首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Effects of nitrate, chloride and chlorate ions upon nitrate and chlorate uptake by roots of maize ( Zea mays L., cv. B73) seedlings were examined. Net nitrate uptake, 36ClO3 influx and 36Cl influx (the latter two in a background of 0.5 m M KNO3) displayed similar pH profiles with optima at pH 5.5 and below. External, non-labeled chloride had little effect on the accumulation of 36ClO3 (both in 5 h and 20 min uptake assays), while nitrate and chlorate had almost identical, marked inhibitory effects. Nitrate pretreatment caused an apparent induction of both 36ClO3 and 15NO3 uptake activities. After 5 h of treatment in nitrate, the uptake activities of chloride- and chlorate-pretreated plants increased to that of nitrate-pretreated plants. During 6 h exposure to chlorate, 36ClO3 uptake activity of nitrate-pretreated plants decreased to that of chlorate- and chloride-pretreated plants. The results support the existence of a shared nitrate/chlorate transport system in maize roots which is not inhibited by external chloride, and which is induced by nitrate, but not by chlorate or chloride. The suggestion is made that selection of chlorate-resistant mutants of maize can identify nitrate uptake as well as nitrate reductase mutants.  相似文献   

2.
Abstract: Techniques are described for measuring the isotope distribution in dissolved nitrate and N2 using membrane inlet mass spectrometry, which allows several gases to be measured in a water sample without the need for any separation steps. The isotope distribution in dissolved nitrate was measured using denitrifying Pseudomonas nautica to reduce the nitrate to N2 which was then measured by mass spectrometry. Pseudomonas nautica NCIMB 1967 was easily grown in nitrate-limited continuous culture minimising intra- or extracellular nitrate or nitrite pools, and the bioassay was tolerant of a range of salinities. The precision of the bioassay when measuring samples with high 15NO3 contents (0.5 μmol) was 0.05 atom%; with 0.1 μmol 15NO3, the precision was around 0.2 atom%. Differences in labelling of N2 in preserved samples obtained from 15NO3 incubations of water-covered sediment cores were measured on parallel samples with membrane inlet MS and GC-MS. The membrane inlet technique was accurate but the precision on ratio measurements was lower than by GC-MS.  相似文献   

3.
Clones of Rosa damascena Mill. cv. Gloire de Guillan, selected for growth in solid medium containing 56 m M NaClO3, were studied to determine the reason for their resistance to this toxic salt. The cells grew on medium containing nitrate as the only nitrogen source, and they synthesized nitrate reductase (EC 1.6.6.2) in the presence of nitrate. The cells were resistant in the presence of nitrate. However, their resistance was greatly increased by the presence of glutamate in the medium. The cells took up [36Cl]-ClO3- and reduced it to ClO2, but the fraction of ClO3 that they reduced under our experimental conditions was less than that reduced by wild type. The slower production of ClO2 apparently accounted for the resistance of the cells to ClO3. We suggest several possible reasons for the low rate of reduction of ClO3.  相似文献   

4.
Denitrification in sediment determined from nitrogen isotope pairing   总被引:29,自引:0,他引:29  
Abstract A new method for accurate and easy measurement of denitrification in sediments is presented. The water overlying intact sediment cores was enriched with 15NO3 which mixed with the 14NO3 of the natural sources of NO3. The formation by denitrification of single-labeled (14N15N) and double-labeled (15N15N) dinitrogen pairs was measured by mass spectrometry after a few hours incubation. Total denitrification including the formation of unlabeled (14N14N) dinitrogen could be calculated assuming random isotope pairing by denitrification of the uniformly mixed NO3 species. In contrast to previous approaches, by this method it is possible to measure denitrification of both NO3 diffusing from the overlying water and NO3 from nitrification within the sediment.  相似文献   

5.
Four-year-old citrus trees ( Citrus unshiu Marcovitch) were fed via the roots with (15NH4)2sO4 or K15NO3 as a nitrogen source. Nitrogenous compounds and their isotopic abundances in fine roots and xylem sap from trunks were assayed in order to obtain information on the species of nitrogen released by the root system into the ascending xyiem stream.
Arginine, asparagine, nitrate and proline in xylem sap accounted for 48, 21, 13 and 10%, respectively, of the total nitrogenous constituents tested in the sap. However, in the trees fed with labelled ammonium the main nitrogenous compound labelled with 15N in the xylem sap was asparagine and glutamine, which accounted for 79% and 18%, respectively, of total labelled nitrogen. In the xylem sap of trees fed with labelled nitrate, nitrate accounted for 94% of total labelled nitrogen. Nitrate and asparagine followed by glutamine showed the highest ratios of isotopic abundance in xylem sap as compared to fine roots. Proline and arginine had much lower ratios. These results indicate that nitrate, asparagine and glutamine are the main nitrogenous compounds released by the roots to the xylem stream, whereas arginine and proline are released into the xylern vessels by the trunk tissues. Furthermore, nitrate and asparagine are probably in steady movement upward in the trunk xylem, whereas glutamine is more easily taken up by the trunk tissues than nitrate and asparagine.  相似文献   

6.
The rice coleoptile: an example of anaerobic nitrate assimilation   总被引:2,自引:0,他引:2  
Nitrate present in rice caryopses can be reduced to ammonium and the ammonium subsequently assimilated by the coleoptile during anaerobic germination. All the enzymes of nitrate reduction and ammonia assimilation are present in the coleoptile. The supply of 15NO3 confirms that the nitrate nitrogen is anaerobically incorporated into amino acids. Under anoxia, nitrate and nitrite reductase activities are increased in the coleoptile by exogenous nitrate. The importance of nitrate utilization during the anaerobic germination of rice caryopses is discussed.  相似文献   

7.
The possibility to induce nitrate reductase (NR; EC 1.6.6.2) in needles of Scots pine ( Pinus sylvestris L.) seedlings was studied. The NR activity was measured by an in vivo assay. Although increased NR activities were found in the roots after application of NO3, no such increase could be detected in the needles. Detached seedlings placed in NO3 solution showed increasing NR activities with increasing NO3 concentrations. Exposure of seedlings to NOx (70–80 ppb NO2 and 8–12ppb NO) resulted in an increase of the NR activity from 10–20 nmol NO2 (g fresh weight)−1 h−1 to about 400 nmol NO2 (g fresh weight)−1 h−1. This level was reached after 2–4 days of exposure, thereafter the NR activity decreased to about 200 nmol NO2 (g fresh weight)−1 h−1. Analyses of free amino acids showed low concentrations of arginine and glutamine in NOx-fumigated seedlings compared to corresponding controls.  相似文献   

8.
Two-month-old jack pine ( Pinus banksiana Lamb.) seedlings were placed in a greenhouse where both nitrogen source and light level were varied. After 4 months, whole seedling biomass, leaf biomass and relative growth rate were greatest in seedlings grown with NH+4/NO/NO3-N and full light (FL) and least in seedlings grown with NO 3-N and low light (LL). NO 3-seedlings grown under full light and NH+4/NO3-seedlings grown under low light were approximately equal. This indicates that the extra carbon costs of assimilating only NO3-N were similar to the reduction of carbon fixation resulting from a 50% decrease in photon flux density. Percentage and total nitrogen content of needles were greater in seedlings grown under low light independent of nitrogen fertilization. Percentage and total nitrogen content of roots were higher under low light and lower when fertilized with NO3.
Nitrate reductase (NR) activity was higher in roots than in needles, while glutamine synthetase (GS) activity was higher in needles than in roots. Low light resulted in decreased NR activity (mg N)−1 in needles, but not in roots. However, no nitrate was detected in the needles in any treatment. GS activity, on the other hand, was greater under low light in both needles and roots. GS activity in needles is most likely involved with the reassimilation rather than the initial assimilation of ammonium. Some implications of these shifts in enzymatic activity for ecological phenomena in forests are discussed.  相似文献   

9.
Carbon and nitrogen partitioning was examined in a wild-type and a nitrate reductase-deficient mutant (A317) of Pisum sativum L. (ev. Juneau), effectively inoculated with two strains of Rhizobium leguminosarum (128C23 and 128C54) and grown hydroponically in medium without nitrogen for 21 days, followed by a further 7 days in medium without and with 5 mM NH4NO3. In wild-type symbioses the application of NH4NO3 significantly reduced nodule growth, nitrogenase (EC 1.7.99.2) activity, nodule carbohydrates (soluble sugars and starch) and allocation of [14C]-labelled (NO3, NH4+, amino acids) in roots. In nodules, there was a decline in amino acids together with an increase in inorganic nitrogen concentration. In contrast, symbioses involving A317 exhibited no change in nitrogenase activity or nodule carbohydrates, and the concentrations of all nitrogenous solutes measured (including asparagine) in roots and nodules were enhanced. Photosynthate allocation to the nodule was reduced in the 128C23 symbiosis. Nitrite accumulation was not detected in any case. These data cannot be wholly explained by either the carbohydrate deprivation hypothesis or the nitrite hypothesis for the inhibition of symbiotic nitrogen fixation by combined nitrogen. Our result with A317 also provided evidence against the hypothesis that NO3 and NH4+ or its assimilation products exert a direct effect on nitrogenase activity. It is concluded that more than one legume host and Rhizobium strain must be studied before generalizations about Rhizobium /legume interactions are made.  相似文献   

10.
Abstract: The putative role of glutamine, exported from leaves to roots, as a negative feedback signal for nitrate uptake was investigated in Zea mays L. seedlings. Glutamine (Gln) was supplied by immersion of the tip-cut leaves in a concentrated solution. Nitrate (NO3) uptake was measured by its depletion in amino acid-free medium. The treatment with Gln resulted in a strong inhibition of nitrate uptake rate, accompanied by a significant enrichment of amino compounds in root tissue. The effect of N-availability on NO3 uptake was determined in split-root cultures. The plants were subjected to complete or localized N supply. Inducible NO3 uptake systems were also induced in N-deprived roots when the opposite side of the root system was supplied with KNO3. The inhibitory effect of Gln was unaffected by localized N supply on one side of the split-root. The potential role of Gln in the shoot-to-root control of NO3 uptake is discussed.  相似文献   

11.
Abstract. The 15N isotope was used to compare the uptake and the assimilation of NH4+ and NO3 nitrogen in ryegrass ( Lolium perenne L.) during regrowth after cutting. Uptake of nitrate-N, expressed per plant, was at all times greater than ammonium-N uptake and assimilation decreased in roots and stubble while its assimilation was maintained at a high level in leaves. It has been suggested that ammonium assimilation is directly related to the availability of carbohydrates in the sink organ (leaves) resulting from their remobilization from the source organs (roots and stubble). Nitrate reduction decreased in all organs, while the uptake of NO3 was still high. After this first period of regrowth, nitrogen assimilation both from nitrate and ammonium increased in all the plants. Nitrate reduction capacity (expressed in μg NO3-N reduced per g D.W. per d) is 7.5 and 22.5 times greater in leaves than in stubble and roots, respectively. Therefore, nitrogen assimilation in stubble and particularly in roots was mainly dependent on ammonium nitrogen.  相似文献   

12.
Abstract: Thiosphaera pantotropha has been reported to denitrify aerobically and nitrify heterotrophically. However, recent evidence has indicated that these properties (particularly aerobic denitrification) have been lost. The occurrence and levels of aerobic denitrification and heterotrophic nitrification by T. pantotropha in chemostat cultures have therefore been re-evaluated. Only low nitrate reduction rates were observed: the apparent nitrogen loss was of the same order of magnitude as the combined error in the calculated nitrogen consumption. However, 15N mass spectrometry revealed low aerobic denitrification rates (about 10% of the rates originally published by this group). Heterotrophic nitrification rates were about a third of previous observations. N2 and N2O were both produced from NH4+, NO3 and NO2. Periplasmic nitrate reductase was present in aerobically grown cells.  相似文献   

13.
The activity of glutamine synthetase (GS) in mustard ( Sinapis alba L.) and Scots pine ( Pinus sylvestris L.) seedlings was used as an index to evaluate the capacity to cope with excessive ammonium supply. In these 2 species GS activity was differently affected by the application of nitrogen compounds (NH4+ or NO3). Mustard seedlings older than 5 days showed a considerable increase in GS activity after NH4+ or NO3 application. This response was independent of the energy flux, but GS activity in general was positively affected by light. Endogenous NH4+ did not accumulate greatly after nitrogen supply. In contrast, seedlings of Scots pine accumulated NH4+ in cotyledons and roots and showed no stimulation of GS activity after the application of ammonium. In addition, root growth was drastically reduced. Thus, the pine seedlings seem to have insufficient capacity to assimilate exogenously supplied ammonium. NO3, however, did not lead to any harmful effects.  相似文献   

14.
The short term effect of NO3 (12 mM) on nitrate reductase (NR. EC 1.6.6.1) activity has been studied in the roots, nodules and leaves of different genotypes of Vicia faba L. at the end of vegetative growth. Root and leaf NR activity responded positively to NO3 while nodule activity, where detected, proved to he strongly inhibited. The withdraw of this NO3 from the solution consistently reduced activity in the roots and leaves but surprising, promoted a significant increase in nodule activity, which matched or surpassed that of control plants On the other hand, nodules developed in the presence of 8 mM NO3 expressed an on average 141% higher level of NR activity than did controls. This effect was observed even in nodules with negligible control activity. In any case, a naturally occurring mutant (VF17) lacking root and nodule NR activity is described. The results indicate that in V. faba. the effects of NO3 and plant genotype on NR activity depended on plant organ and time of NO3 application, hut the distribution of NO3 reduction through the plain was mainly dependent on plant genotype, and to a lesser extent on NO: supply and plant age.  相似文献   

15.
Influx, efflux and translocation of K+(86Rb) were studied in the roots of sunflower seedlings ( Helianthus annuus L. cv. Uniflorus) treated with 0–4.0 m M NO3 during a 9 day growth period or a 24 h pretreatment period. Roots treated with high levels of NO3 absorbed and translocated more K+(86Rb) than seedlings treated with low levels of NO3. The content of K+ in the shoots was, however, higher in seedlings treated with low levels of NO3, indicating a low rate of retranslocation of K+ in those plants. K+(86Rb) efflux was highest into the low-NO3 solutions. All effects on K+(86Rb)-fluxes were more obvious in high-K plants than in low-K plants. The results are discussed in relation to the Dijkshoorn-Ben Zioni hypothesis for K++ NO3-uptake and translocation in plants.  相似文献   

16.
The effect of N-source on the interaction between carbon and nitrogen metabolism was evaluated by measuring phosphoenolpyruvate carboxylase (PEPcase; EC 4.1.1.31) activity in callus tissue of maize ( Zea mays L. cv. Prisma) sub-cultured under different N-nutrition conditions: nitrate, ammonium or combinations of both. By comparison with the condition where both salts were supplied (control), nitrate as the sole N-source led to an increase in PEPcase activity. Ammonium alone gave a drastic decrease of tissue growth. Extracts from calli grown on equivalent media supplied with 15N-nitrate or 15N-ammonium were analysed by 15N-NMR. The labelling of amino acids in the NMR spectra showed that when 15NO3 was the unique N-source, 15N mainly accumulated in NδGln, Glu and Ala. With 15NH+4 only the NδGln and γ-aminobutyric acid were labelled. The addition of both gave rise to labelled Gln, Asn, Glu, Asp, Ala, Val and γ-aminobutyric acid independently of the origin of the label. In vivo 31P-NMR allowed the cytoplasmic and vacuolar pH to be measured. The cytoplasmic pH showed an increase of approximately 0.3 units when nitrate was the sole source of nitrogen and a corresponding decrease when ammonium was added alone. Vacuolar pH decreased in both treatments. These results are discussed on the basis of the effect of the N-source on carbon metabolism. A hypothesis of PEPcase activation as due to the increase of cytoplasmic pH upon nitrate uptake is proposed.  相似文献   

17.
The immediate and posteffects of various concentrations of NaNO2 on ion uptake of wheat ( Triticum aestivum L. cv. GK Öthalom) seedlings were studied at different pH values. Without pretreatment, the higher the concentration of NaNO2 the greater was the decrease in uptake of K+ into the roots, both at pH 4 and pH 6. At pH 6 but not at pH 4 the reverse was true when the seedlings were pretreated with NaNO2. Due to the high Na+ content of the roots, an effect of Na+ in this process cannot be excluded. Nitrite was taken up by the roots more rapidly than nitrate. Nitrite at 0.1 m M in the medium induced the development of an uptake system for both NO2 and NO3 in wheat roots. At higher concentrations pretreatment with NO2 decreased NO3 uptake by the roots, but NO3 did not inhibit the uptake of NO2. The toxic effect of NO2 was strongly pH dependent. Lower pH of the external solution led to an increased inhibition by NO2 of both ion uptake and growth of seedlings. The inhibitory effect of NO2 differed considerably for roots and shoots. The roots and especially the root hairs were particularly sensitive to NO2 treatment.  相似文献   

18.
The relative rates of ammonium and nitrate-N uptake and assimilation by creeping bent ( Agrostis stolonifera ), were investigated for plants grown in soil and supplied with three different ratios of ammonium and nitrate-N. Following two preliminary defoliations, plants were supplied with the equivalent of 150 kg N ha−1, given as 15N-(differentially) labelled NH4+ and NO3-N in three different ratios (20:80, 50:50 and 80:20), followed by sequential destructive harvests of shoots and roots at four points during a 35-d regrowth period. Maximum use of labelled nitrogen and 'exhaustion' of soil mineral nitrogen reserves occurred much earlier when plants were supplied with half or more of their nitrogen as ammonium, than occurred when they were supplied predominately with nitrate-N. The lack of consistency in the patterns of ammonium and nitrate-N absorption, however, implied that the plants had no specific preference for either nitrogen form. Supplying plants with different combinations of ammonium and nitrate produced distinctive differences in plant morphology. In the high nitrate treatment, plants preferentially partitioned resources into shoot and stolon formation, whereas in the high ammonium treatment, resources were preferentially partitioned into root production. These changes in plant morphology might be adaptations to aid species survival in environments associated with a predominance of either nitrogen form.  相似文献   

19.
Response of nitrogen metabolism to boron toxicity in tomato plants   总被引:1,自引:0,他引:1  
Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 m m and 2.0 m m B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGRL), concentration of B, nitrate (NO3), ammonium (NH4+), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGRL, organic N, soluble proteins, and NR and NiR activities. The lowest NO3 and NH4+ concentration in leaves was recorded when plants were supplied with 2.0 m m B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO3 reduction and increases NH4+ assimilation in tomato plants.  相似文献   

20.
The uptake of K+ ion was studied in the roots of wheat ( Triuicum aestivum L. cv. GK Szeged) and cucumber ( Cucumis sativus L. cv. Budai csemege) seedlings grown in nutrient solution under nitrogen and sulfate stress conditions. Seedlings pretreated with 1 or 10 m M NaNO3, absorbed more K+ than those treated with 0.1 m M NaNO3. However, the posteffect of NaNO3 was considerably influenced by the Na2SO4, treatment. The results suggest that, at least partly, a feed-back regulation of K+ uptake may occur. However, due to the high Na+ contents of the roots, a Na+ effect in this process cannot be excluded. The growth and dry matter yields of the roots and shoots were strongly influenced by the SO2−/4 and NO/3 supply of the plants. Appreciable differences were experienced between wheat and cucumber seedlings. The optimum SO2−/4 concentration of the growth solution for maximal growth varied considerably between the species, and was also different for the roots and the shoots in a given species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号