurodegenerative diseases. We, therefore, investigated the role of calpain substrates in potassium deprivation‐induced apoptosis of cerebellar granule neurons (CGNs). Twelve previously known and seven novel candidates of calpain substrates were identified by 2‐D DIGE and MALDI‐TOF/TOF MS analysis. Further, the identified novel calpain substrates were validated by Western blot analysis. Moreover, we focused on the collapsin response mediator proteins (CRMP‐1, ‐2, ‐3 and ‐4 isoforms) and found that CRMPs were proteolytically processed by calpain but not by caspase, both in vivo and in vitro. To clarify the properties of the calpain‐mediated proteolysis of CRMPs, we constructed the deletion mutants of CRMPs for additional biochemical studies. In vitro cleavage assays revealed that CRMP‐1, ‐2 and ‐4 were truncated by calpain at the C‐terminus, whereas CRMP‐3 was cleaved at the N‐terminus. Finally, we assessed the role of CRMPs in the process of potassium deprivation‐triggered neuronal apoptosis by overexpressing the truncated CRMPs in CGNs. Our data clearly showed that the truncated CRMP‐3 and ‐4, but not CRMP‐1 and ‐2, significantly induced neuronal apoptosis. These findings demonstrated that calpain‐truncated CRMP‐3 and ‐4 act as pro‐apoptotic players when CGNs undergo apoptosis.  相似文献   

17.
Wnt/β-catenin signaling plays a central role in development and is also involved in a diverse array of diseases. Binding of Wnts to the coreceptors Frizzled and LRP6/5 leads to phosphorylation of PPPSPxS motifs in the LRP6/5 intracellular region and the inhibition of GSK3β bound to the scaffold protein Axin. However, it remains unknown how GSK3β is specifically inhibited upon Wnt stimulation. Here, we show that overexpression of the intracellular region of LRP6 containing a Ser/Thr rich cluster and a PPPSPxS motif impairs the activity of GSK3β in cells. Synthetic peptides containing the PPPSPxS motif strongly inhibit GSK3β in vitro only when they are phosphorylated. Microinjection of these peptides into Xenopus embryos confirms that the phosphorylated PPPSPxS motif potentiates Wnt-induced second body axis formation. In addition, we show that the Ser/Thr rich cluster of LRP6 plays an important role in LRP6 binding to GSK3β. These observations demonstrate that phosphorylated LRP6/5 both recruits and directly inhibits GSK3β using two distinct portions of its cytoplasmic sequence, and suggest a novel mechanism of activation in this signaling pathway.  相似文献   

18.
Phosphoserine-binding modules help determine the specificity of signal transduction events. One such module, the group IV WW domain, plays an essential role in targeting the phosphorylation-specific prolyl isomerase Pin1 to its substrates. These modules require Ser/Thr phosphorylation of their ligands for binding activity. However, phosphorylation of these modules and its functional significance have not been described, nor is it known whether the function of Pin1 is regulated. Here we show that Pin1 WW domain is phosphorylated on Ser(16) both in vitro and in vivo. Further, this phosphorylation regulates the ability of the WW domain to mediate Pin1 substrate interaction and cellular localization. Moreover, both Pin1 and WW domain mutants refractory to Ser(16) phosphorylation act as dominant-negative mutants to induce mitotic block and apoptosis and increase multinucleated cells with 8 N DNA content. Thus, phosphorylation is a new mechanism critical for regulating WW domain phosphoserine binding activity and Pin1 function.  相似文献   

19.
The WW module of the peptidyl-prolyl cis/trans isomerase Pin1 targets specifically phosphorylated proteins involved in the cell cycle through the recognition of phospho-Thr(Ser)-Pro motifs. When the microtubule-associated Tau protein becomes hyperphosphorylated, it equally becomes a substrate for Pin1, with two recognition sites described around the phosphorylated Thr212 and Thr231. The Pin1 WW domain binds both sites with moderate affinity, but only the Thr212-Pro213 bond is isomerized by the catalytic domain of Pin1. We show here that, in a peptide carrying a single recognition site, the WW module increases significantly the enzymatic isomerase activity of Pin1. However, with addition of a second recognition motif, the affinity of both the WW and catalytic domain for the substrate increases, but the isomerization efficacy decreases. We therefore conclude that the WW domain can act as a negative regulator of enzymatic activity when multiple phosphorylation is present, thereby suggesting a subtle mechanism of its functional regulation.  相似文献   

20.
R Dajani  E Fraser  S M Roe  N Young  V Good  T C Dale  L H Pearl 《Cell》2001,105(6):721-732
Glycogen synthase kinase 3 beta (GSK3 beta) plays a key role in insulin and Wnt signaling, phosphorylating downstream targets by default, and becoming inhibited following the extracellular signaling event. The crystal structure of human GSK3 beta shows a catalytically active conformation in the absence of activation-segment phosphorylation, with the sulphonate of a buffer molecule bridging the activation-segment and N-terminal domain in the same way as the phosphate group of the activation-segment phospho-Ser/Thr in other kinases. The location of this oxyanion binding site in the substrate binding cleft indicates direct coupling of P+4 phosphate-primed substrate binding and catalytic activation, explains the ability of GSK3 beta to processively hyperphosphorylate substrates with Ser/Thr pentad-repeats, and suggests a mechanism for autoinhibition in which the phosphorylated N terminus binds as a competitive pseudosubstrate with phospho-Ser 9 occupying the P+4 site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号