首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maternal effects increase phenotypic plasticity in offspring traits and may therefore facilitate adaptation to environmental variability. Carotenoids have been hypothesized to mediate costs of reproduction in females as well as maternal effects. However, assessing potential transgenerational and population consequences of environmental availability of carotenoids requires a better understanding of mechanisms of maternal effects mediated by these antioxidant pigments. Manipulating dietary availability of carotenoids to egg-laying female blue tits and subsequently cross-fostering nestlings between female treatments allowed us to specifically investigate the relative importance of maternal effects through egg carotenoids and through post-hatching care mediated by antioxidants in females. Nestling body size and mass and plasma antioxidants were not significantly affected by pre- or post-hatching maternal effects mediated by antioxidants, although both types of maternal effects in interaction explained the variation in growth, as measured by wing length. Development of the ability to mount a cell-mediated immune response as well as its temporal dynamics was influenced by both pre- and post-hatching maternal effects, with an advantage to nestlings originating from, or reared by, carotenoid-supplemented females. In addition, nestlings reared by carotenoid-fed females had a lower blood sedimentation rate, indicating that they may have been less infected than nestlings from controls. Finally, prehatching maternal effects in interaction with nestling plasma carotenoid levels affected the development of carotenoid-based plumage. Maternal effects mediated by carotenoids may thus act as a proximate factor in development and phenotypic plasticity in traits associated with nestling fitness, such as immune response and ability to metabolize and use antioxidants, and ultimately participate in the evolution of phenotypic traits.  相似文献   

2.
Condition‐dependent resource allocation to eggs can affect offspring growth and survival, with potentially different effects on male and female offspring, particularly in sexually dimorphic species. We investigated the influence of maternal body condition (i.e., mass‐tarsus residuals) and two measures of female resource allocation (i.e., egg mass, yolk carotenoid concentrations) on nestling mass and growth rates in the polygynous and highly size dimorphic yellow‐headed blackbird Xanthocephalus xanthocephalus. Egg characteristics and carotenoid concentrations were obtained from the third‐laid egg of each clutch and were correlated with the mass and growth rates of the first two asynchronously hatched nestlings. Maternal body condition was associated with the growth of first‐hatched, but not second‐hatched nestlings. Specifically, females in better body condition produced larger and faster growing first‐hatched nestlings than females in poorer body condition. As predicted for a polygynous, size‐dimorphic species, females that fledged first‐hatched sons were in better body condition than females that fledged first‐hatched daughters. Associations between egg mass, yolk carotenoid content, and nestling growth were also specific to hatching‐order. Egg mass was positively correlated with the mass and growth rates of second‐hatched nestlings, and yolk concentrations of β‐carotene were positively correlated with second‐hatched nestling mass. Surprisingly, the relationship between yolk lutein and hatchling growth differed between the sexes. Females with high concentrations of yolk lutein produced larger and faster growing first‐hatched sons, but smaller first‐hatched daughters than females with lower lutein concentrations. Mass and growth rates did not differ between first‐ and second‐hatched nestlings of the same sex, despite asynchronous hatching in the species. Results from this study suggest that maternal body condition and the allocation of resources to eggs have carotenoid‐, sex‐, and/or hatch‐order‐specific effects on yellow‐headed blackbird nestlings.  相似文献   

3.
Increased variance in the reproductive success of males relative to females favors mothers that optimally allocate sons and daughters to maximize their fitness return. In altricial songbirds, one influence on the fitness prospects of offspring arises through the order in which nestlings hatch from their eggs, which affects individual mass and size before nest leaving. In house wrens (Troglodytes aedon), the influence of hatching order depends on the degree of hatching synchrony, with greater variation in nestling mass and size within broods hatching asynchronously than in those hatching synchronously. Early-hatching nestlings in asynchronous broods were heavier and larger than their later-hatching siblings and nestlings in synchronous broods. The effect of hatching order was also sex specific, as the mass of males in asynchronous broods was more strongly influenced by hatching order than the mass of females, with increased variation in the mass of males relative to that of females. As predicted, mothers hatching their eggs asynchronously biased first-laid, first-hatching eggs toward sons and late-laid, late-hatching eggs toward daughters, whereas females hatching their eggs synchronously distributed the sexes randomly among the eggs of their clutch. We conclude that females allocate the sex of their offspring among the eggs of their clutch in a manner that maximizes their own fitness.  相似文献   

4.
Maternal resources deposited in eggs can affect the development of several offspring phenotypic traits and result in trade‐offs among them. For example, maternal androgens in eggs may be beneficial to offspring growth and competitive ability, but detrimental to immunocompetence and oxidative stress. In contrast, maternal antioxidants in eggs may be beneficial if they mitigate oxidative stress and immunosuppressive effects of androgens. We investigated possible interactive effects of maternal steroids and carotenoids on aspects of offspring physiology and phenotype, by simultaneously manipulating levels of androgens (via gonadotropin‐releasing hormone, GnRH‐challenges) and carotenoids (via diet supplementation) in captive female Japanese quail Coturnix japonica during egg laying. Carotenoid supplementation of hens, which elevates yolk concentrations of carotenoid and vitamins A and E, enhanced egg hatching success, offspring survival to age 15 d, and size of the bursa of Fabricius in offspring. In contrast, repeated maternal GnRH challenges, which elevated yolk testosterone concentrations, enhanced offspring neonatal size, but negatively affected bursa size. However, interaction among the treatments suggests that the positive effect of maternal carotenoid supplementation on plasma bactericidal capacity was mediated by maternal GnRH challenges. Chicks originating from carotenoid‐supplemented hens were less immunosuppressed than those originating from carotenoid‐supplemented + GnRH‐challenged hens, which were less immunosuppressed than chicks from GnRH‐challenged females not supplemented with carotenoids. Females availability of carotenoid enriched diets allows them to enhance the development of offspring immune system via carotenoids and vitamins deposited in egg yolks and offset detrimental effects of androgens deposited by GnRH‐challenged females.  相似文献   

5.
Carotenoids are antioxidants playing major roles in physiologicalfunctions at various stages of an animal's life. Female birdsdeposit large amounts of carotenoids into their eggs. Carotenoidsare, however, a limiting resource, and females are expectedto balance carotenoid deposition into the eggs with their utilizationfor themselves. Carotenoid availability is thus likely to determineboth the levels of yolk carotenoids and maternal care duringrearing. Carotenoids have been shown to benefit the embryo andthe growing nestling, and it can be hypothesized that an increasein carotenoid availability during laying leads to higher nestlingcondition and competitive ability. We manipulated carotenoidavailability to great tit pairs prior to and during egg layingand later partially cross-fostered chicks at hatching. Duringthe rearing period, we measured how carotenoid availabilityaffected nestlings begging behavior and male and female feedingeffort. We also manipulated the ectoparasite load, predictingthat carotenoid supplementation would help adults and nestlingto cope with parasites. Nestlings hatched from eggs laid bycarotenoid-supplemented females and raised in small broods beggedmore intensely. Nestlings in small deparasitized broods alsobegged more actively. The feeding effort of control femalesincreased with brood size, whereas the feeding effort of carotenoid-supplementedfemales was high whatever the brood size. Male feeding effortwas unaffected by our treatment. Our results support the hypothesisthat maternally derived carotenoids increase nestling beggingbehavior and hence competitive ability. They further suggestthat carotenoid availability determines the level of parentalinvestment and can mediate trade-offs between life-history traits.  相似文献   

6.
In many bird species with asynchronous hatching, smaller, later‐hatched nestlings are out‐competed for food by their larger, earlier‐hatched siblings and therefore suffer increased mortality via starvation. It is thought that female birds can either maintain or reduce the survival disadvantage of later‐hatched nestlings by differentially allocating maternal resources across the eggs of a clutch. Carotenoid pigments are an example of resources that female birds allocate differentially when producing a clutch, but laying sequence patterns for these pigments remain poorly studied in North American songbirds. We examined intraclutch variation in yolk carotenoids and egg metrics in 27 full clutches of red‐winged blackbird Agelaius phoeniceus eggs collected from eight wetlands in central Alberta, Canada. We predicted that carotenoids would decrease across the laying sequence, as in this species, later‐hatched, marginal nestlings suffer greater mortality than earlier‐hatched, core nestlings. We found nine carotenoid pigments in red‐winged blackbird egg yolks, including two that have never been described from avian yolks: α‐doradexanthin and adonirubin. As predicted, concentrations and amounts of most carotenoids decreased across the laying sequence, suggesting that female red‐winged blackbirds depleted their carotenoid resources as they laid more eggs. However, egg mass and yolk mass both increased across the laying sequence, suggesting that female red‐winged blackbirds may use other maternal resources to compensate for the size and survival disadvantage experienced by later‐hatched, marginal nestlings.  相似文献   

7.
Male and female offspring can differ in their susceptibility to pre-natal (e.g. egg quality) and post-natal (e.g. sib–sib competition) conditions, and parents can therefore increase their individual fitness by adjusting these maternal effects according to offspring sex. In birds, egg mass and laying/hatching order are the main determinants of offspring viability, but these effects can act differently on each sex. In a previous study, relatively large last-laid (c-)eggs of yellow-legged gulls (Larus michahellis) were more likely to carry a female embryo. This suggests compensatory allocation of maternal resources to daughters from c-eggs, which suffer reduced viability. In the present study, we supplemented yellow-legged gulls with food during the laying period to experimentally test whether their nutritional conditions were responsible for the observed covariation between c-egg sex and mass. As predicted, food supplementation enhanced female c-eggs'' mass more than that of male c-eggs. Thus, this experiment indicates that mothers strategically allocated their resources to c-eggs, possibly in order to compensate for the larger susceptibility of daughters to hatching (and laying) order. The results also suggested that mothers decided on resource allocation depending on the sex of already ovulated c-eggs, rather than ovulating ova of either sex depending on food availability.  相似文献   

8.
Carotenoids in the diet of the laying hen are incorporated into the egg yolk and subsequently into the liver and other tissues of the chicken embryo. Since these pigments are known to provide a range of health benefits to a variety of animals, it is of interest to know whether the effects of maternally derived carotenoids are strictly limited to the embryonic period or if they persist in the progeny after hatching. The aim of this study is to compare the effectiveness of pre-hatch (from the hen's diet) with that of post-hatch (from the progeny's diet) supplementation with carotenoids on the carotenoid status of the chick during the first 4 weeks of post-hatch life. Hens were fed a control diet or a diet supplemented with a carotenoid-rich extract of alfalfa. Eggs from the supplemented hens contained up to 22 times more carotenoids than the controls. The concentration of carotenoids in the livers of chicks hatching from the enriched eggs was initially 29 times greater than in the control chicks. Hepatic carotenoid concentrations in chicks from enriched eggs maintained post-hatch on the control diet were sustained at higher values compared with chicks from control eggs that were fed post-hatch on the carotenoid-supplemented diet, for at least the first 7 days. However, by 14 days, the latter group had overtaken the former in terms of liver carotenoid levels. Thus, under these conditions, maternal effects predominate for at least the first week after hatching, whereas from 2 weeks onwards, the progeny's diet becomes the main determinant of its carotenoid status. Since the antioxidant and immunostimulatory roles of carotenoids are likely to be especially important during the immediate post-hatch period, maternal dietary intake of carotenoids may have important ramifications for the viability of the offspring.  相似文献   

9.
Experimental synchronization of onset of incubation was employed in laboratory held zebra finches Taeniopygia guttata to study whether differential resource allocation and possible bias of offspring sex in subsequent eggs in the laying order could mitigate the effects of hatching asynchrony. We found that egg mass increased with laying order, but offspring sex was not related to laying order. Among synchronized clutches, eggs hatched more synchronously than eggs from control nests. Survival probability was related to egg mass, and as expected, this effect differed between experimental groups: it was positive among synchronized broods and not significantly related among asynchronous broods. This suggests that increase in egg mass with the laying order might reduce disparities between early and late hatching chicks. Female nestlings survived better than male nestlings. However their growth was impaired in synchronized broods, whilst growth of males was not affected by hatching synchronization.  相似文献   

10.
Maternal condition influences phenotypic selection on offspring   总被引:4,自引:0,他引:4  
1. Environmentally induced maternal effects are known to affect offspring phenotype, and as a result, the dynamics and evolution of populations across a wide range of taxa. 2. In a field experiment, we manipulated maternal condition by altering food availability, a key factor influencing maternal energy allocation to offspring. We then examined how maternal condition at the time of gametogenesis affects the relationships among early life-history traits and survivorship during early development of the coral reef fish Pomacentrus amboinensis. 3. Maternal condition did not affect the number of embryos that hatched or the number of hatchlings surviving to a set time. 4. We found no significant difference in egg size in relation to the maternal physiological state. However, eggs spawned by supplemented mothers were provisioned with greater energy reserves (yolk-sac and oil globule size) than nonsupplemented counterparts, suggesting that provision of energy reserves rather than egg size more closely reflected the maternal environment. 5. Among offspring originating from supplemented mothers, those with larger yolk-sacs were more likely to successfully hatch and survive for longer periods after hatching. However, among offspring from nonsupplemented mothers, yolk-sac size was either inconsequential to survival or offspring with smaller yolk-sac sizes were favoured. Mothers appear to influence the physiological capacity of their progeny and in turn the efficiency of individual offspring to utilize endogenous reserves. 6. In summary, our results show that the maternal environment influences the relationship between offspring characteristics and survival and suggest that energy-driven selective mechanisms may operate to determine progeny viability.  相似文献   

11.
Predation risk is an environmental stressor that can induce changes in prey behavior and physiology. Perception of predation risk may indirectly affect offspring traits and future fitness prospects via impacts on the condition of parents. Females may influence the survival of their offspring via maternal effects, especially when breeding in stressful conditions. We investigated the effects of continuous predation risk perceived by mothers on the maternal allocation of immune factors and carotenoids in eggs of the pied flycatcher Ficedula hypoleuca. We collected eggs from wild pied flycatchers that bred in the vicinity of a predator nest (pygmy owl Glaucidium passerinum), were exposed to cues of a mammalian nest predator (urine of least weasel Mustela nivalis), or received appropriate controls for these two groups. Pied flycatchers transferred more immunoglobulin in eggs under high predation risk in both owl and mammalian predator treatments. The presence of owl nests also lowered the level of lysozyme transferred in the eggs in one of the two study years. Predation risk did not modify egg size or overall carotenoid levels. Our results show that continuous predation risk perceived by females during egg‐laying affects egg composition. This different allocation of maternal immune factors may be an adaptive response evolved to increase the probability of offspring survival.  相似文献   

12.
Hatching asynchrony can have profound short‐term consequences for offspring, although the long‐term consequences are less well understood. The purpose of this study was to examine the long‐term consequences of hatching asynchrony for offspring fitness in birds. Specifically, we aimed to test the hypothesis that hatching asynchrony increases the sexual attractiveness and fecundity, respectively, of early‐hatched male and female zebra finch, Taeniopygia guttata (Vieillot, 1817) offspring. Mate‐choice trials comparing male nestlings with the same parents, but that were reared in asynchronous or experimentally synchronous broods, revealed no female preference in relation to hatching regime. We did however find strong evidence that, as adults, late‐hatched males were more attractive to females than siblings that had hatched earlier. Meanwhile, we found a weak trend towards early‐hatched females depositing more carotenoids and retinol in the egg yolk than late‐hatched or synchronously hatched females, although there were no differences in terms of clutch characteristics or the deposition of α‐tocopherol or γ‐tocopherol in the egg yolk. Therefore, we found that the beneficial long‐term consequences of hatching asynchrony were sex specific, being accrued by late‐hatched male nestlings and by early‐hatched female nestlings. Consequently, we conclude that the long‐term consequences of hatching asynchrony are more complex than previously realised. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 430–438.  相似文献   

13.
In species where offspring fitness is sex-specifically influenced by maternal reproductive condition, sex allocation theory predicts that poor-quality mothers should invest in the evolutionarily less expensive sex. Despite an accumulation of evidence that mothers can sex-specifically modulate investment in offspring in relation to maternal quality, few mechanisms have been proposed as to how this is achieved. We explored a hormonal mechanism for sex-biased maternal investment by measuring and experimentally manipulating baseline levels of the stress hormone corticosterone in laying wild female European starlings (Sturnus vulgaris) and examining effects on sex ratio and sex-specific offspring phenotype adjustment. Here we show that baseline plasma corticosterone is negatively correlated with energetic body condition in laying starlings, and subsequent experimental elevation of maternal baseline plasma corticosterone increased yolk corticosterone without altering maternal condition or egg quality per se. Hormonal elevation resulted in the following: female-biased hatching sex ratios (caused by elevated male embryonic mortality), lighter male offspring at hatching (which subsequently grew more slowly during postnatal development), and lower cell-mediated immune (phytohemagglutinin) responses in males compared with control-born males; female offspring were unaffected by the manipulation in both years of the study. Elevated maternal corticosterone therefore resulted in a sex-biased adjustment of offspring quality favorable to female offspring via both a sex ratio bias and a modulation of male phenotype at hatching. In birds, deposition of yolk corticosterone may benefit mothers by acting as a bet-hedging strategy in stochastic environments where the correlation between environmental cues at laying (and therefore potentially maternal condition) and conditions during chick-rearing might be low and unpredictable. Together with recent studies in other vertebrate taxa, these results suggest that maternal stress hormones provide a mechanistic link between maternal quality and sex-biased maternal investment in offspring.  相似文献   

14.
In diverse animal taxa, egg mass variation mediates maternal effects with long-term consequences for offspring ontogeny and fitness. Patterns of egg mass variation with laying order differ considerably among birds, but no study has experimentally investigated the function of variation in albumen or yolk egg content in the wild. In barn swallows (Hirundo rustica), absolute and relative albumen mass increased with egg laying order. Experimental albumen removal delayed hatching, had larger negative effects on growth of late-hatched nestlings, and reduced nestling survival. Laying order positively predicted hatch order. Because nestling competitive ability depends on size, and albumen egg content influences hatchling size, present results suggest that by increasing albumen content of late eggs mothers reduce hatching asynchrony and enhance growth particularly of late-hatched nestlings. Thus, variation in albumen mass with laying order may function to mitigate the negative phenotypic consequences of hatching late in species that adopt a 'brood-survival' strategy.  相似文献   

15.
Sex allocation theory assumes individual plasticity in maternal strategies, but few studies have investigated within‐individual changes across environments. In house wrens, differences between nests in the degree of hatching synchrony of eggs represent a behavioural polyphenism in females, and its expression varies with seasonal changes in the environment. Between‐nest differences in hatching asynchrony also create different environments for offspring, and sons are more strongly affected than daughters by sibling competition when hatching occurs asynchronously over several days. Here, we examined variation in hatching asynchrony and sex allocation, and its consequences for offspring fitness. The number and condition of fledglings declined seasonally, and the frequency of asynchronous hatching increased. In broods hatched asynchronously, sons, which are over‐represented in the earlier‐laid eggs, were in better condition than daughters, which are over‐represented in the later‐laid eggs. Nonetheless, asynchronous broods were more productive later within seasons. The proportion of sons in asynchronous broods increased seasonally, whereas there was a seasonal increase in the production of daughters by mothers hatching their eggs synchronously, which was characterized by within‐female changes in offspring sex and not by sex‐biased mortality. As adults, sons from asynchronous broods were in better condition and produced more broods of their own than males from synchronous broods, and both males and females from asynchronous broods had higher lifetime reproductive success than those from synchronous broods. In conclusion, hatching patterns are under maternal control, representing distinct strategies for allocating offspring within broods, and are associated with offspring sex ratios and differences in offspring reproductive success.  相似文献   

16.
ABSTRACT Recent work suggests that avian egg color could be a sexually selected signal to males that provides information about female condition, female genetic quality, or maternal investment in eggs. Theory predicts that egg color should influence male investment if it is an honest signal of the marginal fitness returns on paternal investment; a male should invest more in a colorful clutch if that investment increases offspring success more than an equivalent investment in a less colorful clutch. Some experimental support for this hypothesis has been found for species that lay blue eggs containing the pigment biliverdin, a potentially costly antioxidant. However, the brown eggshell pigment protoporphyrin, a pro‐oxidant associated with poor female condition, has received less attention as a potential predictor of female quality or investment. We performed a cross‐fostering experiment with House Wrens (Troglodytes aedon) in southwest Michigan in 2007 to test whether brown egg color was related to female condition or maternal investment, and whether male provisioning of nestlings was related to egg color. We swapped entire clutches between nests and measured egg characteristics and parental provisioning rates. We found that brighter eggs (i.e., those with less brown pigment) were heavier, and that nestlings that hatched from brighter eggs were fed at higher rates by their foster mothers, but not by their foster fathers. This pattern is consistent with the hypothesis that egg color is a potential signal of egg quality and female investment, but we found no evidence of a male response to this potential signal. This lack of a response could be the result of methodological limitations, a nonadaptive biological constraint, or adaptive indifference because chicks from brighter eggs do not actually yield increasing marginal returns on paternal investment. Clearly, additional study is needed to differentiate among these possibilities.  相似文献   

17.
Egg quality is a phenotype of, and can profoundly influence fitness in, both mother and offspring. However, the physiological mechanisms that underlie this maternal effect are poorly understood. Carotenoids are hypothesized to enhance antioxidant activity and immune function, and are responsible for the pigmentation of egg yolk. The proximate basis and consequences of this maternal investment, however, have not previously been studied in wild birds. In this supplemental feeding study of lesser black-backed gulls, Larus fuscus, carotenoid-fed females are shown to have increased integument pigmentation, higher plasma concentrations of carotenoids and antioxidant activity, and lower plasma concentrations of immunoglobulins (Igs) in comparison with controls. In turn, carotenoid-fed females produced eggs containing high carotenoid but low Ig concentrations (i.e. passive immunity), whereas control females produced eggs containing low carotenoid but high Ig concentrations. Within-clutch patterns of these resources varied over the laying sequence in a similar manner in both carotenoid-fed and control nests. Our results suggest that carotenoids could be one resource responsible for egg quality maternal effects in birds. We discuss the possible implications of carotenoid-mediated effects on phenotype for fitness in mothers and their offspring.  相似文献   

18.
Egg quality may mediate maternal allocation strategies according to progeny sex. In vertebrates, carotenoids have important physiological roles during embryonic and post-natal life, but the consequences of variation in yolk carotenoids for offspring phenotype in oviparous species are largely unknown. In yellow-legged gulls, yolk carotenoids did not vary with embryo sex in combination with egg laying date, order and mass. Yolk lutein supplementation enhanced the growth of sons from first eggs but depressed that of sons from last eggs, enhanced survival of daughters late in the season, and promoted immunity of male chicks and chicks from small eggs. Lack of variation in egg carotenoids in relation to sex and egg features, and the contrasting effects of lutein on sons and daughters, do not support the hypothesis of optimal sex-related egg carotenoid allocation. Carotenoids transferred to the eggs may rather result from a trade-off between opposing effects on sons or daughters.  相似文献   

19.
Mothers who produce multiple offspring within one reproductive attempt often allocate resources differentially; some maternally derived substances are preferentially allocated to last-produced offspring and others to first-produced offspring. The combined effect of these different allocation regimes on the overall fitness of offspring produced early or late in the sequence is not well understood, partly because production order is often coupled with birth order, making it difficult-to-separate effects of pre-natal maternal allocation from those of post-natal social environments. In addition, very little is known about the influence of laying order on fitness in later life. In this study, we used a semi-natural captive colony of black-headed gulls to test whether an offspring's position in the laying order affected its early-life survival and later-life reproductive success, independent of its hatching order. Later-laid eggs were less likely to hatch, but among those that did, survival to adulthood was greater than that of first-laid eggs. In adulthood, the laying order of females did not affect their likelihood of breeding in the colony, but male offspring hatched from last-laid eggs were significantly less likely to gain a breeding position than earlier-laid males. In contrast, later-laid female parents hatched lower proportions of their clutches than first-laid females, but hatching success was unrelated to the laying order of male parents. Our results indicate that gull mothers induce complex and sex-specific effects on both the early survival of their offspring and on long-term reproductive success through laying order effects among eggs of the same breeding attempt.  相似文献   

20.
Maternal allocation of antioxidants to egg yolk has been shown to affect early embryonic development and nestling survival. In environments with high levels of anthropogenic pollution, antioxidants (such as carotenoids) are important to protect the body from elevated oxidative stress. Thus, female allocation of antioxidants to yolk may be traded off against self-maintenance. Here we investigate maternal reproductive investment with respect to yolk carotenoid content and composition in relation to subsequent female condition and carotenoid status in urban and rural great tits Parus major. We found no differences between the urban and rural populations in total yolk carotenoids, egg mass, clutch size, hatching success, or female carotenoid status. Interestingly, however, rural eggs contained more zeaxanthin, a more potent antioxidant than lutein, which suggests that rural embryos have better antioxidant protection than urban embryos. Whether rural females actively transfer more zeaxanthin to the yolk or whether it passively reflects differences in dietary access or uptake needs to be further investigated. This highlights the importance of carotenoid identity and composition in future studies of carotenoid physiology, ecology, and signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号