首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-system notation was used to describe mature leaf morphologyin populations of conventional, afila, tendril-less and parsley-leafpeas. Structural modules of leaves were assigned one of elevenstate symbols according to their branching potential, i.e. thenumber and arrangement of rachillae and/or tendrils or leafletsto which each would give rise after one branching iteration.State transitions at successive iterations were examined acrossgenotypes with respect to location along the leaf and node ofinsertion. Leaf branching patterns were more complex and morevariable at higher nodes. Transition outcomes decreased in complexityfrom the base to the tip of the leaf. The first transition wasthe most variable; subsequent development of the leaf was moredeterministic. Lateral appendages were more likely to branchthan central ones. Afila and tendril-less mutations increasedthe complexity of the first transition outcome over conventionalleaves. Parsley-leaf pea leaves were more complex, but lessvariable than afila leaves. Results are discussed in relationto Young's (1983) model for pea leaf morphogenesis. Pea, Pisum sativum L., L-systems, leaf, morphology, branching  相似文献   

2.
The wildtype leaf of the garden pea possesses proximal pairsof leaflets and distal pairs of tendrils in the blade region.Theafila (af) mutation causes leaflets to be replaced by compound(branched) tendrils. We characterized the morphological variationin leaf form along the plant axis and leaf development in earlyand late postembryonic leaves onafilaplants to infer the roleof theAfgene. Leaf forms are more diverse early in shoot ontogenyonafilaplants.Afinfluences pinna length and pinna branchingin addition to pinna type. Pinna initiation in the proximalregion ofafilaleaf primordia is basipetal and delayed comparedto wildtype plants. In addition, pinna development in the proximalregion ofafilaleaves occurs for a longer period of time thanon wildtype leaf primordia. Therefore,Afregulates the timingand direction of leaf developmental processes in the proximalregion of the leaf, but has little effect on the distal region.These data support the heterochronic model of pea leaf morphogenesisproposed by Luet al. (International Journal of Plant Science157:311–355, 1996).Copyright 1999 Annals of Botany Company. afila,Fabaceae, garden pea, heterochrony, leaf morphogenesis,Pisum sativum.  相似文献   

3.
Two genotypes of the pea (Pisum sativum L.) with wild-type leaves (variety Orlovchanin, Af/Af genotype) and the afila morphotype (aphyllous variety Nord, af/af genotype) were compared in terms of growth performance and hormonal characteristics of different leaf parts and the whole plant. The replacement of leaflets by tendrils in the afila variety led to a reduction in total dry weight and the area of photosynthesizing surfaces. The loss of leaflets was partly compensated for by rapid expansion of stipules at early stages of plant development and by the hypertrophy of tendrils at later stages. The excessive development of stipules in afila plants was paralleled by the increase in IAA and cytokinin level in their tissues. The hypertrophied development of tendrils and chlorophyll accumulation in tendrils of afila plants was correlated with a high IAA and cytokinin content at a low ABA background level. The elevated content of ABA in tissues of wild-type plants was associated with the preferential development of leaflets and a larger transpiratory surface compared with those in the afila form. It is assumed that this feature ensures the turgescence of wild-type plants. The possible involvement of phytohormones in growth and morphogenesis of pea mutants is discussed.  相似文献   

4.
Isogenic lines of pea (Pisum sativum L.) with the genetically determined changes in leaf morphology, afila (af) and tendril-less (tl), were used to study the relationship between shoot and root growth rates. The time-course of shoot and root growth was followed during the pre-floral period in the intact plants grown under similar conditions. The af mutation produced afila leaves without leaflets, whereas in the case of the tl mutations, tendrils were substituted with leaflets, and acacia-like leaves were developed. Due to the changes in leaf morphology caused by these mutations, pea genotypes differed in leaf area: starting from day 7, the leaf area was lower in the af plants and larger in the tl plants as compared to the wild-type plants. Such divergence was amplified in the course of plant development and reached its maximum immediately before the transition to flowering. Plants of isogenic lines did not notably differ in stem surface areas. In spite of significant difference in total leaf area, the wild type and tl plants did not differ in leaf dry weight. Starting from leaf 9, the af plants lagged behind two leaflet-bearing genotypes (wild type and tl) in leaf dry weight, whereas stem dry weight was similar in the wild type and tl forms and slightly lower in the af plants. Root dry weights were practically similar in the wild type and tl plants until flowering. The reduction of leaf area in the af plants drastically reduced root dry weight. In other words, the latter index was related to the total weight and total area of leaves and stems. The correlation analysis demonstrated an extremely low relationship between leaf and stem area and dry weight and those of roots early in plant development (when plants develop five to seven leaves). Later, immediately before flowering (nine to eleven leaves), root weight was positively related to leaf weight and area; however, stem area and root weight did not correlate. Thus, in three genotypes (wild type, af, and tl), at the end of their vegetative growth phase, leaf and root biomass accumulated in proportion, independently of leaf area expansion.  相似文献   

5.
The comparative study of shoot and root growth was carried out, and the level of ABA therein determined in the mutant af and tl and wild-type isogenic lines of pea. The recessive af mutation transformed the leaflets into tendrils, and the tl mutation transformed the tendrils into leaflets. These mutations did not affect the length and number of internodes. In all plants, the level of ABA in the leaves was 3–10 times greater than in the roots, and in the course of vegetative growth it rose in both organs. An increase in the shoot area of tl mutant did not change the dry weight of underground and above-ground parts; therefore, the ratio shoot/root in the mutant was identical to that in the wild-type plants. The maintenance of shoot dry weight in the tl mutant at the level of wild-type plant while its area considerably increased was accounted for by a decrease in the thickness of the leaflet and stipule blades. The level of ABA in the stipules of mutant plants was greater than in the wild-type plants. A decrease in the shoot area in the af mutant brought about a decline in its dry weight; however, the ratio root/shoot was maintained at the wild-type level due to a reduced accumulation of dry weight by the root. The level of ABA in the roots of the af mutant was twice greater than in the leafy forms. ABA was assumed to participate in the control over the root growth exerted by the shoot. The absence of leaflets in the af plants was partially compensated for by expanding stipules. The level of ABA therein was three times higher than in the plants of wild type and comparable with the level in the leaflets of the tl mutant and in the wild-type plants. The role of ABA in the growth and final size of leaf blades is discussed.  相似文献   

6.
After gamma irradiation of pea seeds, a mutation designated as tendril-less2 (tl2) was induced. In the heterozygous state, it transforms tendrils into very narrow leaflets that resemble the heterozygote phenotype of the classic tl mutation. The tendrils of the double heterozygote tl2/+, tl/+ are converted into oval leaflets. Unlike tl, the novel mutation in the homozygous state does not affect tendrils. The leaf phenotype of homozygotes tl2/tl2 and Tl2/Tl2 do not differ in the tl/+ background. However, the anthocyanin pigmentation is strongly suppressed in petals of tl2/tl2 plants. Some hypotheses to explain the unusual phenotypic manifestation of tl2 are suggested.  相似文献   

7.
HARVEY  D. M. 《Annals of botany》1972,36(5):981-991
The reproducible steady-state carbon dioxide (CO2) photoassimilationpotentials of three mutants and a normal form of pea (Pisumsativum L.) have been compared. The three mutants studied differed markedly in foliar morphology:genotype af af Tl Tl had leaflets converted to tendrils; AfAf tl tl had tendrils converted to leaflets; af af tl tl hadrelatively minute leaflets on a branched petiole. Interest layprimarily in the phenotype with only tendrils since it provideda potential means of reducing the volume of haulm that has tobe rapidly processed in the case of vining peas, and dried inthe case of harvest peas. These mutants had been derived from relatively unimproved cultivars.Before completion of the lengthy backcrossing required to makea full assessment of the value of such mutants an interim studyusing infra red gas analysis indicated that, in terms of CO2 photoassimilation perunit area of youngest expanded attached leaf of glasshouse-grownplants, the mutants were comparable to normal. The phenotypewith only tendrils was the least efficient of those assayedat utilizing light of an intensity below 100 J m2 sec1 (400–700nm), and on a unit dry-weight basis it was only 18 per centas efficient as a normal-leaved pea. The other mutants werecomparable to normal in this respect. Comparison of CO2 photoassimilation of glasshouse-grown andfield-grown plants showed them to be similar though they differedin dry weight, transpiration, and dark respiration.  相似文献   

8.
Properties of a mutant at theLLD (LEAF-LET DEVELOPMENT) locus in peaPisum sativum L. are reported in this paper. Plants homozygous for the Mendelian recessive mutationlld bear leaves in which a few to many leaflets are incompletely developed. Opposite pinnae of rachis nodes often formed fused incompletely developed leaflets. Thelld mutation was observed to abort pinna development at almost all morphogenetic stages. Thelld mutation demonstrated high penetrance and low expressivity. The phenotypes oflld plants intl, tac, tl tac, tl af andtl af tac backgrounds suggested that LLD function is involved in the separation of lateral adjacent blastozones differentiated on primary, secondary and tertiary rachides and lamina development in leaflets. The aborted development of tendrils and leaflets inlld mutants was related to deficiency in vascular tissue growth. The morphological and anatomical features of the leaflets formed on atl lld double mutant permitted a model of basipetal leaflet development. The key steps of leaflet morphogenesis include origin of the lamina by splitting of a radially symmetrical growing pinna having abaxial outer surface, opposite to the vascular cylinder, through an invaginational groove, differentiation of adaxial surface along the outer boundary of split tissue in the groove and expansion of the lamina ridges so formed into lamina spans.  相似文献   

9.
DeMason DA 《Planta》2005,222(1):151-166
A number of mutations that alter the form of the compound leaf in pea (Pisum sativum) has proven useful in elucidating the role that auxin might play in pea leaf development. The goals of this study were to determine if auxin application can rescue any of the pea leaf mutants and if gibberellic acid (GA) plays a role in leaf morphogenesis in pea. A tissue culture system was used to determine the effects of various auxins, GA or a GA biosynethesis inhibitor (paclobutrazol) on leaf development. The GA mutant, nana1 (na1) was analyzed. The uni-tac mutant was rescued by auxin and GA and rescue involved both a conversion of the terminal leaflet into a tendril and an addition of a pair of lateral tendrils. This rescue required the presence of cytokinin. The auxins tested varied in their effectiveness, although methyl-IAA worked best. The terminal tendrils of wildtype plantlets grown on paclobutrazol were converted into leaflets, stubs or were aborted. The number of lateral pinna pairs produced was reduced and leaf initiation was impaired. These abnormalities resembled those caused by auxin transport inhibitors and phenocopy the uni mutants. The na1 mutant shared some morphological features with the uni mutants; including, flowering late and producing leaves with fewer lateral pinna pairs. These results show that both auxin and GA play similar and significant roles in pea leaf development. Pea leaf morphogenesis might involve auxin regulation of GA biosynthesis and GA regulation of Uni expression.  相似文献   

10.
The stipule mutant cochleata(coch) and the simple-leaf mutantunifoliata(uni) are utilized to increase understanding of the controlof compound leaf and flower development in pea. The phenotypeof the coch mutant, which affects the basal stipules of thepea leaf, is described in detail. Mutant coch flowers have supernumeraryorgans, abnormal fusing of flower parts, mosaic organs and partialmale and female sterility. The wild-type Coch gene is shownto have a role in inflorescence development, floral organ identityand in the positioning of leaf parts. Changes in meristem sizemay be related to changes in leaf morphology. In the coch mutant,stipule primordia are small and their development is retardedin comparison with that of the first leaflet primordia. Thediameter of the shoot apical meristem of the uni mutant is approx.25% less than that of its wild-type siblings. This is the firsttime that a significant difference in apical meristem size hasbeen observed in a pea leaf mutant. Genetic controls in thebasal part of the leaf are illustrated by interactions betweencoch and other mutants. The mutantcoch gene is shown to changestipules into a more ‘compound leaf-like’ identitywhich is not affected by thestipules reduced mutation. The interactionof coch and tendril-less(tl) genes reveals that the expressionof the wild-type Tl gene is reduced at the base of the leaf,supporting the theories of gradients of gene action. Copyright2001 Annals of Botany Company Pisum sativum, garden pea, leaf morphogenesis, compound leaf, leaf mutants, flower morphology  相似文献   

11.
HARVEY  D. M. 《Annals of botany》1978,42(2):331-336
The photosynthetic and respiratory net CO2 exchange potentialof the fruit of Pisum sativum was evaluated in one normal andthree mutant genotypes differing widely with respect to foliagearea and morphology: AfAf.StSt, conventional; AfAf.StSt, vestigialstipules; afaf.St.St, all leaflets replaced by tendrils butstipules normal (here termed ‘semi-leafless’) andafaf.stst, tendrils and vestigial stipules (‘leafless’).Agronomically the latter phenotype offered improvement in resistanceto lodging, crop drying, and harvester through-put. On a dry weight basis, fruits of the leafless mutant were consistentlymore active photosynthetically in terms of CO2 uptake from theatmosphere during the initial 18 days post-anthesis than werethe corresponding fruits of the other three phenotypes. Duringthe subsequent 16-day period of seed filling there was no markeddifference between phenotypes and the fruit continuously lostCO2 to the atmosphere, but significantly less CO2 was lost inthe light (40 k lux) than in the dark. That the fruit of theleafless mutant may therefore benefit from the increase in lightavailable to the fruit within a sward canopy comprised of tendrilsin place of leaflets is discussed. However, there was stilla significant reduction in seed yield associated with the leaflessmutant despite a normal complement of ovule initials. The growthcurves and mean dry weights per seed were not significantlydifferent between phenotypes. In fruit of the conventional phenotypethe attainment of maximal pod wall weight coincided with theinitiation of seed fillingonday 15 after anthesis. In a seriesof isogenic lines the gene af delayed maximal wall developmentby 6 days whilst the gene st markedly lowered the maximum wallweight attainable. Possible causes of yield reduction in theleafless mutant are discussed in relation to the observed actionof these genes in the homozygous double recessive condition.  相似文献   

12.
We explored whether epidermal pressure regulates cell and organgrowth in leaflets ofPisum sativumvar.argenteum,a mutant cultivarof the garden pea characterized by reduced adhesion betweenthe epidermis and subjacent mesophyll. Developing leaflets ofleaves arising at three positions on the seedling axis werepeeledin situand grown to maturity in humidity chambers. Themature anatomy and morphology could be accurately assessed becausewound responses normally associated with peeling were preventedby theArgmutation that permitted peeling without damage to themesophyll and by the humidity chambers that protected peeledareas from desiccation. The mesophyll cell size, state of differentiation,and layering pattern as well as the overall morphology of mature,peeled leaflets were indistinguishable from those of mature,intact leaflets grown under the same conditions. The epidermisexerted no detectable regulatory effect on the expansion ofthe leaflets as a whole or on the tissue layers and cells withinthe leaflets.Copyright 1999 Annals of Botany Company. Biomechanics, compression, epidermis, leaf development, mesophyll, pressure, wound response,Pisum sativumvar.argenteum.  相似文献   

13.
Summary Eight near-isogenic lines of pea representing all the homozygous combinations of three genes af, st and tl, which modify leaf shape and size, were crossed in all possible ways excepting reciprocals. An analysis of the resulting 36 families has shown that homozygous mutant alleles at the tl locus acting with homozygous mutant alleles at the af and st loci increase both seed weight and plant haulm weight. The mutant alleles at the af and st loci seem, when homozygous, to have little effect by themselves upon seed weight but they do increase or decrease haulm weight, respectively. There is clear evidence of heterotic effects resulting from heterozygosity at each one of the three loci which modify seed weight, haulm weight and basal branching. The implications of such heterotic effects in pea breeding programmes are discussed.  相似文献   

14.
In Pisum sativum, the completely penetrant leaflet development (lld) mutation is known to sporadically abort pinnae suborgans in the unipinnate compound leaf. Here, the frequency and morphology of abortion was studied in each of the leaf suborgans in 36 genotypes and in presence of auxin and gibberellin, and their antagonists. Various lld genotypes were constructed by multifariously recombining lld with a coch homeotic stipule mutation and with af, ins, mare, mfp, tl and uni-tac leaf morphology mutations. It was observed that the suborgans at all levels of pinna subdivisions underwent lld-led abortion events at different stages of development. As in leafblades, lld aborted the pinnae in leaf-like compound coch stipules. The lld mutation interacted with mfp synergistically and with other leaf mutations additively. The rod-shaped and trumpet-shaped aborted pea leaf suborgans mimicked the phenotype of aborted leaves in HD-ZIP-III-deficient Arabidopsis thaliana mutants. Suborganwise aborted morphologies in lld gnotypes were in agreement with basipetal differentiation of leaflets and acropetal differentiation in tendrils. Altogether, the observations suggested that LLD was the master regulator of pinna development. On the basis of molecular markers found linked to lld, its locus was positioned on the linkage group III of the P. sativum genetic map.  相似文献   

15.
The wildtype leaf blade of Pisum sativum possesses proximalleaflets and distal tendrils, which may be altered by two recessivemutations that affect pinna morphology, afila (afaf) and tendrilless(tltl). Using morphological observations and SEM, the variationin leaf forms along the plant axis and leaf development werecharacterized for plants heterozygous at the Af and/or Tl loci.The Af and Tl genes interacted to affect many characteristicsof shoot ontogeny, including rate changes in leaf blade lengthand complexity increases, as well as time to flowering. TheAf gene retarded early vegetative development and acceleratedthe time to flowering. The leaf phenotypes of these heterozygousgenotypes were specified mainly by changes in the timing ofmajor developmental events. The data support the hypothesesthat both genes are heterochronic in nature and that the pealeaf blade consists of three genetically- and developmentally-determined regions: proximal, distal and terminal. Copyright2000 Annals of Botany Company Heterochrony, leaf development, shoot ontogeny, Pisum sativum L., garden pea, afila,tendrilless .  相似文献   

16.
17.
The effects of genetically determined changes in leaf morphology on the characteristics of growth, pigment complex, and productivity were studied in pea plants (Pisum sativum L.). The homeotic afila(af) mutation, which transformed leaflets into tendrils, decreased the leaf area and the chlorophyll (Chl) content per plant (CCP) in the af/af plants 1.5-fold as compared to the wild type (Af/Af). The loss of leaflets in the af/af plants was partly recompensed by expansion of the tendrils and stipules and by extra accumulation of Chl (a + b). The mutation did not affect Chl (a + b) that fell to the share of light-harvesting complexes (LHC) and the ratio of Chl a/b (representing the relative distribution of chlorophylls between LHC and the reaction centers); neither it affected the quantum efficiency of the primary charge separation (F v/F m). The diminished assimilating area (AA) in the af/af plants at the preflowering period did not reduce the final biomass and grain yield. The measurement of the area shaded by plants in the glasshouse experiments and the direct assessment of the vertical profile of solar radiation in the field stand canopies demonstrated that this phenomenon was in particular related to the fact that, in the af/af plants, the solar radiation was available to the apical and subapical leaves (as in the wild-type plants) and also to the lower metamers. As a result, the actively functioning AA expanded, and the photoassimilating potential of the af/af plants was enhanced. Our data presume the direct relationship between plant production and CCP.  相似文献   

18.
The translocation profiles of 11C-photoassimilates from eithertendrils or leaflets of the compound leaf of Pisum sativum weresimilar in shape, speed and susceptibility to blockage by chillingand heat girdling. When the feed leaf component was exposedto an anaerobic gas stream consisting of N2 gas supplementedwith 40 Pa CO2, the export of previously-fixed 11C-photoassimilatesfrom both leaflets and tendrils continued in the light, butstopped in the dark. However, in the light, translocation of11C-assimilates from the leaflet was rapidly blocked by a flowof pure N2 (i.e. anoxia). Movement of 11C-assimilates from theleaf of another C3 plant, sunflower, was similar to that fromthe pea leaflet. In contrast to both laminar leaf components,export from the tendrils was stopped under pure N2 only in thedark. Taken together the data suggest that photosynthetic O2production facilitated the movement of 11C-assimilates in theabsence of exogenous O2. The differences observed between thetendrils and the leaflets exposed to pure N2 could be attributedto the greater capacity of tendrils to produce and recycle CO2to support photosynthetic O2 production in the light. Key words: Pea, 11C-translocation, anoxia, tendril, leaflet  相似文献   

19.
HARVEY  D. M. 《Annals of botany》1974,38(2):327-335
In experiments using radioactive carbon dioxide (14CO2) a comparisonwas made of the 14C-photoassimilate translocation potentialsof two normal leaved (genotype AfAfTlTl) and two mutant formsof Pisum sativum (pea). A 14CO2 administration method is describedthat permitted 14C-translocation studies to be conducted underfield conditions. One of the mutants available produced tendrils in place of leaves(afafTlTl). The other mutant studied was without tendrils buthad a much branched petiole with numerous relatively minuteleaflets (afaftltl). These mutants and the normal-leaved cultivarswith which they were compared were not isogenic lines. Lengthybackcrossing would be required before full assessment couldbe made of the possible agronomic value of such mutations. An interim evaluation of these mutants was based on 14C-distributionassays that were conducted 48 h after feeding 14CO2, to specifiedleaves. The indication was that in translocation terms the leafand pod had a well defined respective source and sink relationshipthat was independent of leaf morphology. In each case the podswhich constituted the major 14C sinks depended on which leafhad been fed 14CO2. With regard to sink specific activity asdefined by the quantity of 14C incorporated per unit dry weightof pod, the mutants were not significantly different from normal. The implication of these findings was that fundamental changesin pea leaf morphology could be made genetically without a markedeffect on the photoassimilate export potential of the leaf.  相似文献   

20.
Using ethyl methane sulfonate (EMS) treatment of the seeds ofline SGE, a new mutant of pea (Pisum sativum L.) with alterationsin root development was obtained. The mutant phenotype dependson the density of the growth substrate: on sand (a high densitysubstrate) the mutant forms a small compact curly root systemwhereas on vermiculite (a low density substrate) differencesbetween the root systems of the mutant and wild type plantsare less pronounced. Genetic analysis revealed that the mutantcarries a mutation in a new pea gene designedcrt (curly roots).Gene crt has been localized in pea linkage group V. The mutantline named SGEcrt showed increased sensitivity to exogenousauxin and an increased concentration of endogenous indole-3-aceticacid (IAA) in comparison with the wild type line SGE. Copyright2000 Annals of Botany Company Pisum sativum L., root development, garden pea mutant, curly roots, auxin, environmental stimulus response  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号