首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Soluble guanylate cyclase (sGC) has been purified from 100 L cell culture infected by baculovirus using the newer and highly effective titerless infected-cells preservation and scale-up (TIPS) method. Successive passage of the enzyme through DEAE, Ni2+-NTA, and POROS Q columns obtained approximately 100 mg of protein. The sGC obtained by this procedure was already about 90% pure and suitable for various studies which include high throughput screening (HTS) and hit follow-up. However, in order to obtain enzyme of greater homogeneity and purity for crystallographic and high precision spectroscopic and kinetic studies of sGC with select stimulators, the sGC solution after the POROS Q step was further purified by GTP-agarose affinity chromatography. This additional step led to the generation of 26 mg of enzyme that was about 99% pure. This highly pure and active enzyme exhibited a Mr = 144,933 by static light scattering supportive of a dimeric structure. It migrated as a two-band protein, each of equal intensity, on SDS–PAGE corresponding to the α (Mr 77,000) and β (Mr 70,000) sGC subunits. It showed an A430/A280 = 1.01, indicating one heme per heterodimer, and a maximum of the Soret band at 430 nm indicative of a penta-coordinated ferrous heme with a histidine as the axial ligand. The Soret band shifted to 398 nm in the presence of an NO donor as expected for the formation of a penta-coordinated nitrosyl-heme complex. Non-stimulated sGC had kcat/Km = 1.7 × 10−3 s−1 μM−1 that increased to 5.8 × 10−1 s−1 μM−1 upon stimulation with an NO donor which represents a 340-fold increase due to stimulation. The novel combination of using the TIPS method for co-expression of a heterodimeric heme-containing enzyme, along with the application of a reproducible ligand affinity purification method, has enabled us to obtain recombinant human sGC of both the quality and quantity needed to study structure–function relationships.  相似文献   

2.
A series of five tris(2-pyridylmethyl)amine (tpa) ruthenium complexes [Ru(tpa)(N–N)](PF6)2 with N–N = bpy (2,2′-bipyridine), phen (1,10-phenanthroline), dpq (dipyrido[3,2-d:2′,3′-f]quinoxaline), dppz (dipyrido[3,2-a;2′,3′-c]phenazine), and dppn (4,5,9,16-tetraazadibenzo[a,c]naphthacene) was prepared and characterized by NMR, UV–Visible (UV/Vis), and fluorescence spectroscopy as well as cyclic voltammetry. Structures optimized with density functional theory methods (DFT, BP86, TZVP) without constraints show C1 symmetry while in solution, the 1H and 13C NMR spectra are in accordance with an average Cs symmetry. This is thought to be due to a low energy barrier for flipping of the equatorial pyridine ring from one side of the N–N plane to the other. The electronic structure of the compounds was studied with DFT and a change in the highest occupied molecular orbital (HOMO) character from Ru t2g for the bpy, phen, and dpq to N–N ligand-based for the dppz and dppn complexes was found. TDDFT calculations showed dominant N–N-based intra-ligand charge transfer (ILCT) transitions in the latter two complexes mixed with metal-to-ligand charge transfer (MLCT) bands found for all five compounds. DNA binding of the complexes was studied with UV/Vis titrations, the fluorescent ethidium bromide displacement assay, and CD spectroscopy. The affinity increases with the aromatic surface area of of the bidentate N–N ligand in the order bpy  phen < dpq < dppz  dppn. Viscosity measurements support an intercalative binding mode for the latter three compounds, while the others did not show a pronounced effect of the hydrodynamic properties of calf thymus (CT) DNA.  相似文献   

3.
PXR, pregnane X receptor, in its activated state, is a validated target for controlling certain drug–drug interactions in humans. In this context, there is a paucity of inhibitors directed toward activated PXR. Using prior observations with ketoconazole as a PXR inhibitor, the target compound 3 was synthesized from (s)-glycidol with overall 56% yield. (+)-Glycidol was reacted with 4-bromophenol and potassium carbonate in DMF to yield the ring opened compound 6. This was then heated to reflux in benzene along with 2′, 4′-difluoroacetophenone and catalytic amount of para-toluene sulfonic acid to yield 8. The resultant acetal 8 was then functionalized using Palladium chemistry to yield the target compound 3. The activity of the compound was compared with ketoconazole and UCL2158H. However, in contrast with ketoconazole (IC50  0.020 μM; 100% inhibition), 3 has negligible effects on inhibition of microsomal CYP450 (maximum 20% inhibition) at concentrations >40 μM. In vitro, micromolar concentration of ketoconazole is toxic to passaged human cell lines, while 3 does not exhibit cytotoxicity up to concentrations 100 μM (viability >85%). This is the first demonstration of a chemical analog of a PXR inhibitor that retains activity against activated PXR. Furthermore, in contrast with ketoconazole, 3 is less toxic in human cell lines and has negligible CYP450 activity.  相似文献   

4.
The characteristics of Cl transport in isolated tonoplast vesicles from red-beet (Beta vulgaris L.) storage tissue have been investigated using the Cl-sensitive fluorescent probe, 6-methoxy-1-(3-sulfonatopropyl)-quinolinium (SPQ). The imposition of (inside) positive diffusion potentials, generated with K+ and valinomycin, increased the initial rate of Cl transport, demonstrating that Cl could be electrically driven into the vesicles. Chloride influx was unaffected by SO 4 2- , but was competitively blocked by NO 3 , indicating that both Cl and NO 3 may be transported by the same porter. In some preparations, increases in free-Ca2+ concentration from 10–8 to 10–5 mol·dm–3 caused a significant decrease in Cl influx, which may indicate that cytosolic Ca2+ concentration has a role in controlling Cl fluxes at the tonoplast. However, this effect was only seen in about 50% of membrane preparations and some doubt remains over its physiological significance. A range of compounds known to block anion transport in other systems was tested, and some partially blocked Cl transport. However, many of these inhibitors interfered with SPQ fluorescence and so only irreversible effects could be tested. The results are discussed in the context of recent advances made using the patch-clamp technique on isolated vacuoles.Abbreviations and Symbols BTP 1,3-bis[tris(hydroxymethyl)-methylamino]propane - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - membrane potential - pH pH gradient - SPQ 6-methoxy-1-(3-sulfonatopropyl)quinolinium - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl] glycine  相似文献   

5.
In cultured bovine adrenal chromaffin cells expressing Nav1.7 sodium channel isoform, veratridine increased Ser473-phosphorylation of Akt and Ser9-phosphorylation of glycogen synthase kinase-3β by 217 and 195%, while decreasing Ser396-phosphorylation of tau by 36% in a concentration (EC50 = 2.1 μM)- and time (t1/2 = 2.7 min)-dependent manner. These effects of veratridine were abolished by tetrodotoxin or extracellular Ca2+ removal. Veratridine (10 μM for 5 min) increased translocation of Ca2+-dependent conventional protein kinase C-α from cytoplasm to membranes by 47%; it was abolished by tetrodotoxin, extracellular Ca2+ removal, or Gö6976 (an inhibitor of protein kinase C-α), and partially attenuated by LY294002 (an inhibitor of phosphatidylinositol 3-kinase). LY294002 (but not Gö6976) abrogated veratridine-induced Akt phosphorylation. In contrast, either LY294002 or Gö6976 alone attenuated veratridine-induced glycogen synthase kinase-3β phosphorylation by 65 or 42%; however, LY294002 plus Gö6976 completely blocked it. Veratridine (10 μM for 5 min)-induced decrease of tau phosphorylation was partially attenuated by LY294002 or Gö6976, but completely blocked by LY294002 plus Gö6976; okadaic acid or cyclosporin A (inhibitors of protein phosphatases 1, 2A, and 2B) failed to alter tau phosphorylation. These results suggest that Na+ influx via Nav1.7 sodium channel and the subsequent Ca2+ influx via voltage-dependent calcium channel activated (1) Ca2+/protein kinase C-α pathway, as well as (2) Ca2+/phosphatidylinositol 3-kinase/Akt and (3) Ca2+/phosphatidylinositol 3-kinase/protein kinase C-α pathways; these parallel pathways converged on inhibitory phosphorylation of glycogen synthase kinase-3β, decreasing tau phosphorylation.  相似文献   

6.
The 31P nuclear magnetic resonance (NMR) characteristics, toxicity, and cellular penetration of five linear or cyclic α-aminophosphonate highly sensitive pH probes were investigated in Dictyostelium discoideum cells and isolated rat hearts and were compared with three phosphonic acid derivatives. The line width broadening at pH pKa, which was satisfactorily modelized for all compounds, was significantly limited in biological milieu for the new markers, affording a four- to sixfold better accuracy in pH determination. Cellular uptake or washout of nontoxic concentrations (<15 mM) of α-aminophosphonates occurred by rapid passive permeation, whereas standard probes required a much slower fluid-phase pinocytosis and transport processes that could ultimately lead to trapping. Using mild concentrations (<4 mM) three α-aminophosphonates having 6 < pKa < 7 allowed an easy and simultaneous 31P NMR determination of cytosolic, acidic, and extracellular compartments in anoxic–reoxygenated or starving D. discoideum.  相似文献   

7.
End-product synthesis and enzyme activities involved in pyruvate catabolism, H2 synthesis, and ethanol production in mid-log (OD600  0.25), early stationary (OD600  0.5), and stationary phase (OD600  0.7) cell extracts were determined in Clostridium thermocellum ATCC 27405 grown in batch cultures on cellobiose. Carbon dioxide, hydrogen, ethanol, acetate and formate were major end-products and their production paralleled growth and cellobiose consumption. Lactate dehydrogenase, pyruvate:formate lyase, pyruvate:ferredoxin oxidoreductase, methyl viologen-dependant hydrogenase, ferredoxin-dependant hydrogenase, NADH-dependant hydrogenase, NADPH-dependant hydrogenase, NADH-dependant acetaldehyde dehydrogenase, NADH-dependant alcohol dehydogenase, and NADPH-dependant alcohol dehydrogenase activities were detected in all extracts, while pyruate dehydrogenase and formate dehydrogenase activities were not detected. All hydrogenase activities decreased (2–12-fold) as growth progressed from early exponential to stationary phase. Alcohol dehydrogenase activities fluctuated only marginally (<45%), while lactate dehydrogenase, pyruvate:formate lyase, and pyruvate:ferredoxin oxidoreductase remained constant in all cell extracts. We have proposed a pathway involved in pyruvate catabolism and end-product formation based on enzyme activity profiles in conjunction with bioinformatics analysis.  相似文献   

8.
Some hexavalent chromium [Cr(VI)]-containing compounds are lung carcinogens. Once within cells, Cr(VI) is reduced to trivalent chromium [Cr(III)] which displays an affinity for both DNA bases and the phosphate backbone. A diverse array of genetic lesions is produced by Cr including Cr–DNA monoadducts, DNA interstrand crosslinks (ICLs), DNA–Cr–protein crosslinks (DPCs), abasic sites, DNA strand breaks and oxidized bases. Despite the large amount of information available on the genotoxicity of Cr, little is known regarding the molecular mechanisms involved in the removal of these lesions from damaged DNA. Recent work indicates that nucleotide excision repair (NER) is involved in the processing of Cr–DNA adducts in human and rodent cells. In order to better understand this process at the molecular level and begin to identify the Cr–DNA adducts processed by NER, the incision of CrCl3 [Cr(III)]-damaged plasmid DNA was studied using a thermal-resistant UvrABC NER endonuclease from Bacillus caldotenax (Bca). Treatment of plasmid DNA with Cr(III) (as CrCl3) increased DNA binding as a function of dose. For example, at a Cr(III) concentration of 1 μM we observed 2 Cr(III)–DNA adducts per plasmid. At this same concentration of Cr(III) we found that 17% of the plasmid DNA contained ICLs (0.2 ICLs/plasmid). When plasmid DNA treated with Cr(III) (1 μM) was incubated with Bca UvrABC we observed 0.8 incisions/plasmid. The formation of endonuclease IV-sensitive abasic lesions or Fpg-sensitive oxidized DNA bases was not detected suggesting that the incision of Cr(III)-damaged plasmid DNA by UvrABC was not related to the generation of oxidized DNA damage. Taken together, our data suggest that a sub-fraction of Cr(III)–DNA adducts is recognized and processed by the prokaryotic NER machinery and that ICLs are not necessarily the sole lesions generated by Cr(III) that are substrates for NER.  相似文献   

9.
The gene encoding α-methylserine aldolase was isolated from Bosea sp. AJ110407. Sequence analysis revealed that the predicted amino acid sequence encoded by the 1320-bp open reading frame was 65.0% similar to the corresponding sequence of the enzyme isolated from Ralstonia sp. AJ110405. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified. Gel filtration revealed the molecular mass of the purified enzyme to be approximately 78 kDa, suggesting that the enzyme is a homodimer. The enzyme exhibited a specific peak at 429 nm in the spectrum and contained 1 mol pyridoxal 5′-phosphate per mole of the subunit. The Vmax value was 1.40 μmol min−1 mg−1, and the Km value was 1.5 mM for the reaction wherein formaldehyde was released from α-methyl-l-serine. This enzyme could also catalyze the reverse reaction, i.e., the synthesis of α-methyl-l-serine from l-alanine and formaldehyde. This activity was inhibited in the excess of formaldehyde; however, α-methyl-l-serine was efficiently produced from l-alanine in the presence of formaldehyde. This method was also applicable for producing α-ethyl-l-serine from l-2-aminobutyric acid.  相似文献   

10.
Nitrogen-starved sunflower plants (Helianthus annuus L. cv. Peredovic) cannot absorb NO 3 or NO 2 upon initial exposure to these anions. Ability of the plants to take up NO 3 and NO 2 at high rates from the beginning was induced by a pretreatment with NO 3 . Nitrite also acted as inducer of the NO 2 -uptake system. The presence of cycloheximide during NO 3 -pretreatment prevented the subsequent uptake of NO 3 and NO 2 , indicating that both uptake systems are synthesized de novo when plants are exposed to NO 3 . Cycloheximide also suppressed nitrate-reductase (EC 1.6.6.1) and nitrite-reductase (EC 1.7.7.1) activities in the roots. The sulfhydryl-group reagent N-ethylmaleimide greatly inhibited the uptake of NO 3 and NO 2 . Likewise, N-ethylmaleimide promoted in vivo the inactivation of nitrate reductase without affecting nitrite-reductase activity. Rates of NO 3 and NO 2 uptake as a function of external anion concentration exhibited saturation kinetics. The calculated Km values for NO 3 and NO 2 uptake were 45 and 23 M, respectively. Rates of NO 3 uptake were four to six times higher than NO 3 -reduction rates in roots. In contrast, NO 2 -uptake rates, found to be very similar to NO 3 -uptake rates, were much lower (about 30 times) than NO 2 -reduction rates. Removal of oxygen from the external solution drastically suppressed NO 3 and NO 2 uptake without affecting their reduction. Uptake and reduction were also differentially affected by pH. The results demonstrate that uptake of NO 3 and NO 2 into sunflower plants is mediated by energy-dependent inducible-transport systems distinguishable from the respective enzymatic reducing systems.Abbreviations CHI cycloheximide - NEM N-ethylmaleimide - NiR nitrite reductase - NR nitrate reductase - pHME p-hydroxymercuribenzoate This research was supported by grant PB86-0232 from the Dirección General de Investigatión Científica y Técnica (Spain). One of us (E.A.) thanks the Consejeria de Educación y Ciencia de la Junta de Andalucia for the tenure of a fellowship. We thank Miss G. Alcalá and Miss C. Santos for their valuable technical and secretarial assistance.  相似文献   

11.
Rhabdoid tumors (RTs) are an extremely aggressive pediatric malignancy that results from loss of the INI1/hSNF5 tumor suppressor gene. Loss of INI1 results in aberrant expression of Cyclin D1, which supports rhabdoid tumorigenesis and survival. 4-HPR, a synthetic retinoid that down-modulates Cyclin D1, has shown promise in treating various tumors including RTs. In this study, we have generated a chemical library of peptidomimetic derivatives of 4-HPR in an attempt to create a more biologically active compound for use as a therapeutic agent against RTs and other tumors. We have synthesized novel peptidomimetic compound by substituting alkene backbone with a ring structure that retains the biological activity in cell culture models of rhabdoid tumors. We further identified derivative of peptidomimetic compound (11d, IC50  3 μM) with approximately five times higher potency than 4-HPR (1, IC50  15 μM) based on a survival assay against rhabdoid tumor cells. These studies indicate that peptidomimetic derivatives that retain the cytotoxic activity are promising novel chemotherapeutic agents against RTs and other tumors.  相似文献   

12.
A water-insoluble (1 → 3)-β-d-glucan (PCSG) isolated from the fresh sclerotium of Poria cocos was carboxymethylated to afford a water-soluble derivative coded as C-PCSG. The carboxymethylated (1 → 3)-β-d-glucan was fractionated to obtain eight fractions according to the nonsolvent addition method. The weight-average molecular mass (Mw), radius of gyration and intrinsic viscosity ([η]) of the fractions were determined by size-exclusion chromatography combined with laser light scattering (SEC-LLS) and viscometry in 0.2 M NaCl aqueous solution at 25 °C. The dependences of [η] and on Mw for C-PCSG were found to be , and (nm), respectively. Analysis of Mw and [η] in terms of the known theories for wormlike chain model yielded 633 nm−1 for molar mass per unit contour length (ML), 5.5 nm for persistence length (q), and 20.2 for characteristic ratio (C). These results indicated that C-PCSG exists as a relatively extended flexible chain in 0.2 M NaCl aqueous solution. Therefore, the introduction of the carboxymethyl groups into the β-glucan improved significantly the water solubility and enhanced the stiffness of the chains.  相似文献   

13.
Through the screening of microorganisms capable of utilizing α-methylserine, three representative strains belonging to the bacterial genera Paracoccus, Aminobacter, and Ensifer were selected as potent producers of α-methylserine hydroxymethyltransferase, an enzyme that catalyzes the interconversion between α-methyl-l-serine and d-alanine via tetrahydrofolate. Among these strains, Paracoccus sp. AJ110402 was selected as the strain exhibiting the highest α-methylserine hydroxymethyltransferase activity. The enzyme was purified to homogeneity from a cell-free extract of this strain. The native enzyme is a homodimer with apparent molecular mass of 85 kDa and contains 1 mol of pyridoxal-5′-phosphate per mol of the subunit. The Km for α-methyl-l-serine and tetrahydrofolate was 0.54 mM and 73 μM, respectively. The gene from Paracoccus sp. AJ110402 encoding α-methylserine hydroxymethyltransferase was cloned and expressed in Escherichia coli. Sequence analysis revealed an open reading frame of 1278 bp, encoding a polypeptide with a calculated molecular mass of 46.0 kDa. Using E. coli cells as whole-cell catalysts, 9.7 mmol of α-methyl-l-serine was stereoselectively obtained from 15 mmol of d-alanine and 13.2 mmol of formaldehyde.  相似文献   

14.
Mitochondria of chloroquine-resistant Plasmodium falciparum (K1 strain) were isolated from mature trophozoites by differential centrifugation. The mitochondrial marker enzyme cytochrome c reductase was employed to monitor the steps of mitochondria isolation. Partial purification of DNA polymerase from P. falciparum mitochondria was performed using fast protein liquid chromatography (FPLC). DNA polymerase of P. falciparum mitochondria was characterized as a γ-like DNA polymerase based on its sensitivity to the inhibitors aphidicolin, N-ethylmaleimide and 9-β- -arabinofuranosyladenine-5′-triphosphate. In contrast, the enzyme was found to be strongly resistant to 2′,3′-dideoxythymidine-5′-triphosphate (IC50>400 μM) and differed in this aspect from the human homologue, possibly indicating structural differences between human and P. falciparum DNA polymerase γ. In addition, the DNA polymerase of parasite mitochondria was shown to be resistant (IC50>1 mM) to the nucleotide analogue (S)-1-[3-hydroxy-2-phosphonylmethoxypropyl]adenine diphosphate (HPMPApp).  相似文献   

15.
Estrogens (estrone, E1; estradiol, E2) are oxidized in the breast first to catechols and then to form two ortho-quinones (E1/2-3,4-Q) that react with DNA to form depurinating adducts, which lead to mutations associated with breast cancer. NAD(P)H:quinone oxidoreductase 1 (NQO1) reduces these quinones back to catechols, and thus may protect against this mechanism. We examined whether the inheritance of two polymorphic variants of NQO1 (Pro187Ser or Arg139Trp) would result in poor reduction of E1/2-3,4-Q in normal human mammary epithelial cells (MCF-10F) and increased depurinating adduct formation. An isogenic set of stably transfected normal human breast epithelial cells (MCF-10F) that express a truncated (135Stop), the wild-type, the 139Trp variant or the 187Ser variant of human NQO1 cDNA was constructed. MCF-10F cells showed a low endogenous NQO1 activity. NQO1 expression was examined by RT-PCR and Western blotting, and catalytic activity of reducing E2-3,4-Q to 4-hydroxyE1/2 and associated changes in the levels of quinone conjugates (4-methoxyE1/2, 4-OHE1/2-2-glutathione, 4-OHE1/2-2-Cys and 4-OHE1/2-2-N-acetylcysteine) and depurinating DNA adducts (4-OHE1/2-1-N3Ade and 4-OHE1/2-1-N7Gua) were examined by HPLC with electrochemical detection, as well as by ultra-performance liquid chromatography with tandem mass spectrometry. The polymorphic variants transcribed comparably to the wild-type NQO1, but produced 2-fold lower levels of the protein, suggesting that the variant proteins may become degraded. E1/2-3,4-Q toxicity to MCF-10F cells (IC50 = 24.74 μM) was increased (IC50 = 3.7 μM) by Ro41-0960 (3 μM), a catechol-O-methyltransferase inhibitor. Cells expressing polymorphic NQO1 treated with E2-3,4-Q with or without added Ro41-0960, showed lower ability to reduce the quinone (50% lower levels of the free catechols and 3-fold lower levels of methylated catechols) compared to the wild-type enzyme. The increased availability of the quinones in these cells did not result in greater glutathione conjugation. Instead, there was increased (2.5-fold) formation of the depurinating DNA adducts. Addition of Ro41-0960 increased the amounts of free catechols, quinone conjugates and depurinating DNA adducts. NQO1 polymorphic variants (Arg139Trp and Pro187Ser) were poor reducers of estrogen-3,4-quinones, which caused increased formation of estrogen-DNA adduct formation in MCF-10F cells. Therefore, the inheritance of these NQO1 polymorphisms may favor the estrogen genotoxic mechanism of breast cancer.  相似文献   

16.
A panel of six complementary monodeoxy and mono-O-methyl congeners of methyl β-d-mannopyranosyl-(1→2)-β-d-mannopyranoside (1) were synthesized by stereoselective glycosylation of monodeoxy and mono-O-methyl monosaccharide acceptors with a 2-O-acetyl-glucosyl trichloroacetimidate donor, followed by a two-step oxidation–reduction sequence at C-2′. The β-manno configurations of the final deprotected congeners 2–7 were confirmed by measurement of 1JC1,H1 heteronuclear and 3J1′,2′ homonuclear coupling constants. These disaccharide derivatives will be used to map the protective epitope recognized by a protective anti-Candida albicans monoclonal antibody C3.1 (IgG3) and to determine its key polar contacts with the binding site.  相似文献   

17.
18.
By use of PCR, the genes encoding d-carbamoylase from A. radiobacter TH572 were cloned in plasmid pET30a and transformed into Escherichia coli BL21 (DE3) to overexpress d-carbamoylase. However, almost all of the protein remained trapped in inclusion bodies. To improve the expression of the properly folded active enzyme, a constitutive plasmid of pGEMT-DCB was constructed using the native hydantoinase promoter (PHase) whose optimal length was confirmed to 209 bp. Furthermore, the RBS region in the downstream of PHase was optimized to increase the expression level, so the plasmid pGEMT-R-DCB was constructed and transformed into E. coli strain Top10F′. The enzyme activity of Top10F′/pGEMT-R-DCB grown at 37 °C was found to be 0.603 U/mg (dry cell weight, DCW) and increase 58-fold over cells of BL21 (DE3) harboring the plasmid pET-DCB grown at 28 °C.  相似文献   

19.
A correlation between foraminiferal community dynamics and environmental conditions may provide a basis for establishing paleoclimatic proxies. We studied planktic foraminiferal shell fluxes and assemblages in samples collected in three time-series sediment trap deployments in the western equatorial Pacific under La Niña conditions from January to November 1999. Eleven species contributed about 90% of the total flux in all traps. Two sites (MT1, MT3) in the Western Pacific Warm Pool region (WPWP) were characterized by common occurrences of the species Globigerinoides ruber, Globigerinoides sacculifer, Globigerinoides tenellus, and Neogloboquadrina dutertrei. Site MT5 farther to the east in the equatorial upwelling region had common occurrences of Globigerina bulloides, Globigerinita glutinata, and Pulleniatina obliquiloculata. Very high abundances of G. bulloides and G. glutinata at MT5 indicate that equatorial upwelling (EU) occurred during the 1999 La Niña. The two western sites have similar assemblage compositions, but MT1 ( 135°E) has the highest fluxes (up to  3800 tests m− 2 day− 1), whereas MT3 ( 145° E) has fluxes below  2200 tests m− 2 day− 1. Relatively high fluxes (up to  3000 tests m− 2 day− 1) occur at site MT5 ( 176° E), where upwelling occurred.The differences in faunal composition in the WPWP and EU might be attributable to differences in the way in which nutrients are supplied to the phytoplankton: large amounts of suspended material are supplied to the WPWP by advection of waters passing through the coastal region of an archipelago, whereas upwelling of nutrient-rich waters enhances primary production in the EU. At the westernmost site in the WPWP, a peak in the G. bulloides flux coincided with southward flow of the New Guinea Coastal Current (NGCC) in late February, but the highest G. ruber flux coincided with northward flow of this current in late May. Thus, the differences in species dominance at this location may be caused by monsoon-driven variability in the flow direction of the NGGC.  相似文献   

20.
Compartmentation and flux characteristics of nitrate in spruce   总被引:8,自引:0,他引:8  
The radiotracer13N was used to undertake compartmental analyses for NO 3 in intact non-mycorrhizal roots ofPicea glauca (Moench) Voss. seedlings. Three compartments were defined, with half-lives of exchange of 2.5 s, 20 s, and 7 min. These were identified as representing surface adsorption, apparent free space, and cytoplasm, respectively. Influx, efflux, and net flux as well as cytoplasmic and apparent-free-space nitrate concentrations were estimated for three different concentration regimes of external nitrate. After exposure to external NO 3 for 3 d, influx was calculated to be 0.09 mol·g–1·h–1 (at 10 M [NO 3 ]o), 0.5mol·g–1·h–1 (at 100 M [NO inf3 sup– ]o), and 1.2 mol · g–1· h–1 (at 1.5 mM [NO 3 ]o). Efflux increased with increasing [NO 3 ]o, constituting 4% of influx at 10 M, 6% at 100 M, and 21% at 1.5 mM. Cytoplasmic [NO 3 ] was estimated to be 0.3 mM at 10 uM [NO 3 ]o, 2mM at 100 M [NO 3 ]o, and 4mM at 1.5 mM [NO 3 ]o, while free-space [NO 3 ] was 16 M, 173 M, and 2.2 mM, respectively. A series of experiments was carried out to confirm the identity of the compartments resolved by efflux analysis. Pretreatment at high temperature or application of 2-chloro-ethanol, sodium dodecyl sulphate or hydrogen peroxide made it possible to distinguish the metabolic (cytoplasmic) phase from the remaining two (physical) phases. Likewise, varying [Pi] of the medium altered efflux and thereby [NO 3 ]cyt, but did not affect [NO 3 ]free space.Abbreviations and Symbols [NO 3 ]cyt cytoplasmic NO 3 concentration - [NO 3 ]free space apparent-free-space NO 3 concentration - [NO 3 ]o concentration of NO 3 in the external solution - NO 3 flux - co efflux from the cytoplasm - oc influx to the cytoplasm - net net flux - xylem flux to the xylem - red/vac combined flux to reduction and the vacuole The research was supported by a Natural Sciences and Engineering Research Council, Canada, grant to Dr. A.D.M. Glass and by a University of British Columbia Graduate Fellowship to Herbert J. Kronzucker. Our thanks go to Dr. M. Adam and Mr. P. Culbert at the particle accelerator facility TRIUMF on the University of British Columbia Campus for providing13NO 3 , Drs. R.D. Guy and S. Silim for providing plant material, and Dr. M.Y. Wang, Mr. J. Mehroke and Mr. P. Poon for assistance in experiments and for helpful discussions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号