首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several copies of highly related transposable elements, Crmar2, Almar1, and Asmar1, are described from the genomes of Ceratitis rosa, Anastrepha ludens, and A. suspensa, respectively. One copy from C. rosa, Crmar2.5, contains a full-length, uninterrupted ORF. All the other copies, from the three species contain a long deletion within the putative ORF. The consensus Crmar2 element has features typical of the mariner/Tc1 superfamily of transposable elements. In particular, the Crmar2 consensus encodes a D,D41D motif, a variant of the D,D34D catalytic domain of mariner elements. Phylogenetic analysis of the relationships of these three elements and other members of the mariner/Tc1 superfamily, based on their encoded amino acid sequences, suggests that they form a new basal subfamily of mariner elements, the rosa subfamily. BLAST analyses identified sequences from other diptera, including Drosophila melanogaster, which appear to be members of the rosa subfamily of mariner elements. Analyses of their molecular evolution suggests that Crmar2 entered the genome of C. rosa in the recent past, a consequence of horizontal transfer.  相似文献   

2.
Mobile elements are widely present in eukaryotic genomes. They are repeated DNA segments that are able to move from one locus to another within the genome. They are divided into two main categories, depending on their mechanism of transposition, involving RNA (class I) or DNA (class II) molecules. The mariner-like elements are class II transposons. They encode their own transposase, which is necessary and sufficient for transposition in the absence of host factors. They are flanked by a short inverted terminal repeat and a TA dinucleotide target site, which is duplicated upon insertion. The transposase consists of two domains, an N-terminal inverted terminal repeat binding domain and a C-terminal catalytic domain. We identified a transposable element with molecular characteristics of a mariner-like element in Atta sexdens rubropilosa genome. Identification started from a PCR with degenerate primers and queen genomic DNA templates, with which it was possible to amplify a fragment with mariner transposable-element homology. Phylogenetic analysis demonstrated that this element belongs to the mauritiana subfamily of mariner-like elements and it was named Asmar1. We found that Asmar1 is homologous to a transposon described from another ant, Messor bouvieri. The predicted transposase sequence demonstrated that Asmar1 has a truncated transposase ORF. This study is part of a molecular characterization of mobile elements in the Atta spp genome. Our finding of mariner-like elements in all castes of this ant could be useful to help understand the dynamics of mariner-like element distribution in the Hymenoptera.  相似文献   

3.
Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle- repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.   相似文献   

4.
Two mariner-like elements, Ramar1 and Ramar2, are described in the genome of Rhynchosciara americana, whose nucleotide consensus sequences were derived from multiple defective copies containing deletions, frame shifts and stop codons. Ramar1 contains several conserved amino acid blocks which were identified, including a specific D,D(34)D signature motif. Ramar2 is a defective mariner-like element, which contains a deletion overlapping in most of the internal region of the transposase ORF while its extremities remain intact. Predicted transposase sequences demonstrated that Ramar1 and Ramar2 phylogenetically present high identity to mariner-like elements of mauritiana subfamily. Southern blot analysis indicated that Ramar1 is widely represented in the genome of Rhynchosciara americana. In situ hybridizations showed Ramar1 localized in several chromosome regions, mainly in pericentromeric heterochromatin and their boundaries, while Ramar2 appeared as a single band in chromosome A.  相似文献   

5.
We report the isolation and sequencing of genomic copies of mariner transposons involved in recent horizontal transfers into the genomes of the European earwig, Forficula auricularia; the European honey bee, Apis mellifera; the Mediterranean fruit fly, Ceratitis capitata; and a blister beetle, Epicauta funebris, insects from four different orders. These elements are in the mellifera subfamily and are the second documented example of full-length mariner elements involved in this kind of phenomenon. We applied maximum likelihood methods to the coding sequences and determined that the copies in each genome were evolving neutrally, whereas reconstructed ancestral coding sequences appeared to be under selection, which strengthens our previous hypothesis that the primary selective constraint on mariner sequence evolution is the act of horizontal transfer between genomes.  相似文献   

6.
Nefedova LN  Kim AI 《Genetika》2007,43(5):620-632
The structure was analyzed for 60 annotated copies of the mobile genetic element (MGE) HB from the Drosophila melanogaster genome. The genomic distribution of HB copies was studied, and preferential insertion sites (hot spots) were identified, which presumably amount to several kilobases. Structural analysis of the open reading frame (ORF) and terminal repeats of HB was performed. All 26 HB copies retaining the ORF sequence have a stop codon in the same position. Consequently, the HB ORF proved indeed to code for an enzyme of 148 amino acid residues, relatively small for Tc1-family transposases. The ORF consensus sequence was established. HB{}1185 was identified as the only HB copy potentially coding for a functional protein. All 37 repeat-containing HB copies were analyzed. Of these, only four had functional terminal sequences, lacking, however, a functional transposase gene. A new 7762-bp copy of MGE roo was found in the D. melanogaster genome; the copy was earlier unavailable from databases and represents an insert in the HB{}1605 sequence.  相似文献   

7.
A new type of active DNA transposon has been identified in the genome of Fusarium oxysporum by its transposition into the niaD target gene. Two insertions within the final exon, in opposite orientations at the same nucleotide site, have been characterized. These elements, called Hop, are 3,299 bp long, with perfect terminal inverted repeats (TIRs) of 99 bp. The sequencing of genomic copies reveals a 9-bp target site duplication and no apparent sequence specificity at the insertion sites. The sequencing of a cDNA indicates that Hop does not contain an intron and encodes a putative transposase of 836 amino acids. The structural features (length, TIRs size, and 9-bp duplication), together with the presence of conserved domains in the transposase, strongly suggest that Hop is a Mutator-like element (MULE). Hop is thus the first active member of this family found beyond plants. The high rate of excision observed indicates that Hop is very active and thus represents a promising efficient tagging system for the isolation of fungal genes. The distribution of Hop elements within the Fusarium genus revealed that they are present in different species, suggesting that related elements could be present in other fungal genomes. In fact, Hop-related sequences have been identified in the survey of the entire genome sequence of three other ascomycetes, Magnaporthe grisea, Neurospora crassa, and Aspergillus fumigatus.  相似文献   

8.
M J Leaver 《Gene》2001,271(2):203-214
Tc1-like transposons are very widely distributed within the genomes of animal species. They consist of an inverted repeat sequence flanking a transposase gene with homology to the mobile DNA element, Tc1 of the nematode Caenorhabditis elegans. These elements seem particularly to infest the genomes of fish and amphibian species where they can account for 1% of the total genome. However, all vertebrate Tc1-like elements isolated so far are non-functional in that they contain multiple frameshifts within their transposase coding regions. Here I describe a Tc1-like transposon (PPTN) from the genome of a marine flatfish species (Pleuronectes platessa) which bears conserved inverted repeats flanking an apparently intact transposase gene. Closely related, although degenerate, Tc1-like transposons were also isolated from the genomes of Atlantic salmon (SSTN, Salmo salar) and frog (RTTN, Rana temporaria). Consensual nucleic acid sequences were derived by comparing several individual isolates from each species and conceptual amino acid sequences were thence derived for their transposases. Phylogenetic analysis of these sequences with previously isolated Tc1-like transposases shows that the elements from plaice, salmon and frog comprise a new subfamily of Tc1-like transposons. Each member is distinct in that it is not found in the genomes of the other species tested. Plaice genomes contain about 300 copies of PPTN, salmon 1200 copies of SSTN and frog genomes about 500 copies of RTTN. The presence of these closely related elements in the genomes of fish and frog species, representing evolutionary lines, which diverged more than 400 million years ago, is not consistent with a vertical transmission model for their distributions.  相似文献   

9.
A transposon, designated Tn5469, was isolated from mutant strain FdR1 of the filamentous cyanobacterium Fremyella diplosiphon following its insertion into the rcaC gene. Tn5469 is a 4,904-bp noncomposite transposon with 25-bp near-perfect terminal inverted repeats and has three tandemly arranged, slightly overlapping potential open reading frames (ORFs) encoding proteins of 104.6 kDa (909 residues), 42.5 kDa (375 residues), and 31.9 kDa (272 residues). Insertion of Tn5469 into the rcaC gene in strain FdR1 generated a duplicate 5-bp target sequence. On the basis of amino acid sequence identifies, the largest ORF, designated tnpA, is predicted to encode a composite transposase protein. A 230-residue domain near the amino terminus of the TnpA protein has 15.4% amino acid sequence identity with a corresponding domain for the putative transposase encoded by Lactococcus lactis insertion sequence S1 (ISS1). In addition, the sequence for the carboxyl-terminal 600 residues of the TnpA protein is 20.0% identical to that for the TniA transposase encoded by Tn5090 on Klebsiella aerogenes plasmid R751. The TnpA and TniA proteins contain the D,D(35)E motif characteristic of a recently defined superfamily consisting of bacterial transposases and integrase proteins of eukaryotic retroelements and retrotransposons. The two remaining ORFs on Tn5469 encode proteins of unknown function. Southern blot analysis showed that wild-type F. diplosiphon harbors five genomic copies of Tn5469. In comparison, mutant strain FdR1 harbors an extra genomic copy of Tn5469 which was localized to the inactivated rcaC gene. Among five morphologically distinct cyanobacterial strains examined, none was found to contain genomic sequences homologous to Tn5469.  相似文献   

10.
P elements, like mariners, inhabit eukaryotic genomes and transpose via a DNA intermediate. Mutant and wild-type elements in the same genome should be transposed with equal probability by trans-acting transposase, and so no selection should counteract the accumulation of inactivating mutations in transposase genes. Thus, copies of mariner elements diverge within a host species under no selection (Robertson and Lampe 1995). It is unknown whether or not this pattern holds for P elements, which are unrelated to mariner elements but share the same life history. Publicly available P-element sequences were analyzed for evidence of conservative selection for the function of P-element-encoded proteins. Results were compared to predictions derived from several hypotheses that could explain selection, or the lack of it. P-element protein-coding sequences do evolve under conservative selection but apparently because of more than one selective force. Of the four exons in the P-element transposase, the first three (exons 0, 1, and 2) can be translated alone into a repressor of transposition, while the last (exon 3) is only expressed as part of the full-length transposase and probably serves a transposition-specific role. As full-length P-element copies diverge from each other within a host population, selection maintains exons 0-2 but apparently not exon 3. The selection acting on exons 0-2 may act at the host level for repression of transposition (since host level selection does act on orthologous truncated elements that contain only exons 0-2). Evidence of selection on exon 3 is only found in comparisons of more diverged elements from different species, suggesting that selection for transposition acts primarily at horizontal transfer events. Thus, horizontal transfer events may be the sole source of the selection that is crucial to the maintenance of autonomous P elements in the face of mutation (as suggested by Robertson and Lampe 1995). The predictions derived here suggest a strategy for collecting sequence data that could definitively answer these questions.  相似文献   

11.
A group of transposons, named maT, with characteristics intermediate between mariner and Tc1 transposons, is described. Two defective genomic copies of MdmaT from the housefly Musca domestica, with 85% identity, were found flanking and imbedded in the MdalphaE7 esterase gene involved in organophosphate insecticide resistance. Two cDNA clones, with 99% identity to each other and 72%-89% identity to the genomic copies were also obtained, but both represented truncated versions of the putative open reading frame. A third incomplete genomic copy of MdmaT was also identified upstream of the putative M. domestica period gene. The MdmaT sequences showed high identity to the transposable element Bmmar1 from the silkworm moth, Bombyx mori, and to previously unidentified sequences in the genome of Caenorhabditis elegans. A total of 16 copies of full-length maT sequences were identified in the C. elegans genome, representing three variants of the transposon, with 34%-100% identity amongst them. Twelve of the copies, named CemaT1, were virtually identical, with eight of them encoding a putative full length, intact transposase. Secondary structure predictions and phylogenetic analyses confirm that maT elements belong to the mariner-Tc1 superfamily of transposons, but their intermediate sequence and predicted structural characteristics suggest that they belong to a unique clade, distinct from either mariner-like or Tc1-like elements.  相似文献   

12.
Unexpected stability of mariner transgenes in Drosophila   总被引:6,自引:0,他引:6  
A number of mariner transformation vectors based on the mauritiana subfamily of transposable elements were introduced into the genome of Drosophila melanogaster and examined for their ability to be mobilized by the mariner transposase. Simple insertion vectors were constructed from single mariner elements into which exogenous DNA ranging in size from 1.3 to 4.5 kb had been inserted; composite vectors were constructed with partial or complete duplications of mariner flanking the exogenous DNA. All of the simple insertion vectors showed levels of somatic and germline excision that were at least 100-fold lower than the baseline level of uninterrupted mariner elements. Although composite vectors with inverted duplications were unable to be mobilized at detectable frequencies, vectors with large direct duplications of mariner could be mobilized. A vector consisting of two virtually complete elements flanking exogenous DNA yielded a frequency of somatic eye-color mosaicism of approximately 10% and a frequency of germline excision of 0.04%. These values are far smaller than those observed for uninterrupted elements. The results imply that efficient mobilization of mariner in vivo requires the presence and proper spacing of sequences internal to the element as well as the inverted repeats.  相似文献   

13.
The mouse genomic locus containing the oncogene c-mos was analyzed for repetitive DNA sequences. We found a single B1 repeat 10 kb upstream and three B1 repeats 0.6 kb, 2.7 kb, and 5.4 kb, respectively, downstream from c-mos. The B1 repeat closest to c-mos contains an internal 7-bp duplication and a 18-bp insertion. Localized between the last two B1 repeats is a copy of a novel mouse repeat. Sequence comparison of three copies of this novel repeat family shows that they a) contain a conserved BglII site, b) are approximately 420 bp long, c) possess internal 50-bp polypurine tracts, and d) have structural characteristics of transposable elements. They are present in about 1500 copies per haploid genome in the mouse, but are not detectable in DNA of other mammals. The BglII repeat downstream from c-mos is interrupted by a single 632-bp LTR element. We estimate that approximately 1200 copies of this element are present per haploid genome in BALB/c mice. It shares sequence homology in the R-U5 region with an LTR element found in 129/J mice.  相似文献   

14.
A mariner-like element was cloned from the genome of the Asiatic honey bee, Apis cerana japonica (Hymenoptera, Apocrita). The (composite) clone, named Acmar1, was 1,378 bp long, and encoded 336 amino acids corresponding to a transposase-like putative polypeptide in a single open reading frame. The D,D(34)D motif, the catalytic domain of the mariner transposase, was present, although there was a deletion of five amino acid residues within it as compared with the active transposase in Drosophila mauritiana. Nineteen-bp-long imperfect inverted terminal repeat-like sequences flanked by TA dinucleotides, the typical target site for mariner insertion, were observed. Southern blot analysis using a fragment covering two-thirds of the Acmar1 transposase coding sequence as a probe indicated the presence of multiple Acmar1-like elements in the genome. Maximum-parsimony phylogenetic analysis based on the transposase amino acid sequences of insect mariner-like elements revealed that Acmar1 is a member of the mellifera subfamily.  相似文献   

15.
Mariner like elements (MLEs) are widely distributed type II transposons with an open reading frame (ORF) for transposase. We studied comparative phylogenetic evolution and inverted terminal repeat (ITR) conservation of MLEs from Indian saturniid silkmoth,Antheraea mylitta with other full length MLEs submitted in the database. Full length elements fromA. mylitta were inactive with multiple mutations. Many conserved amino acid blocks were identified after aligning transposase sequences. Mariner signature sequence, DD(34)D was almost invariable although a few new class of elements had different signatures.A. mylitta MLEs(Anmmar) get phylogenetically classified under cecropia subfamily and cluster closely with the elements from other Bombycoidea superfamily members implying vertical transmission from a common ancestor. ITR analysis showed a conserved sequence of AGGT(2-8N)ATAAGT for forward repeat and AGGT(2-8N)ATGAAAT for reverse repeat. These results and additional work may help us to understand the dynamics of MLE distribution inA. mylitta and construction of appropriate vectors for mariner mediated transgenics.  相似文献   

16.
Brownlie JC  Whyard S 《Gene》2004,338(1):55-64
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. In the nematode Caenorhabditis elegans, there are eight copies of CemaT1 that are predicted to encode a functional transposase, with five copies being >99% identical. We present evidence, based on searches of publicly available databases and on PCR-based mobility assays, that the CemaT1 transposase is expressed in C. elegans and that the CemaT transposons are capable of excising in both somatic and germline tissues. We also show that the frequency of CemaT1 excisions within the genome of the N2 strain of C. elegans is comparable to that of the Tc1 transposon. However, unlike Tc transposons in mutator strains of C. elegans, maT transposons do not exhibit increased frequencies of mobility, suggesting that maT is not regulated by the same factors that control Tc activity in these strains. Finally, we show that CemaT1 transposons are capable of precise transpositions as well as orientation inversions at some loci, and thereby become members of an increasing number of identified active transposons within the C. elegans genome.  相似文献   

17.
18.
Spiroplasma citri virus SpV1-R8A2B is a naked, rod-shaped virus with a circular, single-stranded DNA genome of 8273 bp. SpV1-related sequences were detected in the chromosomal DNA of all S. citri strains tested. Southern blot hybridization analyses revealed that several copies of most, if not all, SpV1 ORFs are present in the chromosome of S. citri strain R8A2. For further study of the integrated viral sequences, a genomic DNA library of S. citri R8A2 was constructed, and two cloned chromosomal DNA fragments containing SpV1 viral sequences were studied by comparison with the free viral genome of SpV1-R8A2B. One fragment seems to contain a full-length viral genome, while the other contains only parts of the viral genome. In both fragments, the left and right ends of viral sequences consist of 31-bp inverted repeat sequences, those which are facing each other at nucleotide 4737 in the circular viral genome. In addition, both fragments contain the SpV1-ORF3, encoding a putative transposase, immediately upstream of the right repeat. These data suggest that the SpV1-ORF3 and the repeat sequences could be parts of an IS-like element of chromosomal origin.  相似文献   

19.
IS630/Tc1/mariner elements are diverse and widespread within insects. The African malaria mosquito, Anopheles gambiae, contains over 30 families of IS630/Tc1/mariner elements although few have been studied in any detail. To examine the history of Topi elements in An. gambiae populations, Topi elements (n=73) were sampled from five distinct populations of An. gambiae from eastern and western Africa and evaluated with respect to copy number, nucleotide diversity and insertion site-occupancy frequency. Topi 1 and 2 elements were abundant (10-34 per diploid genome) and highly diverse (pi=0.051). Elements from mosquitoes collected in Nigeria were Topi 2 elements and those from mosquitoes collected in Mozambique were Topi 1 elements. Of the 49 Topi transposase open reading frames sequenced none were found to be identical. Intact elements with complete transposase open reading frames were common, although based on insertion site-occupancy frequency data it appeared that genetic drift was the major force acting on these IS630/Tc1/mariner-type elements. Topi 3 elements were not recovered from any of the populations sampled in this study and appear to be rare elements in An. gambiae, possibly due to a recent introduction.  相似文献   

20.
The mariner family is probably the most widely distributed family of transposons in nature. Although these transposons are related to the well-studied bacterial insertion elements, there is evidence for major differences in their reaction mechanisms. We report the identification and characterization of complexes that contain the Himar1 transposase bound to a single transposon end. Titrations and mixing experiments with the native transposase and transposase fusions suggested that they contain different numbers of transposase monomers. However, the DNA protection footprints of the two most abundant single-end complexes are identical. This indicates that some transposase monomers may be bound to the transposon end solely by protein-protein interactions. This would mean that the Himar1 transposase can dimerize independently of the second transposon end and that the architecture of the synaptic complex has more in common with V(D)J recombination than with bacterial insertion elements. Like V(D)J recombination and in contrast to the case for bacterial elements, Himar1 catalysis does not appear to depend on synapsis of the transposon ends, and the single-end complexes are active for nicking and probably for cleavage. We discuss the role of this single-end activity in generating the mutations that inactivate the vast majority of mariner elements in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号