首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spinal cord injury often results from a compressive load; however, the compression behavior of spinal cord white matter has not been clearly established. Quantifying the compression behavior is important for advancing our understanding of spinal cord injury mechanics and facilitating the use of finite element models to study injury. The objective of this study was to characterize the unconfined compression behavior of isolated white matter segments and determine the constitutive model which best captured the stress-strain behavior. Spinal cord white matter samples were harvested immediately following sacrifice from juvenile Yorkshire pigs (n=104). The samples were compressed to 40% strain at four strain rates (0.005, 0.05, 0.5, and 5.0/s) and allowed to relax for 60s. The effects of preload, peak strain, sample aspect ratio, and time post mortem on peak stress, and constitutive model parameters were also examined. Strain rate had a significant effect on peak stress (p<0.001). A first-order Ogden model best captured the loading response of spinal cord white matter (R(2)=0.99) and a viscoelastic material model combining a first-order Ogden model with a 3-term Prony series effectively captured the effect of strain rate and the relaxation response. This study showed spinal cord white matter to be less stiff than previously estimated by inverse finite element methods, which will have a significant effect on finite element model predictions of the magnitude and distribution of stresses and strains in the spinal cord. This study is the first to quantify the unconfined compression response of spinal cord white matter.  相似文献   

2.
Quantitative genetic variation in an ecological setting   总被引:1,自引:0,他引:1  
The machinery was developed to investigate the behavior of quantitative genetic variation in an ecological model of a finite number of islands of finite size, with migration rate m and extinction rate e, for a quantitative genetic model general for numbers of alleles and loci and additive, dominance, and additive by additive epistatic effects. It was necessary to reckon with seven quadratic genetic components, whose coefficients in the genotypic variance components within demes, sigma Gw2, between demes within populations, sigma s2, and between replicate populations, sigma r2, are given by descent measures. The descent measures at any time are calculated with the use of transition equations which are determined by the parameters of the ecological model. Numerical results were obtained for the coefficients of the quadratic genetic components in each of the three genotypic variance components in the early phase of differentiation. The general effect of extinction is to speed up the time course leading to fixation, to increase sigma r2, and to decrease sigma s2 (with a few exceptions) in comparison with no extinction. The general effect of migration is to slow down the time course leading to fixation, to increase sigma Gw2, at least in the later generations, and to decrease sigma s2 (with a few exceptions) in comparison with no migration. Except for these, the effects of migration and extinction on the variance components are complex, depending on the genetic model, and sometimes involve interaction of migration and extinction. Sufficient details are given for an investigator to evaluate numerically the results for variations in the quantitative genetic and ecological models.  相似文献   

3.
The determination of valid stress-strain relations for articular cartilage under finite deformation conditions is a prerequisite for constructing models for synovial joint lubrication. Under physiological conditions of high strain rates and/or high stresses in the joint, large strains occur in cartilage. A finite deformation theory valid for describing cartilage, as well as other soft hydrated connective tissues under large loads, has been developed. This theory is based on the choice of a specific Helmholtz energy function which satisfies the generalized Coleman-Noll (GCN0) condition and the Baker-Ericksen (B-E) inequalities established in finite elasticity theory. In addition, the finite deformation biphasic theory includes the effects of strain-dependent porosity and permeability. These nonlinear effects are essential for properly describing the biomechanical behavior of articular cartilage, even when strain rates are low and strains are infinitesimal. The finite deformation theory describes the large strain behavior of cartilage observed in one-dimensional confined compression experiments at equilibrium, and it reduces to the linear biphasic theory under infinitesimal strain and slow strain rate conditions. Using this theory, we have determined the material coefficients of both human and bovine articular cartilages under large strain conditions at equilibrium. The theory compares very well with experimental results.  相似文献   

4.
R. Burger 《Genetics》1989,121(1):175-184
The role of linkage in influencing heritable variation maintained through a balance between mutation and stabilizing selection is investigated for two different models. In both cases one trait is considered and the interactions within and between loci are assumed to be additive. Contrary to most earlier investigations of this problem no a priori assumptions on the distribution of genotypic values are imposed. For a deterministic two-locus two-allele model with recombination and mutation, related to the symmetric viability model, a complete nonlinear analysis is performed. It is shown that, depending on the recombination rate, multiple stable equilibria may coexist. The equilibrium genetic and genic variances are calculated. For a polygenic trait in a finite population with a possible continuum of allelic effects a simulation study is performed. In both models the equilibrium genetic and genic variances are roughly equal to the house-of-cards prediction or its finite population counterpart as long as the recombination rate is not extremely low. However, negative linkage disequilibrium builds up. If the loci are very closely linked the equilibrium additive genetic variance is slightly lower than the house-of-cards prediction, but the genic variance is much higher. Depending on whether the parameters are in favor of the house-of-cards or the Gaussian approximation, different behavior of the genetic system occurs with respect to linkage.  相似文献   

5.
The dynamic torsional viscoelastic responses of the human cadaver cervical spine were measured in vitro. The quasi-linear formulation of time dependent behavior was used to describe and predict the resultant torque as a function of applied angular deflection and time. The performance of the quasi-linear model was good, reaching correlation at the 99% confidence level; however, it tended to underestimate hysteresis energy (mean relative deviation = -19.1%) and observed stiffness. This was in part due to difficulties in establishing the physical constants of the quasi-linear model from finite rate relaxation testing. An extrapolation deconvolution technique to enhance the experimentally derived constants was developed, to reduce the detrimental effects of finite rate testing. The quasi-linear model based on this enhanced derivation showed improved predictive ability and hysteresis energy determination.  相似文献   

6.
The study of evolutionary dynamics on graphs is an interesting topic for researchers in various fields of science and mathematics. In systems with finite population, different model dynamics are distinguished by their effects on two important quantities: fixation probability and fixation time. The isothermal theorem declares that the fixation probability is the same for a wide range of graphs and it only depends on the population size. This has also been proved for more complex graphs that are called complex networks. In this work, we propose a model that couples the population dynamics to the network structure and show that in this case, the isothermal theorem is being violated. In our model the death rate of a mutant depends on its number of neighbors, and neutral drift holds only in the average. We investigate the fixation probability behavior in terms of the complexity parameter, such as the scale-free exponent for the scale-free network and the rewiring probability for the small-world network.  相似文献   

7.
On modelling nonlinear viscoelastic effects in ligaments   总被引:2,自引:0,他引:2  
  相似文献   

8.
Odum AL 《Behavioural processes》2002,57(2-3):107-120
Drug effects on temporally patterned behavior are often described under the rubric of rate dependency: the effect of a drug on behavior is related to the rate of behavior in the absence of the drug. Specifically, drugs increase low rate behavior and decrease high rate behavior. These same types of effects are interpreted in the timing literature, however, as selective changes in temporal discrimination. The present series of experiments arrange situations that allow divergent predictions based on the two interpretations. In one component of a multiple schedule, when the response key is lit blue, food is available after the houselight is presented for a short duration (5 s). In the other component of the multiple schedule, when the response key is lit green, food is available after the houselight is presented for a long duration (30 s). No food is available after intermediate durations. Specific focus is given to a neuropharmacological information-processing model of timing. Predictions were compared for drugs that are thought to affect the clock and memory stages in the model. The results do not generally lend support for the neuropharmacological interpretation of the scalar expectancy theory, but emphasize the need for an explanatory mechanism that is consistent with the empirical generalization of rate dependency.  相似文献   

9.
In survival analysis when the mortality reaches a peak after some finite period and then slowly declines, it is appropriate to use a model which has a nonmonotonic failure rate. In this paper we study the log-logistic model whose failure rate exhibits the above behavior and its mean residual life behaves in the reverse fashion. The maximum likelihood estimation of the parameters is examined and it is proved analytically that unique maximum likelihood estimates exist for the parameters. A lung cancer data set is analyzed. Confidence intervals for the parameters as well as for the critical points of the failure rate and mean residual life functions are obtained for the high performance status (PS) and low PS subgroups, where the term performance status is a measure of general medical status.  相似文献   

10.
Lu B  Zhou YC 《Biophysical journal》2011,(10):2475-2485
The effects of finite particle size on electrostatics, density profiles, and diffusion have been a long existing topic in the study of ionic solution. The previous size-modified Poisson-Boltzmann and Poisson-Nernst-Planck models are revisited in this article. In contrast to many previous works that can only treat particle species with a single uniform size or two sizes, we generalize the Borukhov model to obtain a size-modified Poisson-Nernst-Planck (SMPNP) model that is able to treat nonuniform particle sizes. The numerical tractability of the model is demonstrated as well. The main contributions of this study are as follows. 1), We show that an (arbitrarily) size-modified PB model is indeed implied by the SMPNP equations under certain boundary/interface conditions, and can be reproduced through numerical solutions of the SMPNP. 2), The size effects in the SMPNP effectively reduce the densities of highly concentrated counterions around the biomolecule. 3), The SMPNP is applied to the diffusion-reaction process for the first time, to our knowledge. In the case of low substrate density near the enzyme reactive site, it is observed that the rate coefficients predicted by SMPNP model are considerably larger than those by the PNP model, suggesting both ions and substrates are subject to finite size effects. 4), An accurate finite element method and a convergent Gummel iteration are developed for the numerical solution of the completely coupled nonlinear system of SMPNP equations.  相似文献   

11.
Summary In this article, we propose a family of semiparametric transformation models with time‐varying coefficients for recurrent event data in the presence of a terminal event such as death. The new model offers great flexibility in formulating the effects of covariates on the mean functions of the recurrent events among survivors at a given time. For the inference on the proposed models, a class of estimating equations is developed and asymptotic properties of the resulting estimators are established. In addition, a lack‐of‐fit test is provided for assessing the adequacy of the model, and some tests are presented for investigating whether or not covariate effects vary with time. The finite‐sample behavior of the proposed methods is examined through Monte Carlo simulation studies, and an application to a bladder cancer study is also illustrated.  相似文献   

12.
We propose a semiparametric mean residual life mixture cure model for right-censored survival data with a cured fraction. The model employs the proportional mean residual life model to describe the effects of covariates on the mean residual time of uncured subjects and the logistic regression model to describe the effects of covariates on the cure rate. We develop estimating equations to estimate the proposed cure model for the right-censored data with and without length-biased sampling, the latter is often found in prevalent cohort studies. In particular, we propose two estimating equations to estimate the effects of covariates in the cure rate and a method to combine them to improve the estimation efficiency. The consistency and asymptotic normality of the proposed estimates are established. The finite sample performance of the estimates is confirmed with simulations. The proposed estimation methods are applied to a clinical trial study on melanoma and a prevalent cohort study on early-onset type 2 diabetes mellitus.  相似文献   

13.
Osmotic, electrostatic, and/or hydrational swellings are essential mechanisms in the deformation behavior of porous media, such as biological tissues, synthetic hydrogels, and clay-rich rocks. Present theories are restricted to incompressible constituents. This assumption typically fails for bone, in which electrokinetic effects are closely coupled to deformation. An electrochemomechanical formulation of quasistatic finite deformation of compressible charged porous media is derived from the theory of mixtures. The model consists of a compressible charged porous solid saturated with a compressible ionic solution. Four constituents following different kinematic paths are identified: a charged solid and three streaming constituents carrying either a positive, negative, or no electrical charge, which are the cations, anions, and fluid, respectively. The finite deformation model is reduced to infinitesimal theory. In the limiting case without ionic effects, the presented model is consistent with Blot's theory. Viscous drag compression is computed under closed circuit and open circuit conditions. Viscous drag compression is shown to be independent of the storage modulus. A compressible version of the electrochemomechanical theory is formulated. Using material parameter values for bone, the theory predicts a substantial influence of density changes on a viscous drag compression simulation. In the context of quasistatic deformations, conflicts between poromechanics and mixture theory are only semantic in nature.  相似文献   

14.
A mechanical model of the human cornea is proposed and employed in a finite element formulation for simulating the effects of surgical procedures, such as radial keratotomy, on the cornea. The model assumes that the structural behavior of the cornea is governed by the properties of the stroma. Arguments based on the microstructural organization and properties of the stroma lead to the conclusion that the human cornea exhibits flexural and shear rigidities which are negligible compared to its membrane rigidity. Accordingly, it is proposed that to a first approximation, the structural behavior of the cornea is that of a thick membrane shell. The tensile forces in the cornea are resisted by very fine collagen fibrils embedded in the ground substance of the stromal lamellae. When the collagen fibrils are cut, as in radial keratotomy, it is argued that they become relaxed since there is negligible transfer of load between adjacent fibrils due to the low shear modulus of the ground substance. The forces in the cornea are then resisted only by the remaining uncut fibrils. The cutting of fibrils induces an anisotropy and inhomogeneity in the membrane rigidity. By assuming a uniform angular distribution of stromal lamellae through the corneal thickness, geometric arguments lead to a quantitative representation for the anisotropy and inhomogeneity. All material behavior is assumed to be in the linear elastic regime and with no time-dependency. The resulting constitutive model for the incised cornea has been employed in a geometrically non-linear finite element membrane shell formulation for small strains with moderate rotations. A number of numerical examples are presented to illustrate the effectiveness of the proposed constitutive model and finite element formulation. The dependence of the outcome of radial keratotomy, measured in terms of the immediate postoperative shift in corneal power, on a number of important factors is investigated. These factors include the value of the elastic moduli of the stromal lamellae (dependent on the patient's age), the incision depth, the optic zone size, the number of incisions and their positions, and the intraocular pressure. Results have also been compared with expected surgical corrections predicted by three expert surgeons and show an excellent correspondence.  相似文献   

15.
二维土壤蒸发过程的数值分析   总被引:4,自引:1,他引:3  
杨邦杰  陈镜明 《生态学报》1990,10(4):291-298
  相似文献   

16.
The periodontal ligament (PDL), as other soft biological tissues, shows a strongly non-linear and time-dependent mechanical response and can undergo large strains under physiological loads. Therefore, the characterization of the mechanical behavior of soft tissues entails the definition of constitutive models capable of accounting for geometric and material non-linearity. The microstructural arrangement determines specific anisotropic properties. A hyperelastic anisotropic formulation is adopted as the basis for the development of constitutive models for the PDL and properly arranged for investigating the viscous and damage phenomena as well to interpret significant aspects pertaining to ordinary and degenerative conditions. Visco-hyperelastic models are used to analyze the time-dependent mechanical response, while elasto-damage models account for the stiffness and strength decrease that can develop under significant loading or degenerative conditions. Experimental testing points out that damage response is affected by the strain rate associated with loading, showing a decrease in the damage limits as the strain rate increases. These phenomena can be investigated by means of a model capable of accounting for damage phenomena in relation to viscous effects. The visco-hyperelastic-damage model developed is defined on the basis of a Helmholtz free energy function depending on the strain-damage history. In particular, a specific damage criterion is formulated in order to evaluate the influence of the strain rate on damage. The model can be implemented in a general purpose finite element code. The accuracy of the formulation is evaluated by using results of experimental tests performed on animal model, accounting for different strain rates and for strain states capable of inducing damage phenomena. The comparison shows a good agreement between numerical results and experimental data.  相似文献   

17.
Magnetic fields are increasingly being utilized in endoscopy and gastric transport control. In this regard, the present study investigates the influence of a transverse magnetic field in the transient peristaltic rheological transport. An electrically-conducting couple stress non-Newtonian model is employed to accurately simulate physiological fluids in peristaltic flow through a sinusoidally contracting channel of finite length. This model is designed for computing the intra-bolus oesophageal and intestinal pressures during the movement of food bolus in the digestive system under magneto-hydro-dynamic effects. Long wavelength and low Reynolds number approximations have been employed to reduce the governing equations from nonlinear to linear form, this being a valid approach for creeping flows which characterizes physiological dynamics. Analytical approximate solutions for axial velocity, transverse velocity, pressure gradient, local wall shear stress and volumetric flow rate are obtained for the non-dimensional conservation equations subject to appropriate boundary conditions. The effects of couple stress parameter and transverse magnetic field on the velocity profile, pressure distribution, local wall shear stress and the averaged flow rate are discussed with the aid of computational results. The comparative study of non-integral and integral number of waves propagating along the finite length channel is also presented. Magnetic field and non-Newtonian properties are found to strongly influence peristaltic transport.  相似文献   

18.
Kim JH  Kang TJ  Yu WR 《Journal of biomechanics》2008,41(15):3202-3212
The mechanical behavior of a stent is one of the important factors involved in ensuring its opening within arterial conduits. This study aimed to develop a mechanical model for designing self-expandable stents fabricated using braiding technology. For this purpose, a finite element model was constructed by developing a preprocessing program for the three-dimensional geometrical modeling of the braiding structure inside stents, and validated for various stents with different braiding structures. The constituent wires (Nitinol) in the braided stents were assumed to be superelastic material and their mechanical behavior was incorporated into the finite element software through a user material subroutine (VUMAT in ABAQUS) employing a one-dimensional superelastic model. For the verification of the model, several braided stents were manufactured using an automated braiding machine and characterized focusing on their compressive behavior. It was observed that the braided stents showed a hysteresis between their loading and unloading behavior when a compressive load was applied to the braided tube. Through the finite element analysis, it was concluded that the current mechanical model can appropriately predict the mechanical behavior of braided stents including such hysteretic behavior, and that the hysteresis was caused by the slippage between the constituent wires and their superelastic property.  相似文献   

19.
In previous applications of the finite element method in modeling mechanical behavior of skeletal muscle, the passive and active properties of muscle tissue were lumped in one finite element. Although this approach yields increased understanding of effects of force transmission, it does not support an assessment of the interaction between the intracellular structures and extracellular matrix. In the present study, skeletal muscle is considered in two domains: (1) the intracellular domain and (2) extracellular matrix domain. The two domains are represented by two separate meshes that are linked elastically to account for the trans-sarcolemmal attachments of the muscle fibers' cytoskeleton and extracellular matrix. With this approach a finite element skeletal muscle model is developed, which allows force transmission between these domains with the possibility of investigating their interaction as well as the role of the trans-sarcolemmal systems. The model is applied to show the significance of myofascial force transmission by investigating possible mechanical consequences due to any missing link within the trans-sarcolemmal connections such as found in muscular dystrophies. This is realized by making the links between the two meshes highly compliant at selected intramuscular locations. The results indicate the role of extracellular matrix for a muscle in sustaining its physiological condition. It is shown that if there is an inadequate linking to the extracellular matrix, the myofibers become deformed beyond physiological limits due to the lacking of mechanical support and impairment of a pathway of force transmission by the extracellular matrix. This leads to calculation of a drop of muscle force and if the impairment is located more towards the center of the muscle model, its effects are more pronounced. These results indicate the significance of non-myotendinous force transmission pathways.  相似文献   

20.
In this paper, we studied the viscoelastic behaviors of isolated aortic elastin using combined modeling and experimental approaches. Biaxial stress relaxation and creep experiments were performed to study the time-dependent behavior of elastin. Experimental results reveal that stress relaxation preconditioning is necessary in order to obtain repeatable stress relaxation responses. Elastin exhibits less stress relaxation than intact or decellularized aorta. The rate of stress relaxation of intact and decellularized aorta is linearly dependent on the initial stress levels. The rate of stress relaxation for elastin increases linearly at stress levels below about 60 kPa; however, the rate changes very slightly at higher initial stress levels. Experimental results also show that creep response is negligible for elastin, and the intact or decellularized aorta. A quasi-linear viscoelasticity model was incorporated into a statistical mechanics based eight-chain microstructural model at the fiber level to simulate the orthotropic viscoelastic behavior of elastin. A user material subroutine was developed for finite element analysis. Results demonstrate that this model is suitable to capture both the orthotropic hyperelasticity and viscoelasticity of elastin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号