首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The opioid overdose epidemic is a major threat to the public’s health, resulting in the development and implementation of a variety of strategies to reduce fatal overdose [1-3]. Many strategies are focused on primary prevention and increased access to effective treatment, although the past decade has seen an exponential increase in harm reduction initiatives. To maximize identification of opportunities for intervention, initiatives focusing on prevention, access to effective treatment, and harm reduction are examined independently, although considerable overlap exists. Particular attention is given to harm reduction approaches, as increased public and political will have facilitated widespread implementation of several initiatives, including increased distribution of naloxone and policy changes designed to increase bystander assistance during a witnessed overdose [4-7].  相似文献   

2.
It has been estimated that a human cell is confronted with 1 million DNA lesions every day, one fifth of which may originate from the activity of Reactive Oxygen Species (ROS) alone [1,2]. Terminally differentiated neurons are highly active cells with, if any, very restricted regeneration potential [3]. In addition, genome integrity and maintenance during neuronal development is crucial for the organism. Therefore, highly accurate and robust mechanisms for DNA repair are vital for neuronal cells. This requirement is emphasized by the long list of human diseases with neurodegenerative phenotypes, which are either caused by or associated with impaired function of proteins involved in the cellular response to genotoxic stress [4-8]. Ataxia Telangiectasia Mutated (ATM), one of the major kinases of the DNA Damage Response (DDR), is a node that links DDR, neuronal development, and neurodegeneration [2,9-12]. In humans, inactivating mutations of ATM lead to Ataxia-Telangiectasia (A-T) disease [11,13], which is characterized by severe cerebellar neurodegeneration, indicating an important protective function of ATM in the nervous system [14]. Despite the large number of studies on the molecular cause of A-T, the neuroprotective role of ATM is not well established and is contradictory to its general proapoptotic function. This review discusses the putative functions of ATM in neuronal cells and how they might contribute to neuroprotection.  相似文献   

3.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.Key Words: fetomaternal microchimerism, stem cells, progenitor cells, placental barrier, blood-brain barrier, adhesion, migrationMicrochimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. This commonly occurs following transfusion or transplantation.13 Microchimerism can also occur between mother and fetus. Small numbers of cells traffic across the placenta during pregnancy. This exchange occurs both from the fetus to the mother (fetomaternal)47 and from the mother to the fetus.810 Similar exchange may also occur between monochorionic twins in utero.1113 There is increasing evidence that fetomaternal microchimerism persists lifelong in many child-bearing women.7,14 The significance of fetomaternal microchimerism remains unclear. It could be that fetomaternal microchimerism is an epiphenomenon of pregnancy. Alternatively, it could be a mechanism by which the fetus ensures maternal fitness in order to enhance its own chances of survival. In either case, the occurrence of pregnancy-acquired microchimerism in women may have implications for graft survival and autoimmunity. More detailed understanding of the biology of microchimeric fetal cells may also advance progress towards cytotherapeutic repair via intravenous transplantation of stem or progenitor cells.Trophoblasts were the first zygote-derived cell type found to cross into the mother. In 1893, Schmorl reported the appearance of trophoblasts in the maternal pulmonary vasculature.15 Later, trophoblasts were also observed in the maternal circulation.1620 Subsequently various other fetal cell types derived from fetal blood were also found in the maternal circulation.21,22 These fetal cell types included lymphocytes,23 erythroblasts or nucleated red blood cells,24,25 haematopoietic progenitors7,26,27 and putative mesenchymal progenitors.14,28 While it has been suggested that small numbers of fetal cells traffic across the placenta in every human pregnancy,2931 trophoblast release does not appear to occur in all pregnancies.32 Likewise, in mice, fetal cells have also been reported in maternal blood.33,34 In the mouse, fetomaternal transfer also appears to occur during all pregnancies.35  相似文献   

4.
5.
6.
A role for SR proteins in plant stress responses   总被引:1,自引:0,他引:1  
  相似文献   

7.
Tenascin-X (Tn-X) belongs to the tenascin family of glycoproteins and has been reported to be significantly associated with schizophrenia in a single nucleotide polymorphism analysis in humans. This finding indicates an important role of Tn-X in the central nervous system (CNS). However, details of Tn-X localization are not clear in the primate CNS. Using immunohistochemical techniques, we found novel localizations of Tn-X in the interstitial connective tissue and around blood vessels in the choroid plexus (CP) in macaque monkeys. To verify the reliability of Tn-X localization, we compared the Tn-X localization with the tenascin-C (Tn-C) localization in corresponding regions using neighbouring sections. Localization of Tn-C was not observed in CP. This result indicated consistently restricted localization of Tn-X in CP. Comparative investigations using mouse tissues showed equivalent results. Our observations provide possible insight into specific roles of Tn-X in CP for mammalian CNS function.Key words: tenascin-X, choroid plexus, monkey, mouse, Ehlers-Danlos syndrome, schizophrenia.The tenascins (Tn) are a family of four glyco-protein members – tenascin-C (Tn-C), tenascin-R (Tn-R), tenascin-W (Tn-W) and tenascin-X (Tn-X) – found diversely in the extra-cellular matrix of vertebrate organs (Hsia and Schwarzbauer, 2005; Tucker and Chiquet-Ehrismann, 2009). Important functions of Tn have been investigated in developmental cell adhesion modulation and pathological conditions such as wound healing and tumourigenesis (Adams and Watt, 1993; Hsia and Schwarzbauer, 2005; Tucker and Chiquet-Ehrismann, 2009). Tn-C and Tn-R are prominent in the nervous system and play a role in the development of neurite outgrowth and postnatal synaptic plasticity (Yamaguchi, 2000; Chiquet-Ehrismann and Tucker, 2004; Dityatev and Schachner, 2006). Tn-W is found abundantly in the developing bone and stroma of certain tumours (Chiquet-Ehrismann and Tucker, 2004; Tucker and Chiquet-Ehrismann, 2009). Tn-X is the first tenascin member shown to be clearly associated with the human connective tissue disorder Ehlers–Danlos syndrome (EDS; Burch et al., 1997). Patients with a Tn-X deficiency suffer from skin hyperextensibility, joint hypermobility and poor wound healing ability (Bristow et al., 2005). These symptoms are caused by the occurrence of abnormal irregular collagen fibres. Tn-X plays a role in collagen fibrillogenesis by directly binding to collagen (Mao et al. 2002; Minamitani et al. 2004). Mice with a Tn-X deficiency also showed skin symptoms comparable with those of EDS (Mao et al., 2002).Interestingly, in an analysis of human single nucleotide polymorphisms, Tn-X was reported to be significantly associated with schizophrenia (Wei and Hemmings, 2004; Tochigi et al., 2007). However, thus far, there have been no neuroanatomical reports on the involvement of Tn-X in schizophrenia. In the mammalian central nervous system (CNS), Tn-X mRNA expression has only been shown in the rat meninges of the olfactory bulb (Deckner et al., 2000). Recently, we found novel Tn-X localizations in the adult mouse leptomeninges trabecula in the cerebral cortex and in the connective tissue in the lateral ventricle choroid plexus (CP; Imura and Sato, 2008). Our finding of Tn-X localization in CP, which produces cerebrospinal fluid (CSF), might be a key factor in the investigation of the association between CSF metabolism and enlarged ventricles in schizophrenia. Enlarged ventricles are typical structural abnormalities associated with schizophrenia (Staal et al., 1999). Furthermore, CP secretes biologically active molecules into the CSF for brain development, activity and protection (Strazielle and Ghersi-Egea, 2000; Brown et al., 2004; Thouvenot et al., 2006; Johanson et al., 2008). In these molecules, for instance, there is a brain-derived neurotrophic factor (BDNF), the gene expression level and polymorphism of which have been analysed in relation to the pathogenesis of schizophrenia (Buckley et al., 2007). One study reported that BDNF is able to stimulate Tn-X expression in vitro (Takeda et al., 2005).The validity and limitations of animal models (rodents and monkeys) for use in the study of schizophrenia have been discussed (Tordjman et al., 2007). The authors concluded that monkeys appear to be an interesting social interaction model, more so than rodents, because of their complex well-organized social structure. In addition to differences in social structure, the dopaminergic system of rats and monkeys is quite different (García-Cabezas et al., 2009), and dysfunction of the dopaminergic system is related to schizophrenia (Wang et al. 2008).The CSF outflow system has been studied in some animal models (Kapoor et al., 2008). An anatomical difference in arachnoid granulations has been shown between rodents and monkeys (Krisch, 1988). Arachnoid granulations in monkeys are structurally similar to those in humans (Cooper, 1958; Krisch, 1988). In contrast, arachnoid granulations in rodents are similar to those of cats and dogs (Krisch, 1988). It is possible that Tn-X localization in CP is different between rodents and monkeys.Therefore, details concerning Tn-X localization in monkey CP need to be clarified. In the present study, we compared the immunohistochemistry of Tn-X in monkey CP with that in mouse CP. Subsequently, to verify the reliability of Tn-X localization, we compared it with Tn-C localization in corresponding regions using neighbouring sections.  相似文献   

8.
Elongation of pollen tubes in pistils after self-pollination of Lilium longiflorum cv. Hinomoto exhibiting strong gametophytic self-incompatibility was promoted by cAMP and also promoted by some metabolic modulators, namely, activators (forskolin and cholera toxin) of adenylate cyclase and inhibitors (3-isobutyl-1-methylxanthine and pertussis) of cyclic nucleotide phosphodiesterase. Moreover, the elongation was promoted by acetylcholine (ACh) and other choline derivatives, such as acetylthiocholine, L-α-phosphatidylcholine and chlorocholinechloride [CCC; (2-chloroethyl) trimethyl ammonium chloride]. A potent inhibitor (neostigmine) of acetylcholinesterase (AChE) as well as acetylcholine also promoted the elongation. cAMP enhanced choline acetyltransferase (ChAT) activity and suppressed AChE activity in the pistils, suggesting that the results are closely correlated with self-incompatibility in L. longiflorum. In short, it came to light that cAMP modulates ChAT (acetylcholine-forming enzyme) and AChE (acetylchoine-decomposing enzyme) activities to enhance the level of ACh in the pistils of L. logiflorum after self-incompatible pollination. These results indicate that the self-incompatibility on self-pollination is caused by low levels of ACh and/or cAMP.Key Words: pollen tubes, self-incompatibility, Lilium longiflorum, cAMP, acetylcholie, AChE, ChATCyclic AMP (cAMP) is an essential signaling molecule in both prokaryotes and eukaryotes.1 The existence of cAMP in higher plants was questioned by some reviewers24 in the mid 1970''s, so that many workers were discouraged from studying roles in plant biology. However, its presence was confirmed by mass spectrometry5 and infrared spectrometry6 in the early 1980''s and increasing evidence712 now suggests that cAMP makes important contributions in plant cells, as in animals.Lily (Lilium longiflorum) exhibits strong gametophytic self-incompatibility.13,14 Thus, elongation of pollen tubes in the pistil after self-incompatible pollination in L. longiflorum cv. Hinomoto stops halfway, in contrast to the case after cross-compatible pollination (cross with cv. Georgia).14 This self-incompatibility appears to be associated with the stress and self-incompatible pollination on stigmas of lilies results in activation and/or induction of enzymes such as NADH- and NADPH-dependent oxidases, xanthine oxidase, superoxide dismutase (SOD), catalase and ascorbate peroxidase in the pistils.15 The activities of NADH- and NADPH-dependent oxidases (O2-forming enzymes), however, are known to be suppressed by cAMP16 and increase in the level of cAMP in guinea pig neutrophils results in their decreased expression.17 The level of O2 reactions with SOD is also decreased by cAMP.18 In the case of the lily, inhibition of NADH- and NADPH-dependent oxidases by cAMP was found to be noncompetitive with NAD(P)H.16 We hypothesized that decrease in active oxygen species such as O2 and suppression of stress enzyme activities in self-pollinated pistils of lily by cAMP might cause elongation of pollen tubes after self-pollination and this proved to be the case. Namely, elongation of pollen tubes after self-incompatible pollination in lily was promoted by exogenous cAMP at a concentration as low as 10 nM, a conceivable physiological level.13 Moreover, similar elongation could be achieved with adenylate cyclase activators [forskolin(FK) and cholera toxin] and cAMP phosphodiesterase inhibitors [3-isobutyl-1-methylxanthine (IBMX) and pertussis toxin].14,19 These phenomena led us to examine the involvement of endogenous cAMP in pistils after self-incompatible or cross-compatible pollination. As expected, the level of endogenous cAMP in pistils after self-pollination was approximately one half of that after cross-pollination. Furthermore, this was associated with a concomitant decrease in adenylate cyclase and increase in cAMP phosphodiesterase.19Many researchers in the field of plant biology have been unsuccessful in attempts to estimate the quantity of cAMP and to detect activities of adenylate cyclase and cAMP phosphodiesterase. On major difficulty is the presence of proteases and we have overcome this problem by using protease inhibitors, such as aprotinin and leupeptin.19In 1947, acetylcholine (ACh) of higher plants was first reported in a nettle (Urtica urens) found in the Himalaya mountain range.20 In 1983, its existence in plants was confirmed by mass spectrometry of preparations from Vigna seedlings.21 In our preliminary studies, CCC (chlorocholinechloride), a plant growth retardant (specifically an anti-gibberellin), enhanced the elongation of the pollen tubes in pistils after self-incompatible pollination in lilies. This led us to investigate whether other choline derivatives cause similar effects and positive findings were obtained with ACh, acetylthiocholine and L-α-phosphatidlylcholine.22 Moreover, the elongation was also promoted by neostigmine, an inhibitor of acetylcholine esterase (AChE) activity. In line with these results, choline acetyltransferase (ChAT) demonstrated low and AChE high activity in pistils after self-incompatible pollination.The positive influence of cAMP14,19 and ACh22 in pistils of L. longiflorum after self-incompatible pollination encouraged us to examine the involvement of these two molecules in regulation of pollen tube elongation of lily after self-incompatible and cross-compatible pollination. As a result, it was revealed that cAMP promotes ChAT and suppresses AChE activity in pistils after both self- and cross-pollination. In other words, the self-incompatibilty in pistils of L. longiflorum appears to be due to levels of ACh and/or cAMP below certain threshold values.Hitherto, these substances have not been recognized to play important roles in the metabolic systems of higher plants. However, given their conservation through evolution, it is natural that such central metabolic substances make essential contributions, regardless of the organism. We have succeeded in establishing physiological functions of cAMP and ACh in pistils of lily14,19,22 and this points to use of plant reproductive organs such as research materials. The exact responsibilities of the two molecules may depend on differences in tissues or organs of plants and further molecular biological studies in this area are clearly warranted. This issue is currently being investigated.  相似文献   

9.
The review tracks the history of electrical long-distance signals from the first recordings of action potentials (APs) in sensitive Dionea and Mimosa plants at the end of the 19th century to their re-discovery in common plants in the 1950''s, from the first intracellular recordings of APs in giant algal cells to the identification of the ionic mechanisms by voltage-clamp experiments. An important aspect is the comparison of plant and animal signals and the resulting theoretical implications that accompany the field from the first assignment of the term “action potential” to plants to recent discussions of terms like plant neurobiology.Key Words: action potentials, slow wave potentials, plant nerves, plant neurobiology, electrical signaling in plants and animailsFor a long time plants were thought to be living organisms whose limited ability to move and respond was appropriately matched by limited abilities of sensing.1 Exceptions were made for plants with rapid and purposeful movements such as Mimosa pudica (also called the sensitive plant), Drosera (sundews), Dionea muscipula (flytraps) and tendrils of climbing plants. These sensitive plants attracted the attention of outstanding pioneer researchers like Pfeffer,2,3 Burdon-Sanderson,4,5 Darwin,6 Haberlandt79 and Bose.1013 They found them not only to be equipped with various mechanoreceptors exceeding the sensitivity of a human finger but also to trigger action potentials (APs) that implemented these movements.The larger field of experimental electrophysiology started with Luigi Galvani''s discovery of “animal electricity” or contractions of isolated frog legs suspended between copper hooks and the iron grit of his balcony.14 It soon became clear that the role of the electric current was not to provide the energy for the contraction but to simulate a stimulus that existed naturally in the form of directionally transmitted electrical potentials. Studies by both Matteucci and Du Bois-Reymond15 recognized that wounding of nerve strands generated the appearance of a large voltage difference between the wounded (internal) and intact (external) site of nerves. This wound or injury potential was the first, crude measurement of what later became known as membrane or resting potential of nerve cells. It was also found that various stimuli reduced the size of the potential (in modern terms: they caused a depolarization), and to describe the propagating phenomenon novel terms such as action potential (AP) and action current were created (reviewed in refs. 15 and 16). Rather than relying on such indirect methods, the membrane theory of exicitation proposed by Bernstein in 191217 made it desirable to directly measure the value of cell membrane potentials. Such progress soon became possible by the introduction of microelectrodes (KCl-filled glass micropipettes with a tip diameter small enough to be inserted into living cells) to record intracellular, i.e., the real membrane potentials (Vm). The new technique was simultaneously adopted for giant cells (axons) of cephalopods such as Loligo and Sepia18 and giant internodal cells of Charophytic green algae. In the 1930s Umrath and Osterhout1921 not only made the first reliable, intracellular measurements of membrane potentials in plant cells (reporting Vm values between −100 to −170 mV) but the first intracellular recordings of plant APs as well. When this technique was complemented with precise electronic amplifiers and voltage clamp circuits in the 1940s, one could measure ion currents (instead of voltages) and so directly monitor the activity of ion channels. The smart application of these methods led to a new, highly detailed understanding of the ionic species and mechanisms involved in Vm changes, especially APs.2227 Whereas the depolarizing spike in animal nerve cells is driven by an increased influx of Na+ ions, plant APs were found to involve influx of Ca2+ and/or efflux of Cl−1 ions.The first extracellular recording of a plant AP was initiated by Charles Darwin and performed on leaves of the Venus flytrap (Dionea muscipula Ellis) by the animal physiologist Burdon-Sanderson in 1873.46 Ever since APs have often been considered to fulfil comparable roles in plants and nerve-muscle preparations of animals. However, this was never a generally accepted view. While it is commonly assumed that the AP causes the trap closure, this had not been definitely shown (see refs. 28 and 29). Kunkel (1878) and Bose (1907, 1926) measured action spikes also in Mimosa plants where they preceded the visible folding movements of the leaflets.1213,3031 Dutrochet and Pfeffer23 had already found before that interrupting vascular bundles by incision prevented the excitation from propagating beyond the cut and concluded that the stimulus must move through the vascular bundles, in particular the woody or hadrome part (in modern terms the xylem). Haberlandt7 cut or steam-killed the external, nonwoody part of the vascular bundles and concluded that the phloem strands were the path for the excitation, a notion which is confirmed by a majority of recent studies in Mimosa and other plant species. APs have their largest amplitude near and in the phloem and there again in the sieve cells.2324,3235 Moreover, APs can be recorded through the excised stylets of aphids known to be inserted in sieve tube elements.3637 Other studies found that AP-like signals propagate with equal rate and amplitude through all cells of the vascular bundle.38 Starting studies with isolated vascular bundles (e.g., from the fern Adiantum), Bose found increasing amplitudes of heat-induced spikes by repeated stimulation (tetanisation) and incubation in 0.5 % solution of sodium carbonate.1013 Since the electrical behavior of isolated vascular strands was comparable to that of isolated frog nerves, Bose felt justified to refer to them as plant nerves.Although at the time a hardly noticed event, the discovery that normal plants such as pumpkins had propagating APs just as the esoteric “sensitive” plants was a scientific breakthrough with important consequences.3940,32 First, it corrected the long-held belief that normal plants are simply less sensitive and responsive than the so-called “sensitive plants” from Mimosa to Venus flytraps. Second, it led to the stimulating belief that so widely distributed electric signals must carry important messages.41 The ensuing studies made considerable progress in linking electrical signals with respiration and photosynthesis,4042 pollination,4344 phloem transport33,3637,45 and the rapid, plant-wide deployment of plant defenses.4653The detailed visualization of nerve cells with silver salts by the Spanish zoologist S. Ramon y Cajal, the demonstrated existence of APs in Dionea and Mimosa as well as the discovery of plant mechanoreceptors in these and other plants9 at the end of the century was sufficient stimulation to start a search for structures that could facilitate the rapid propagation of these and other excitation signals. Researchers began to investigate easily stainable intracellular plasma strands that run across the lumen of many plant cells, and sometimes even continue over several cells for their potential role as nerve-like, excitation-conducting structures. Such strands were shown to occur in traumatized areas of many roots54 and in insectivorous butterworts where they connect the glue-containing hair tips with the basal peptidase-producing glands of the Pinguicula leaves.5556 However, after investigating these claims, Haberlandt came to the conclusion that the only nerve-like structures of plants were situated the long phloem cells of the vascular bundles.78 From that time on papers, lectures and textbooks reiterated statements that “plants have no nerves”.This unproductive expression ignores the work of Darwin, Haberlandt, Pfeffer and Bose together with the fact that in spite of their anatomical differences, nerve cell networks and vascular bundles share the analog function of conducting electrical signals. Similar anatomical differences have not been an obstacle to stating that both plants and animals consist of cells. The mechanistic similarity of excitations (consisting of a transient decline in cell input resistance) in plant and nerve cells was later elegantly demonstrated by the direct comparison of action potentials in Nitella and the giant axon of squids.5758 Today, consideration of nerve-like structures in plants involves increasingly more aspects of comparison. We know that many plants can efficiently produce electric signals in the form of action potentials and slow wave potentials (= variation potentials) and that the long-distance propagation of these signals proceeds in the vascular bundles. We also know that plants like Dionea can propagate APs with high efficiency and speed without the use of vascular bundles, probably because their cells are electrically coupled through plasmodesmata. Other analogies with neurobiology include vesicle-operated intercellular clefts in axial root tissues (the so-called plant synapses)59 as well as the certain existence and operation of substances like neurotransmitters and synaptotagmins in plant cells (e.g., refs. 60 and 61). The identification of the role(s) of these substances in plants will have important implications. Altogether, modern plant neurobiology might emerge as a coherent science.62Electrophysiological and other studies of long-distance signals in plants and animals greatly contributed to our knowledge of the living world by revealing important similarities and crucial differences between plants and animals in an area that might directly relate to their different capacities to respond to environmental signals. Even at this stage the results are surprising. Rather than lacking electric signals, higher plants have developed more than just one signal type that is able to cover large distances. In addition to APs that occur also in animals and lower plants,63 higher plants feature an additional, unique, hydraulically propagated type of electric signals called slow wave potentials.64  相似文献   

10.
Peptide signaling regulates a variety of developmental processes and environmental responses in plants.16 For example, the peptide systemin induces the systemic defense response in tomato7 and defensins are small cysteine-rich proteins that are involved in the innate immune system of plants.8,9 The CLAVATA3 peptide regulates meristem size10 and the SCR peptide is the pollen self-incompatibility recognition factor in the Brassicaceae.11,12 LURE peptides produced by synergid cells attract pollen tubes to the embryo sac.9 RALFs are a recently discovered family of plant peptides that play a role in plant cell growth.Key words: peptide, growth factor, alkalinization  相似文献   

11.
12.
13.
Non-CG methylation is well characterized in plants where it appears to play a role in gene silencing and genomic imprinting. Although strong evidence for the presence of non-CG methylation in mammals has been available for some time, both its origin and function remain elusive. In this review we discuss available evidence on non-CG methylation in mammals in light of evidence suggesting that the human stem cell methylome contains significant levels of methylation outside the CG site.Key words: non-CG methylation, stem cells, Dnmt1, Dnmt3a, human methylomeIn plant cells non-CG sites are methylated de novo by Chromomethylase 3, DRM1 and DRM2. Chromomethylase 3, along with DRM1 and DRM2 combine in the maintenance of methylation at symmetric CpHpG as well as asymmetric DNA sites where they appear to prevent reactivation of transposons.1 DRM1 and DRM2 modify DNA de novo primarily at asymmetric CpH and CpHpH sequences targeted by siRNA.2Much less information is available on non-CG methylation in mammals. In fact, studies on mammalian non-CG methylation form a tiny fraction of those on CG methylation, even though data for cytosine methylation in other dinucleotides, CA, CT and CC, have been available since the late 1980s.3 Strong evidence for non-CG methylation was found by examining either exogenous DNA sequences, such as plasmid and viral integrants in mouse and human cell lines,4,5 or transposons and repetitive sequences such as the human L1 retrotransposon6 in a human embryonic fibroblast cell line. In the latter study, non-CG methylation observed in L1 was found to be consistent with the capacity of Dnmt1 to methylate slippage intermediates de novo.6Non-CG methylation has also been reported at origins of replication7,8 and a region of the human myogenic gene Myf3.9 The Myf3 gene is silenced in non-muscle cell lines but it is not methylated at CGs. Instead, it carries several methylated cytosines within the sequence CCTGG. Gene-specific non-CG methylation was also reported in a study of lymphoma and myeloma cell lines not expressing many B lineage-specific genes.10 The study focused on one specific gene, B29 and found heavy CG promoter methylation of that gene in most cell lines not expressing it. However, in two other cell lines where the gene was silenced, cytosine methylation was found almost exclusively at CCWGG sites. The authors provided evidence suggesting that CCWGG methylation was sufficient for silencing the B29 promoter and that methylated probes based on B29 sequences had unique gel shift patterns compared to non-methylated but otherwise identical sequences.10 The latter finding suggests that the presence of the non-CG methylation causes changes in the proteins able to bind the promoter, which could be mechanistically related to the silencing seen with this alternate methylation.Non-CG methylation is rarely seen in DNA isolated from cancer patients. However, the p16 promoter region was reported to contain both CG and non-CG methylation in breast tumor specimens but lacked methylation at these sites in normal breast tissue obtained at mammoplasty.11 Moreover, CWG methylation at the CCWGG sites in the calcitonin gene is not found in normal or leukemic lymphocyte DNA obtained from patients.12 Further, in DNA obtained from breast cancer patients, MspI sites that are refractory to digestion by MspI and thus candidates for CHG methylation were found to carry CpG methylation.13 Their resistance to MspI restriction was found to be caused by an unusual secondary structure in the DNA spanning the MspI site that prevents restriction.13 This latter observation suggests caution in interpreting EcoRII/BstNI or EcoRII/BstOI restriction differences as due to CWG methylation, since in contrast to the 37°C incubation temperature required for full EcoRII activity, BstNI and BstOI require incubation at 60°C for full activity where many secondary structures are unstable.The recent report by Lister et al.14 confirmed a much earlier report by Ramsahoye et al.15 suggesting that non-CG methylation is prevalent in mammalian stem cell lines. Nearest neighbor analysis was used to detect non-CG methylation in the earlier study on the mouse embryonic stem (ES) cell line,15 thus global methylation patterning was assessed. Lister et al.14 extend these findings to human stem cell lines at single-base resolution with whole-genome bisulfite sequencing. They report14 that the methylome of the human H1 stem cell line and the methylome of the induced pluripotent IMR90 (iPS) cell line are stippled with non-CG methylation while that of the human IMR90 fetal fibroblast cell line is not. While the results of the two studies are complementary, the human methylome study addresses locus specific non-CG methylation. Based on that data,14 one must conclude that non-CG methylation is not carefully maintained at a given site in the human H1 cell line. The average non-CG site is picked up as methylated in about 25% of the reads whereas the average CG methylation site is picked up in 92% of the reads. Moreover, non-CG methylation is not generally present on both strands and is concentrated in the body of actively transcribed genes.14Even so, the consistent finding that non-CG methylation appears to be confined to stem cell lines,14,15 raises the possibility that cancer stem cells16 carry non-CG methylation while their nonstem progeny in the tumor carry only CG methylation. Given the expected paucity of cancer stem cells in a tumor cell population, it is unlikely that bisulfite sequencing would detect non-CG methylation in DNA isolated from tumor cells since the stem cell population is expected to be only a very minor component of tumor DNA. Published sequences obtained by bisulfite sequencing generally report only CG methylation, and to the best of our knowledge bisulfite sequenced tumor DNA specimens have not reported non-CG methylation. On the other hand, when sequences from cell lines have been reported, bisulfite-mediated genomic sequencing8 or ligation mediated PCR17 methylcytosine signals outside the CG site have been observed. In a more recent study plasmid DNAs carrying the Bcl2-major breakpoint cluster18 or human breast cancer DNA13 treated with bisulfite under non-denaturing conditions, cytosines outside the CG side were only partially converted on only one strand18 or at a symmetrical CWG site.13 In the breast cancer DNA study the apparent CWG methylation was not detected when the DNA was fully denatured before bisulfite treatment.13In both stem cell studies, non-CG methylation was attributed to the Dnmt3a,14,15 a DNA methyltransferase with similarities to the plant DRM methyltransferase family19 and having the capacity to methylate non-CG sites when expressed in Drosophila melanogaster.15 DRM proteins however, possess a unique permuted domain structure found exclusively in plants19 and the associated RNA-directed non-CG DNA methylation has not been reproducibly observed in mammals despite considerable published2023 and unpublished efforts in that area. Moreover, reports where methylation was studied often infer methylation changes from 5AzaC reactivation studies24 or find that CG methylation seen in plants but not non-CG methylation is detected.21,22,25,26 In this regard, it is of interest that the level of non-CG methylation reported in stem cells corresponds to background non-CG methylation observed in vitro with human DNA methyltransferase I,27 and is consistent with the recent report that cultured stem cells are epigenetically unstable.28The function of non-CG methylation remains elusive. A role in gene expression has not been ruled out, as the studies above on Myf3 and B29 suggest.9,10 However, transgene expression of the bacterial methyltransferase M.EcoRII in a human cell line (HK293), did not affect the CG methylation state at the APC and SerpinB5 genes29 even though the promoters were symmetrically de novo methylated at mCWGs within each CCWGG sequence in each promoter. This demonstrated that CG and non-CG methylation are not mutually exclusive as had been suggested by earlier reports.9,10 That observation is now extended to the human stem cell line methylome where CG and non-CG methylation co-exist.14 Gene expression at the APC locus was likewise unaffected by transgene expression of M.EcoRII. In those experiments genome wide methylation of the CCWGG site was detected by restriction analysis and bisulfite sequencing,29 however stem cell characteristics were not studied.Many alternative functions can be envisioned for non-CG methylation, but the existing data now constrains them to functions that involve low levels of methylation that are primarily asymmetric. Moreover, inheritance of such methylation patterns requires low fidelity methylation. If methylation were maintained with high fidelity at particular CHG sites one would expect that the spontaneous deamination of 5-methylcytosine would diminish the number of such sites, so as to confine the remaining sites to those positions performing an essential function, as is seen in CG methylation.3033 However, depletion of CWG sites is not observed in the human genome.34 Since CWG sites account for only about 50% of the non-CG methylation observed in the stem cell methylome14 where methylated non-CG sites carry only about 25% methylation, the probability of deamination would be about 13% of that for CWG sites that are subject to maintenance methylation in the germ line. Since mutational depletion of methylated cytosines has to have its primary effect on the germ line, if the maintenance of non-CG methylation were more accurate and more widespread, one would have had to argue that stem cells in the human germ lines lack CWG methylation. As it is the data suggests that whatever function non-CG methylation may have in stem cells, it does not involve accurate somatic inheritance in the germ line.The extensive detail on non-CG methylation in the H1 methylome14 raises interesting questions about the nature of this form of methylation in human cell lines. A key finding in this report is the contrast between the presence of non-CG methylation in the H1 stem cell line and its absence in the IMR90 human fetal lung fibroblast cell line.14 This suggests that it may have a role in the origin and maintenance of the pluripotent lineage.14By analogy with the well known methylated DNA binding proteins specific for CG methylation,35 methylated DNA binding proteins that selectively bind sites of non-CG methylation are expected to exist in stem cells. Currently the only protein reported to have this binding specificity is human Dnmt1.3638 While Dnmt1 has been proposed to function stoichiometrically39 and could serve a non-CG binding role in stem cells, this possibility and the possibility that other stem-cell specific non-CG binding proteins might exist remain to be been explored.Finally, the nature of the non-CG methylation patterns in human stem cell lines present potentially difficult technical problems in methylation analysis. First, based on the data in the H1 stem cell methylome,40 a standard MS-qPCR for non-CG methylation would be impractical because non-CG sites are infrequent, rarely clustered and are generally characterized by partial asymmetric methylation. This means that a PCR primer that senses the 3 adjacent methylation sites usually recommended for MS-qPCR primer design41,42 cannot be reliably found. For example in the region near Oct4 (Chr6:31,246,431), a potential MS-qPCR site exists with a suboptimal set of two adjacent CHG sites both methylated on the + strand at Chr6:31,252,225 and 31,252,237.14,40 However these sites were methylated only in 13/45 and 30/52 reads. Thus the probability that they would both be methylated on the same strand is about 17%. Moreover, reverse primer locations containing non-CG methylation sites are generally too far away for practical bisulfite mediated PCR. Considering the losses associated with bisulfite mediated PCR43 the likelihood that such an MS-qPCR system would detect non-CG methylation in the H1 cell line or stem cells present in a cancer stem cell niche44,45 is very low.The second difficulty is that methods based on the specificity of MeCP2 and similar methylated DNA binding proteins for enriching methylated DNA (e.g., MIRA,46 COMPARE-MS47) will discard sequences containing non-CG methylation since they require cooperative binding afforded by runs of adjacent methylated CG sites for DNA capture. This latter property of the methylated cytosine capture techniques makes it also unlikely that methods based on 5-methylcytosine antibodies (e.g., meDIP48) will capture non-CG methylation patterns accurately since the stem cell methylome shows that adjacent methylated non-CG sites are rare in comparison to methylated CG sites.14In summary, whether or not mammalian stem cells in general or human stem cells in particular possess functional plant-like methylation patterns is likely to continue to be an interesting and challenging question. At this point we can conclude that the non-CG patterns reported in human cells appear to differ significantly from the non-CG patterns seen in plants, suggesting that they do not have a common origin or function.  相似文献   

14.
Here we announce the complete genome sequence of Croceibacter atlanticus HTCC2559T, which was isolated by high-throughput dilution-to-extinction culturing from the Bermuda Atlantic Time Series station in the Western Sargasso Sea. Strain HTCC2559T contained genes for carotenoid biosynthesis, flavonoid biosynthesis, and several macromolecule-degrading enzymes. The genome confirmed physiological observations of cultivated Croceibacter atlanticus strain HTCC2559T, which identified it as an obligate chemoheterotroph.The phylum Bacteroidetes comprises 6 to ∼30% of total bacterial communities in the ocean by fluorescence in situ hybridization (8-10). Most marine Bacteroidetes are in the family Flavobacteriaceae, most of which are aerobic respiratory heterotrophs that form a well-defined clade by 16S rRNA phylogenetic analyses (4). The members of this family are well known for degrading macromolecules, including chitin, DNA, cellulose, starch, and pectin (17), suggesting their environmental roles as detritus decomposers in the ocean (6). Marine Polaribacter and Dokdonia species in the Flavobacteriaceae have also shown to have photoheterotrophic metabolism mediated by proteorhodopsins (11, 12).Several strains of the family Flavobacteriaceae were isolated from the Sargasso Sea and Oregon coast, using high-throughput culturing approaches (7). Croceibacter atlanticus HTCC2559T was cultivated from seawater collected at a depth of 250 m from the Sargasso Sea and was identified as a new genus in the family Flavobacteriaceae based on its 16S rRNA gene sequence similarities (6). Strain HTCC2559T met the minimal standards for genera of the family Flavobacteriaceae (3) on the basis of phenotypic characteristics (6).Here we report the complete genome sequence of Croceibacter atlanticus HTCC2559T. The genome sequencing was initiated by the J. Craig Venter Institute as a part of the Moore Foundation Microbial Genome Sequencing Project and completed in the current announcement. Gaps among contigs were closed by Genotech Co., Ltd. (Daejeon, Korea), using direct sequencing of combinatorial PCR products (16). The HTCC2559T genome was analyzed with a genome annotation system based on GenDB (14) at Oregon State University and with the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (15, 16).The HTCC2559T genome is 2,952,962 bp long, with 33.9 mol% G+C content, and there was no evidence of plasmids. The number of protein-coding genes was 2,715; there were two copies of the 16S-23S-5S rRNA operon and 36 tRNA genes. The HTCC2559T genome contained genes for a complete tricarboxylic acid cycle, glycolysis, and a pentose phosphate pathway. The genome also contained sets of genes for metabolic enzymes involved in carotenoid biosynthesis and also a serine/glycine hydroxymethyltransferase, which is often associated with the assimilatory serine cycle (13). The potential for HTCC2559T to use bacterial type III polyketide synthase (PKS) needs to be confirmed because this organism had a naringenin-chalcone synthase (CHS) or chalcone synthase (EC 2.3.1.74), a key enzyme in flavonoid biosynthesis. CHS initiates the addition of three molecules of malonyl coenzyme A (malonyl-CoA) to a starter CoA ester (e.g., 4-coumaroyl-CoA) (1) and takes part in a few bacterial type III polyketide synthase systems (1, 2, 5, 18).The complete genome sequence confirmed that strain HTCC2559T is an obligate chemoheterotroph because no genes for phototrophy were found. As expected from physiological characteristics (6), the HTCC2559T genome contained a set of genes coding for enzymes required to degrade high-molecular-weight compounds, including peptidases, metallo-/serine proteases, pectinase, alginate lyases, and α-amylase.  相似文献   

15.
Aim of this study was to investigate the distribution of versican proteoglycan within the human dentine organic matrix by means of a correlative immunohistochemical analysis with field emission in-lens scanning electron microscope (FEI-SEM), transmission electron microscope (TEM), fluorescence microscope (FM) and biochemical assay. Specimens containing dentine and predentine were obtained from non carious human teeth and divided in three groups: 1) FEI-SEM group: sections were exposed to a pre-embedding immunohistochemical procedure; 2) TEM group: specimens were fixed, demineralised, embedded and submitted to a post-embedding immunohistochemical procedure; 3) FM group: sections mineralised and submitted to a pre-embedding immunohistochemical procedure with fluorescence labelling. Specimens were exposed to two different antibodies to assay distribution of versican fragments and whole versican molecule. Western Blotting analysis of dentine and pulp extracts was also performed. The correlative FEI-SEM,TEM and FM analysis revealed positive immunoreaction for versican fragments both in predentine and dentine, while few gold particles identifying the whole versican molecule were found in predentine only under TEM. No labelling of versican whole molecule was detected by FEI-SEM and FM analysis. The immunoblotting analysis confirmed the morphological findings. This study suggests that in fully developed human teeth versican fragments are significant constituents of the human dentine and predentine organic matrix, while versican whole molecule can be visualised in scarce amount within predentine only. The role of versican fragments within human dentine organic matrix should be further elucidated.Key words: versican, dentine matrix, immunohistochemistry, TEM, FEISEM, fluorescence microscope.The human dentine organic matrix is composed by a large complex of macromolecules capable of self-assembly. The dentine matrix is represented predominantly by type I collagen and completed by non collagenous glycoproteins, elastin, hyaluronan and proteoglycans (PGs). While type I collagen is the backbone of the dentine with a predominant structural role, non-collagenous proteins, and in particular PGs, are believed to play fundamental functional roles during odontogenesis, mineralization and homeostasis of dentine.The process of odontogenesis appears to be controlled by a precise sequential expression of a pool of extracellular non-collagenous proteins that induces modifications within the extracellular environment of the predentine leading to the formation of the dentine matrix (Embery et al., 2001). Similarly, dentine mineralization involves a dynamic transition from the unmineralised predentine to the mineralised mature dentine, in which the role of specific regulative mineralisation proteins appears to be pivotal in the precipitation of the minerals and in the formation of apatite crystals (Embery et al., 2001). In particular, PGs has been shown to play crucial role in the mineralisation processes of dentine (Embery et al., 2001; Waddington et al., 2003).PGs are macro-molecules where, at least, one glycosaminoglycan side chain (GAGs) is covalently attached to the protein core of the molecules.Their size and structure can change and can be differentially found intracellulary, on the cell surface, or within the extracellular matrix.The majority of PGs have been identified by their antigenic and structural properties suggesting numerous biological functions (Embery et al., 2001). Biochemical, histochemical and immunohistochemical studies on PGs of dentine and predentine have yielded sufficient information to indicate that the predominant PGs belong to the small leucine-rich interstitial family (SLRP) (Fisher et al., 1983; Yoshiba et al., 1996). They include decorin and biglycan (Waddington et al., 2003; Orsini et al., 2007), which bear one or two chondroitin/dermatan sulphate GAGs, lumican, fibromodulin and osteoadherin that bear keratan sulphate GAGs chains (Iozzo et al., 1997, 1999; Neame et al., 2000). A second pool of PGs belongs to the large aggregation chondroitin/keratan sulphate family named hyaluronan-binding (HA), including aggrecan, versican, brevican and neurocan (Yamauchi et al., 1997).Versican was firstly isolated in chicken mesenchymal tissue, and it has been found to be expressed also in keratinocytes, smooth muscle cells of the vessels, brain and mesangial cells of the kidney. Similar PGs have been found in other connective tissues (Zimmermann et al., 1989; Shinomura et al., 1990; Zimmermann et al., 1994; Landolt et al.,1995) and recent studies have shown that, within the dental tissues, versican has been localised in gingival fibroblasts culture, dental pulp complex (Yamauchi et al., 1997; Bartold et al., 1995; Shibata et al., 2000; Shibata et al., 2002; Robey et al., 1993; Ababneh et al., 1999; Cheng et al., 1999), dentine Waddington et al., 2003), cementum (Ababneh et al., 1999; Cheng et al., 1999) and periodontal ligament (Sato et al., 2002).Within the dentine organic matrix versican can be detected either as fragments or as whole molecule. Waddington et al. (2003) reported that versican is mainly present as its degradation products (fragments), whereas the whole molecule has been isolated by Shibata et al. (1999; 2000) in rat dental pulp tissue.The aim of this study was to localise versican PG in human mature dentine by an immunohistochemical technique using a monoclonal antibody anti-versican (towards the whole molecule) and a polyclonal antibody anti-versican fragments, under high resolution field emission in-lens scanning electron microscope (FEI-SEM), electron transmission microscope (TEM) and fluorescence microscope (FM) and to confirm the morphological findings by a biochemical assay.  相似文献   

16.
The dermal sheath (DS) of the hair follicle is comprised by fibroblast-like cells and extends along the follicular epithelium, from the bulb up to the infundibulum. From this structure, cells with stem characteristics were isolated: they have a mesenchymal origin and express CD90 protein, a typical marker of mesenchymal stem cells. It is not yet really clear in which region of hair follicle these cells are located but some experimental evidence suggests that dermal stem cells are localized prevalently in the lower part of the anagen hair follicle.As there are no data available regarding DS stem cells in dog species, we carried out a morphological analysis of the hair follicle DS and performed both an immunohistochemical and an immunocytochemical investigation to identify CD90+ cells. We immunohistochemically evidenced a clear and abundant positivity to CD90 protein in the DS cells located in the lower part of anagen hair follicle. The positive cells showed a typical fibroblast-like morphology. They were flat and elongated and inserted among bundles of collagen fibres.The whole structure formed a close and continuous sleeve around the anagen hair follicle. Our immunocytochemical study allowed us to localize CD90 protein at the cytoplasmic membrane level.Key words: CD90, mesenchymal stem cells, hair follicle, dog.The hair follicle represents an important stem cell niche in the skin. It contains dermal and epithelial stem populations that display distinct properties and localization. While epithelial stem cells reside in the middle region of the hair follicle outer root sheath (Schneider et al., 2009; Lyle et al., 1998; Cotsarelis et al., 1990), dermal stem cells are located in the dermal sheath (DS) (Jahoda, 2003; Jahoda and Reynolds, 2001).The dermal sheath, or fibrous root sheath, is a layer of dense connective tissue that extends along the hair follicle, from the bulb up to the infundibulum. In the anagen hair follicle, it is comprised of mesenchymal cells located among collagen and elastic fibres.The cells are flat and elongated while collagen fibres form a circular inner layer and a longitudinal outer layer in the lower part of hair follicle (VonTscharner and Suter, 1994; Jahoda et al., 1992). At the base of the hair follicle, the DS is connected to the dermal papilla (Scott et al., 2000). The basement membrane, or glassy membrane, separates the DS from the epithelial component of the hair follicle (Scott et al., 2000).Follicular dermal stem cells have a mesenchymal origin and share many properties common to bone marrow-derived mesenchymal stem cells (MSCs) (Hoogduijn et al., 2006). They express the MSC cell-surface marker CD90, show a high colony forming unit ability and can differentiate into several mesenchymal lineages, such as osteoblasts, adipocytes, chondrocytes and myocytes (Hoogduijn et al., 2006; Jahoda et al., 2003). They also express neuroprogenitor markers (Hoogduijn et al., 2006) and, finally, they can repopulate the haematopoietic system (Lako et al., 2002). In the literature, we can find different information about stem cell localization: the whole dermal sheath, the peri-bulbar dermal sheath, the dermal papilla (Hoogduijn et al., 2006, McElwee et al., 2003, Gharzi et al., 2003, Jahoda et al., 2003.)CD90 (Thy-1) is a small GPI-anchored protein localized in the outer leaflet of the cell membrane (Low and Kincade, 1985). This protein is present in a large number of tissues and cells, even if a great species variation has been described (Mansour Haeryfar, 2004; Tokugawa et al., 1997; McKenzle and Fabre, 1981). CD90 plays a role in cell-cell interaction events, including intracellular adhesion and cell recognition during development (Saalbach et al., 2000; Morris, 1985), and is considered an important stem cell marker; for this last reason it is commonly used to identify mesenchymal stem cells in vitro (Kern et al., 2007; Yoshimura et al., 2006; Le Blanc and Ringdén, 2006; Pittenger et al., 1999). Furthermore, it has been identified in other kinds of stem cells such as haematopoietic progenitor cells (Craig et al., 1993) and hepatic progenitor cells in the human fetal liver (Masson et al., 2006).The hair follicle is the focus of increasing interest because it contains well defined stem cell populations that exhibit various developmental properties. We retain that in dogs, as already demonstrated in other species (Hoogduijn et al., 2006; Zhang et al., 2006; Jahoda et al., 2003; Lako et al., 2002), this organ may be a suitable and accessible source for both epithelial and mesenchymal stem cells that may be isolated and in vitro cultured. Since it is possible to take skin samples without injuring the patient, we chose the hair follicle to study and identify stem cells with the future purpose of using them in regenerative medicine.Dogs are affected by several skin diseases and some of them may be related to alterations of somatic stem cells. We retain that the study of hair follicle stem cell biology may improve our knowledge of etiology and pathogenesis of these skin diseases.In previous works we investigated the stem cells in dog hair follicles; we identified the location of putative epithelial stem cells at the isthmus and described the bulge-like region (Pascucci et al., 2006; Mercati et al., 2008). To the authors’ knowledge, there are no data available neither concerning the localization of DS stem cells nor concerning the expression of CD90 in the hair follicle as regards the canine species. Therefore, in this study, we described the morphological characteristics of DS cells and examined the immunohistochemical localization of CD90 protein in dog hair follicles with both light and transmission electron microscopy. The aim of our study is to observe the dermal sheath cells encompassing the hair follicle and to determine where CD90+ cells reside. CD90 is one of the main markers used to identify mesenchymal stem cells and it has been observed in stem cells isolated from the dermal sheath of hair follicles (Hoogduijn et al.,2006). For this reason, we suppose that CD90 protein can help us to identify the hair follicle dermal stem compartment in dog.  相似文献   

17.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

18.
The process of epithelial lumenogenesis requires coordination of a network of signaling machinery communicated to each cell through subsequent cell divisions. Formation of a single hollow lumen has previously been shown to require Tuba, a Cdc42 GEF, for Cdc42 activation and correct spindle orientation. Using a Caco-2 model of lumenogenesis, we show that knockdown (KD) of the actin regulator N-WASP, causes a multilumen phenotype similar to Tuba KD. Defects in lumenogenesis in Tuba KD and N-WASP KD cells are observed at the two-cell stage with inappropriate marking of the pre-apical patch (PAP )—the precursor to lumen formation. Strikingly, both Tuba and N-WASP depend on each other for localization to the PAP. We conclude that N-WASP functions cooperatively with Tuba to facilitate lumenogenesis and this requires the polyproline region of N-WASP.Key words: lumen, N-WASP, tuba, E-cadherin, pre-apical patchMany epithelial tissues are organized as hollow tubes whose open lumina connect the body with its external environment.1,2 These tubes consist of a monolayer of polarized cells that envelope the central lumen. Lumen formation is thus a key process in epithelial morphogenesis that depends upon cell polarity to establish three cell surface domains: a basal surface adherent to the extracellular matrix, a lateral surface between cells, and an apical surface that is exposed to the luminal fluids. Of note, the apical membrane is biochemically and morphologically distinct from the baso-lateral surfaces and effectively defines the luminal surface.3,4For a lumen to form, cells must first mark the site at which apical membrane is to be inserted, something that is achieved at the first cell division.5 Targeted trafficking of apical membrane constituents defines a pre-apical patch (PAP), the precursor to the definitive lumen.5 Such insertion of apical membrane must presumably be coordinated with the assembly of apical junctions to segregate nascent apical from lateral membrane domains.2 Subsequent cell divisions direct apical membrane and protein constituents to this point of initial apical membrane placement.6 Coordinated luminal positioning enables the initial formation of a single hollow lumen that subsequently expands through polarized fluid secretion to separate apical membranes, such as occurs in the embryonic gastrointestinal tract,7 or by apoptosis or autophagy of the central cells as is observed in mammary gland development.8,9 Failure to establish initial luminal positioning causes defective lumenogenesis, often resulting in multiple, morphologically abnormal lumina.5,6Crucial to lumenal morphogenesis is then the mechanism(s) that mark the site where the PAP will form. Cdc42 signaling is increasingly implicated in this process,2,10 with downstream consequences that include control of mitotic spindle orientation,5 which itself influences PAP placement5 and potentially regulation of cell-cell junctions. Like other Rho family GTPases, the subcellular location of Cdc42 signaling is determined by the action of upstream proteins, notably guanine nucleotide exchange factors (GEFs).11,12 Of these, Tuba, a Cdc42-specific GEF,13 has emerged as a regulator of lumenal morphogenesis that controls PAP placement through mitotic spindle orientation.10Tuba is also a scaffolding protein13 capable of linking the actin assembly machinery with trafficking pathways. Not only is Tuba required for Cdc42 activation to direct spindle orientation,5 it also has the potential to interact with phosphoinositides that define the PAP.14 Additionally, Tuba binds directly to the actin regulator N-WASP, a key molecule in the organization of actin and itself a Cdc42 effector.15 Further, Tuba and N-WASP cooperate in various forms of actin-driven cellular motility, such as vesicle propulsion and cell invasive behavior.16 Interestingly, in epithelial cells N-WASP is also found at cadherin-based cell-cell junctions.17 In fact it has been proposed that N-WASP functions downstream of Tuba in the maintenance of epithelial junctional homeostasis as N-WASP overexpression was capable of rescuing a Tuba KD phenotype.18 Therefore, Tuba has the potential to play a central role in coordinating the molecular complexes required for productive polarization of epithelial cells and placement of the PAP during lumenogenesis. However, whether other protein interactions contribute to the morphogenetic impact of Tuba remain to be assessed.Three-dimensional cell culture systems are being utilized to identify critical components in lumen formation. In particular, Madin-Darby canine kidney cells (MDCK) and Caco-2 gastrointestinal cells are commonly used to study cyst and/or tubule formation. MDCK cells undergo both cyst and tubule growth, apoptosis being primarily responsible for the final step in lumen formation,19 while Caco-2 cells primarily utilize fluid influx to expand cysts.5 Cyst culture systems replicate aspects of in vivo organogenesis20 providing tangible, powerful models to analyze and dissect the coordinated cellular mechanisms and processes that occur during epithelial morphogenesis.In this study we examined the relationship between Tuba and N-WASP in early epithelial lumenogenesis using Caco-2 three dimensional cyst cultures. Both Tuba and N-WASP RNAi cell lines result in mature cysts with multiple lumina, and at the two-cell stage, formed multiple PAPs. Interestingly, N-WASP KD perturbed Tuba localization at the PAP, however, N-WASP localization to the PAP was not affected to the same extent by Tuba KD. Taken together, these results suggest a complex interrelationship between Tuba and N-WASP for the coordinated formation of a single hollow lumen.  相似文献   

19.
Strigolactones (SLs) have been recently identified as a new group of plant hormones or their derivatives thereof, shown to play a role in plant development. Evolutionary forces have driven the development of mechanisms in plants that allow adaptive adjustments to a variety of different habitats by employing plasticity in shoot and root growth and development. The ability of SLs to regulate both shoot and root development suggests a role in the plant''s response to its growth environment. To play this role, SL pathways need to be responsive to plant growth conditions, and affect plant growth toward increased adaptive adjustment. Here, the effects of SLs on shoot and root development are presented, and possible feedback loops between SLs and two environmental cues, light and nutrient status, are discussed; these might suggest a role for SLs in plants'' adaptive adjustment to growth conditions.Key words: strigolactones, light, nutrient status, root, shoot, branching, lateral roots, root hairsStrigolactones (SLs) are carotenoid-derived terpenoid lactones suggested to stem from the carotenoid pathway1 via the activity of various oxygenases.2,3 SLs production has been demonstrated in both monocotyledons and eudicotyledons (reviewed in ref. 4), suggesting their presence in many plant species.5 SLs are synthesized mainly in the roots and in some parts of the stem and then move towards the shoot apex (reviewed ref. 7).6,8,9SLs were first characterized more than 40 years ago as germination stimulants of the parasitic plants Striga and Orobanche and later, as stimulants of arbuscular mycorrhiza hyphal branching as well (reviewed in ref. 4, 1013). Recently, SLs or derivatives thereof, have been identified as a new group of plant hormones, shown to play a role in inhibition of shoot branching,2,3,8,9 thereby affecting shoot architecture; more recently they have also been shown to affect root growth by affecting auxin efflux.14Plants have developed mechanisms that allow adaptive adjustments to a variety of different habitats by employing plasticity in their growth and development.15 Shoot architecture is affected by environmental cues, such as light quality and quantity and nutrient status.1619 Root-system architecture and development are affected by environmental conditions such as nutrient availability (reviewed in ref. 20, 21). At the same time, plant hormones are known to be involved in the regulation of plant growth, development and architecture (reviewed in ref. 2224) and to be mediators of the effects of environmental cues on plant development; one classic example is auxin''s role in the plant''s shade-avoidance response (reviewed in ref. 25).The ability of SLs to regulate shoot and root development suggests that these phytohormones also have a role in the plant''s growth response to its environment. To play this putative role, SL pathways need to be responsive to plant growth conditions, and affect plant growth toward enhancing its adaptive adjustment. The present review examines the SLs'' possible role in adaptive adjustment of the plant''s response to growth conditions, by discussing their effect on plant development and the possible associations and feedback loops between SLs and two environmental cues: light and nutrient status.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号