首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Severe combined immune deficiency (SCID) mice exhibit limited repair of DNA double-strand breaks and are sensitive to ionizing radiation due to a mutation of the DNA-dependent protein kinase catalytic subunit gene. To elucidate the effects of deficient DNA double-strand break repair on radiation-induced carcinogenesis, the dose-response relationship for the induction of all tumor types was examined in wild-type and SCID mice. In wild-type mice, the incidence of thymic lymphomas at gamma-ray doses up to 1 Gy was almost equal to the background level, increased gradually above 1 Gy, and reached a maximum of 12.5% at 5 Gy, which is indicative of a threshold dose of less than 1 Gy. SCID mice were extremely susceptible to the induction of spontaneous and radiation-induced thymic lymphomas. The incidence of thymic lymphomas in SCID mice irradiated with 0.1 Gy or less was similar to the background level; that is, it increased markedly from 31.7% at 0.1 Gy to 51.4% at 0.25 Gy, and reached a maximum of 80.6% at 2 Gy, suggesting the presence of a threshold-like dose at low gamma-ray doses, even in radiosensitive SCID mice. As the average latency for the induction of thymic lymphomas at 0.1 Gy was significantly shortened, the effect of 0.1 Gy gamma-rays on thymic lymphoma induction was marginal. The high susceptibility of SCID mice to develop thymic lymphomas indicates that thymic lymphomas are induced by a defect in DNA double-strand break repair or V(D)J recombination. Excessive development of tumors other than thymic and nonthymic lymphomas was not observed in SCID mice. Furthermore, our data suggest that the defective double-strand break repair in SCID mice is not a major determinant for the induction of nonlymphoid tumors.  相似文献   

2.
3.
Radiation-induced thymic lymphoma in mice is a useful model for studying both the mechanism of radiation carcinogenesis and genetic susceptibility to tumor development. Using array-comparative genomic hybridization, we analyzed genome-wide changes in DNA copy numbers in radiation-induced thymic lymphomas that had developed in susceptible C57BL/6 and resistant C3H mice and their hybrids, C3B6F1 and B6C3F1 mice. Besides aberrations at known relevant genetic loci including Ikaros and Bcl11b and trisomy of chromosome 15, we identified strain-associated genomic imbalances on chromosomes 5, 10 and 16 and strain-unassociated trisomy of chromosome 14 as frequent aberrations. In addition, biallelic rearrangements at Tcrb were detected more frequently in tumors from C57BL/6 mice than in those from C3H mice, suggesting aberrant V(D)J recombination and a possible link with tumor susceptibility. The frequency and spectrum of these copy-number changes in lymphomas from C3B6F1 and B6C3F1 mice were similar to those in C57BL/6 mice. Furthermore, the loss of heterozygosity analyses of tumors in F(1) mice indicated that allelic losses at Ikaros and Bcl11b were caused primarily by multilocus deletions, whereas those at the Cdkn2a/Cdkn2b and Pten loci were due mainly to uniparental disomy. These findings provide important clues to both the mechanisms for accumulation of aberrations during radiation-induced lymphomagenesis and the different susceptibilities of C57BL/6 and C3H mice.  相似文献   

4.
Although information on the molecular pathways in radiation carcinogenesis is accumulating, the data are still relatively scanty. To find the tumor suppressor locus associated with radiation carcinogenesis, we determined the frequency and distribution of loss of heterozygosity (LOH) of X-ray-induced thymic lymphomas of B6C3F(1) mice using 58 microsatellite markers and compared the results with those for spontaneous lymphomas and N-ethylnitrosourea (ENU)-induced lymphomas. Based on the results, we describe a unique locus with frequent LOH in the centromeric region of chromosome 11 of X-ray-induced lymphomas. This locus has never been observed to be altered similarly in either ENU-induced or spontaneous lymphomas, suggesting radiation-specific molecular alteration. The LOH patterns of individual thymic lymphomas indicated that the common region of LOH was located within 1.6 cM between D11Mit62 and D11Mit204, a region syntenic to human chromosome 7p13. Linkage analysis revealed that the markers of the common LOH region were genetically linked to Ikaros (now known as Znfn1a1), a master gene of lymphopoiesis. Although the presence of radiation-associated LOH in other loci cannot be ruled out, these results suggest a novel molecular pathway in induction of thymic lymphomas by ionizing radiation.  相似文献   

5.
Scid mice are defective in the ability to repair DNA double strand breaks and, as a consequence, their cells are radiosensitive. Further, they have been shown to be prone to develop thymic lymphomas (TLs) after small doses of ionizing radiation. Little is known, however, on the role of scid mutation in chemical carcinogenesis. To determine if scid mutation increased predisposition to chemical carcinogenesis, we examined both the susceptibility of scid mice to N-ethyl-N-nitrosourea (ENU)-induced lymphomagenesis and the involvement of ras gene activation. Adult female mice at 8 weeks of age were given ENU in their drinking water at 400 ppm for 2-10 weeks. Contrary to expectations, we observed a two to three-fold reduction in TL development in the scid mice. The highest incidence was achieved by ENU treatment for 8 weeks for scid and wild-type C.B-17 mice, of 42 and 85%, respectively (P<0.05). We investigated whether this was attributable to the usage of the ras mutation pathway. There was, however, no significant difference in the frequency and spectrum of K-ras mutation between the scid and wild-type C.B-17 mice. Most of the K-ras mutations were either GGT to GAT transition in codon 12 (11/23: 48%) or CAA to CCA transversion in codon 61 (8/23: 35%) that was independent of scid background. The incidence of N-ras mutation was very low. These results indicate that scid mice are less susceptible to ENU-induced lymphomagenesis and ras gene mutation frequently occurs in both scid and wild-type C.B-17 mice.  相似文献   

6.
7.
Ionizing radiation (IR) is a well-known carcinogen, however the mechanism of radiation induced thymic lymphoma is not well known. Moreover, an easy and effective method to protect mice from radiation induced thymic lymphoma is still unknown. Hydrogen, or H(2), is seldom regarded as an important agent in medical usage, especially as a therapeutic gas. Here in this study, we found that H(2) protects mice from radiation induced thymic lymphoma in BALB/c mice.  相似文献   

8.
We have developed a system for analysis of murine leukemic virus (MuLV) receptors on the surface of thymic lymphoma cells utilizing the fluorescence-activated cell sorter. The binding of fluoresceinated or rhodaminated MuLV to target cells showed saturation kinetics and was blocked by homologous MuLV, and bound MuLV had a polypeptide profile identical to that of input MuLV. Thymic lymphomas bound specifically the MuLV which induced them, whereas only 0.5 to 2% of normal thymocytes showed equivalent MuLV binding. Simultaneous binding of excess fluoresceinated RadLV and rhodaminated MCF-247 AKR virus to radiation leukemia virus-induced or spontaneous AKR thymic lymphomas demonstrated that even in the presence of both viruses the cells bound preferentially the inducing MuLV. Examination of the C57BL/Ka endogenous viruses showed that radiation leukemia virus-induced thymic lymphomas bind only thymotropic-leukemogenic radiation leukemia virus and not eco- or xenofibrotropic MuLV's. Thus, virus binding in this system involves only leukemogenic isolates of these retroviruses and implies a central role of this receptor-ligand interaction in the processes of leukemic transformation.  相似文献   

9.
Mismatch repair (MMR) genes, such as Msh2, are classified as "mutator" genes, responsible for the microsatellite instability identified in many tumors. In the current study, the mutation frequency and mutational spectrum in thymic lymphoma arising in Msh2 deficient mice are investigated. Thymic lymphoma developed in Msh2-/- background displayed an eight to nine-fold increase in mutation frequency compared to the normal thymi in Msh2 deficient animals. Sequencing demonstrated significantly different mutational spectra between normal thymus tissue and thymic lymphomas in Msh2-/- mice (P=0.02). The tumor mutational spectrum is characterized by an increase in base substitutions occurring at A:T sites, and multiple mutations, as well as a minor increase in -1 frameshifts. We analyzed mutations in different parts of the tumors, and different regional hotspots could be identified. Several hotspot mutations that are a rare event in normal tissues were identified in the tumor tissues. We conclude that thymic lymphomas arising in Msh2 deficient genetic background are hypermutable and the altered mutational spectrum might be an indication of infidelity of DNA replication during tumorigenesis.  相似文献   

10.
11.
Bcl11b is a haploinsufficient tumor suppressor gene and expressed in many tissues such as thymus, brain and skin. Irradiated Bcl11b+/− heterozygous mice mostly develop thymic lymphomas, but the preference of Bcl11b inactivation for thymic lymphomas remains to be addressed. We produced Bcl11b+/− heterozygous and Bcl11b wild-type mice of p53+/− background and compared their incidence of γ-ray induced thymic lymphomas. Majority of the tumors in p53+/− mice were skin tumors, and only 5 (36%) of the 14 tumors were thymic lymphomas. In contrast, Bcl11b+/−p53+/− doubly heterozygous mice developed thymic lymphomas at the frequency of 27 (79%) of the 34 tumors developed (P = 0.008). This indicates the preference of Bcl11b impairment for thymic lymphoma development. We also analyzed loss of the wild-type alleles in the 27 lymphomas, a predicted consequence given by γ-irradiation. However, the loss frequency was low, only six (22%) for Bcl11b and five (19%) for p53. The frequencies did not differ from those of spontaneously developed thymic lymphomas in the doubly heterozygous mice, though the latency of lymphoma development markedly differed between them. This suggests that the main contribution of irradiation at least in those mice is not for the tumor initiation by inducing allelic losses but probably for the promotion of thymic lymphoma development.  相似文献   

12.
A total of 8,229 C57 Black mice of both sexes were randomly assigned to various groups. In some groups, mice aged 33 +/- 3 days were submitted to either sham, neutron or cobalt external radiation at 32, 45, 63, 88 and 123 mGy or at 18, 25, 36 and 51 cGy dose levels, respectively. In other groups, mice either at birth or weaning, were injected with tritiated thymidine or tritiated water, or were given tritiated water as drinking water for the entire lifespan. The main purpose of the experiment was to investigate the low dose-response relationship of cancer induction, especially leukemogenesis and to evaluate the excess risk, using actuarial age-specific rates. Following neutron or cobalt exposure, the phenotypic occurrence of lymphocytic lymphomas was earlier in appearance and higher in yield during the first decades of lifespan in irradiated groups versus matching controls, whereas such occurrence was markedly lower in yield at a later age. Under parallel experimental conditions, induction of reticulum cell lymphomas, however, was uniformly enhanced throughout the entire lifespan. Induction rates of all tumors (reticular and solid) pooled were significantly increased, and more so following cobalt than neutron irradiation. In mice injected with tritiated thymidine, the overall tumor incidence was increased monotonically throughout the lifespan. In mice exposed to tritiated water, the incidence of lymphocytic lymphomas was markedly increased throughout the lifespan, whereas no such effect was observed for reticulum cell tumors. In the light of tumor data analysis, it appears that selection of a particular type of tumor as a dependent variable for dose-response assessment cannot disregard the primary modulation of the whole tumor spectrum, In C57 Black murine leukemogenesis, the shape and structure of the dose-response regression curve over the entire lifespan dose not fit the linear-quadratic model. It is, however, theorized that our data are consistent with the two-mutation clonal expansion model, assuming creation of initiated cells which are added to the pool of spontaneously occurring initiated cells and implying that the excess risk is initially high at early age and then decreases with increasing age following exposure. It is concluded that murine radiocarcinogenesis investigation may contribute to improving the assessment as well as understanding the underlying mechanisms of low level radiation hazards.  相似文献   

13.
The induction of thymic lymphomas by whole-body X irradiation with four doses of 1.8 Gy (total dose: 7.2 Gy) in C57BL/6 mice was suppressed from a high frequency (90%) to 63% by preirradiation with 0.075 Gy X rays given 6 h before each 1.8-Gy irradiation. This level was further suppressed to 43% by continuous whole-body irradiation with 137Cs gamma rays at a low dose rate of 1.2 mGy/h for 450 days, starting 35 days before the challenging irradiation. Continuous irradiation at 1.2 mGy/h resulting in a total dose of 7.2 Gy over 258 days yielded no thymic lymphomas, indicating that this low-dose-rate radiation does not induce these tumors. Further continuous irradiation up to 450 days (total dose: 12.6 Gy) produced no tumors. Continuously irradiated mice showed no loss of hair and a greater body weight than unirradiated controls. Immune activities of the mice, as measured by the numbers of CD4+ T cells, CD40+ B cells, and antibody-producing cells in the spleen after immunization with sheep red blood cells, were significantly increased by continuous 1.2-mGy/h irradiation alone. These results indicate the presence of an adaptive response in tumor induction, the involvement of radiation-induced immune activation in tumor suppression, and a large dose and dose-rate effectiveness factor (DDREF) for tumor induction with extremely low-dose-rate radiation.  相似文献   

14.
RF/J mice are susceptible to the induction of thymic lymphomas by the carcinogens 3-methylcholanthrene and N-methyl-N-nitrosourea. Given the association of mouse mammary tumor virus (MMTV) with certain thymomas, we examined genomic DNA from chemically induced lymphomas of RF/J mice for new MMTV proviruses. Of 13 tissue culture lines derived from 3-methylcholanthrene-induced tumors, 5 had acquired new proviruses. MMTV amplification coincided with the appearance of viral mRNAs and proteins. However, no primary tumors or animal-passaged tumors contained new proviruses. These observations indicate that MMTV does not have a role in the tumor induction process, although it may become activated and amplified in tissue culture lines derived from tumors.  相似文献   

15.
3-Methylcholanthrene-induced T-cell thymic lymphomas in RF mice were examined for involvement of murine leukemia virus (MuLV)-related sequences in leukemogenesis. Both the expression of MuLV-related RNA species and the organization of endogenous MuLV proviral DNA were analyzed. Of 27 primary tumors examined, only 5 exhibited elevated MuLV-related RNA species homologous to xenotropic specific env DNA. None of these RNA species hybridized with ecotropic p15E DNA sequences. Only two of these five tumors contained MuLV-like RNA species that hybridized with ecotropic MuLV long terminal repeat sequences, despite the probe's ability to detect both ecotropic MuLV and mink cell focus-inducing viral RNA. No muLV resembling mink cell focus-inducing virus whose expression could be correlated with lymphomagenesis was detected in either preleukemic thymocytes, primary 3-methylcholanthrene-induced thymic tumors, tumors passaged in vivo, or cell lines derived from tumors. Restriction endonuclease analysis of DNA from both primary tumors and cell lines failed to reveal either proviral DNA with recombinant env genes or rearrangement of endogenous MuLV proviruses. Therefore, chemically induced lymphomagenesis in RF mice appears different from the spontaneous lymphomagenic process in AKR mice with respect to the involvement of endogenous MuLV sequences.  相似文献   

16.
We have previously identified activation of ras proto-oncogenes and inactivation of tumor suppressor genes including p53, p16(INK4a) and p15(INK4b) in 2',3'-dideoxycytidine (ddC)- and/or 1,3-butadiene (BD)-induced lymphomas derived from B6C3F1 (C57BL/6xC3H/He) mice, indicating that alterations of ras signaling pathway, p53 and pRb growth control pathways are important in the development of these chemically induced lymphomas. However, there is still a subset of tumors that displayed no changes in these genes. Thus, we investigated whether the Raf1, Mdm2, c-Myc, Cdc25a and Cdc25b proto-oncogenes, which are implicated in the ras or p53 or pRb pathways, are alternative oncogenic target genes. Analyses of gross genomic alterations by Southern blots failed to reveal rearrangement or amplification in any of the tumors examined. Frequent point mutations on the substrate binding domain of the Raf1 gene has been reported in 1-ethyl-1-nitrosourea (ENU)-induced murine lymphomas and lung tumors, along with a conspicuous lack of ras mutations [U. Naumann, I. Eisenmann-Tappe, U.R. Rapp, The role of raf kinases in development and growth of tumors, Recent Results Cancer Res., 143 (1997) 237-244]. To investigate whether Raf1 mutation is involved in our set of tumor especially those without ras mutations, the PCR-based single-strand conformation analyses (SSCA) and direct DNA sequencing were employed. No mutations but four genetic polymorphisms between C57BL/6 and C3H/He were found, with two of them reported as point mutations previously (op. cit.). The polymorphisms were utilized for allelic loss study of Raf1 locus. Losses of heterozygosity were found in six of 31 BD-induced lymphomas. These results indicate that genetic alterations of c-Myc, Cdc25, Raf1 and Mdm2 proto-oncogenes may not be involved in the development of ddC- and BD-induced lymphomas and the inactivation of tumor suppressor gene(s) located close to Raf1 gene might be important in the development of a subset of BD-induced lymphomas.  相似文献   

17.
The detonation of a nuclear weapon or a nuclear accident represent possible events with significant exposure to mixed neutron/γ-radiation fields. Although radiation countermeasures generally have been studied in subjects exposed to pure photons (γ or X rays), the mechanisms of injury of these low linear energy transfer (LET) radiations are different from those of high-LET radiation such as neutrons, and these differences may affect countermeasure efficacy. We compared 30-day survival in mice after varying doses of pure γ and mixed neutron/γ (mixed field) radiation (MF, Dn/Dt = 0.65), and also examined peripheral blood cells, bone marrow cell reconstitution, and cytokine expression. Mixed-field-irradiated mice displayed prolonged defects in T-cell populations compared to mice irradiated with pure γ photons. In mouse survival assays, the growth factor granulocyte colony-stimulating factor (G-CSF) was effective as a (post-irradiation) mitigator against both γ-photons and mixed-field radiation, while the thrombopoietin (TPO) mimetic ALXN4100TPO was effective only against γ irradiation. The results indicate that radiation countermeasures should be tested against radiation qualities appropriate for specific scenarios before inclusion in response plans.  相似文献   

18.
19.
20.
Atm-deficient mice die of malignant thymic lymphomas characterized by translocations within the Tcr alpha/delta locus, suggesting that tumorigenesis is secondary to aberrant responses to double-stranded DNA (dsDNA) breaks that occur during RAG-dependent V(D)J recombination. We recently demonstrated that development of thymic lymphoma in Atm(-/-) mice was not prevented by loss of RAG-2. Thymic lymphomas that developed in Rag2(-/-) Atm(-/-) mice contained multiple chromosomal abnormalities, but none of these involved the Tcr alpha/delta locus. These findings indicated that tumorigenesis in Atm(-/-) mice is mediated by chromosomal translocations secondary to aberrant responses to dsDNA breaks and that V(D)J recombination is an important, but not essential, event in susceptibility. In contrast to these findings, it was recently reported that Rag1(-/-) Atm(-/-) mice do not develop thymic lymphomas, a finding that was interpreted as demonstrating a requirement for RAG-dependent recombination in the susceptibility to tumors in Atm-deficient mice. To test the possibility that RAG-1 and RAG-2 differ in their roles in tumorigenesis, we studied Rag1(-/-) Atm(-/-) mice in parallel to our previous Rag2(-/-) Atm(-/-) study. We found that thymic lymphomas occur at high frequency in Rag1(-/-) Atm(-/-) mice and resemble those that occur in Rag2(-/-) Atm(-/-) mice. These results indicate that both RAG-1 and RAG-2 are necessary for tumorigenesis involving translocation in the Tcr alpha/delta locus but that Atm deficiency leads to tumors through a broader RAG-independent predisposition to translocation, related to a generalized defect in dsDNA break repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号