首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isoforms of starch synthase (EC 2.4.1.21) in pea (Pisum sativum L.) leaves have been identified and compared with those in developing pea embryos. Purification and immunoprecipitation experiments show that most of the soluble starch synthase activity of the leaf is contributed by a novel isoform (SSIII) that is antigenically related to the major soluble isoform of the potato tuber. The major soluble isoform of the embryo (SSII) is also present in the leaf, but contributes only 15% of the soluble activity. Study of the leaf starch of lam mutant peas, which lack the abundant granule-bound isoform responsible for amylose synthesis in the embryo (GBSSI), indicates that GBSSI is not responsible for the synthesis of amylose-like material in the leaf. Leaves appear to contain a novel granule-bound isoform, antigenically related to GBSSI. The implications of the results for understanding of the role of isoforms of starch synthase are discussed. Received: 13 March 1997 / Accepted: 13 May 1997  相似文献   

2.
Amyloses with distinct molecular masses are found in the starch of pea embryos compared with the starch of pea leaves. In pea embryos, a granule-bound starch synthase protein (GBSSIa) is required for the synthesis of a significant portion of the amylose. However, this protein seems to be insignificant in the synthesis of amylose in pea leaves. cDNA clones encoding a second isoform of GBSSI, GBSSIb, have been isolated from pea leaves. Comparison of GBSSIa and GBSSIb activities shows them to have distinct properties. These differences have been confirmed by the expression of GBSSIa and GBSSIb in the amylose-free mutant of potato. GBSSIa and GBSSIb make distinct forms of amylose that differ in their molecular mass. These differences in product specificity, coupled with differences in the tissues in which GBSSIa and GBSSIb are most active, explain the distinct forms of amylose found in different tissues of pea. The shorter form of amylose formed by GBSSIa confers less susceptibility to the retrogradation of starch pastes than the amylose formed by GBSSIb. The product specificity of GBSSIa could provide beneficial attributes to starches for food and nonfood uses.  相似文献   

3.
The elongation of amylose and amylopectin chains in isolated starch granules   总被引:14,自引:1,他引:13  
The aim of this work was to investigate the conditions required for amylose synthesis in starch granules. Although the major granule-bound isoform of starch synthase - GBSSI - catalyses the synthesis of amylose in vivo, 14C from ADP[14C]glucose was incorporated primarily into a specific subset of amylopectin chains when supplied to starch granules isolated from pea (Pisum sativum L.) embryos and potato (Solanum tuberosum L.) tubers. Incubation of granules with soluble extracts of these organs revealed that the extracts contained compounds that increased the incorporation of 14C into amylose. These compounds were rendered inactive by treatment of the extracts with α-glucosidase, suggesting that they were malto-oligosaccharides. Consistent with this idea, provision of pure malto-oligosaccharides to isolated granules resulted in a dramatic shift in the pattern of incorporation of 14C, from amylopectin chains to amylose molecules. Comparison of the pattern of incorporation in granules from wild-type peas and lam mutant peas which lack GBSSI showed that this effect of malto-oligosaccharides was specifically on GBSSI. The significance of these results for understanding of the synthesis of amylose and amylopectin in storage organs is discussed.  相似文献   

4.
Mutations that reduced the rate of starch synthesis in pea (Pisum sativum L.) embryos through effects on enzymes on the pathway from sucrose to adenosine 5′-diphosphoglucose (ADPglucose) also led to a reduction in the amylose content of the starch of developing embryos. Evidence is presented that this relationship between rate of synthesis and the composition of starch is due to the fact that amylopectin-synthesising isoforms of starch synthase have higher affinities for ADPglucose than the amylose-synthesising isoform. First, developing mutant embryos (rb, rug3 and rug4 mutants) displayed both reduced amylose contents in their starches and reduced ADPglucose contents relative to wild-type embryos. Second, incubation of detached, wild-type embryos for 6 h at high and low glucose concentrations resulted in differences in both ADPglucose content and the relative rates of amylose and amylopectin synthesis. At 0.25 M glucose both ADPglucose content and the proportion of synthesised starch that was amylose were about twice as great as at 25 μM glucose. Third, S 0.5 values for soluble (amylopectin-synthesising) starch synthases in developing embryos were several-fold lower than that for granule-bound (amylose synthesising) starch synthase. Estimates of the expected amylose contents of the starch of the mutant embryos, based on the reduction in their ADPglucose contents and on the S 0.5 values of the starch synthases, were very similar to the measured amylose contents. The implications of these results for the determination of starch composition are discussed. Received: 6 February 1999 / Accepted: 22 May 1999  相似文献   

5.
Naoko Fujita  Tomoaki Taira 《Planta》1998,207(1):125-132
A novel 56-kDa granule-bound starch synthase (GBSS; NDPglucose-starch glucosyltransferase, EC 2.4.1.21) responsible for amylose synthesis was found in the pericarps, aleurone layers and embryos of immature diploid wheat (Triticum monococcum L.). The GBSS and other proteins bound to starch granules of various tissues of immature normal and waxy diploid wheat seeds were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and their activities were examined. In the waxy mutant, the waxy protein (59.5 kDa, GBSSI) was absent, but amylose and GBSS activity were evident in all tissues except the endosperm. Of the proteins bound to starch granules, only the 56-kDa protein was associated with the presence of amylose and GBSS activities in the pericarps, aleurone layers and embryos. Mutations at the waxy locus did not affect the 56-kDa protein in these tissues. Changes in the amount of 56-kDa protein during the course of seed development, and the distribution of the 56-kDa protein in each tissue of immature seeds were quite different from those of the waxy protein. On the other hand, the N-terminal amino acid sequence of the 56-kDa protein had a 40–50% similarity to GBSSI of some other plant species and was antigenically related to the waxy protein. These results strongly suggest that the 56-kDa protein in diploid wheat is a GBSSI class enzyme and, hence, an isoform of the waxy protein. The waxy protein and 56-kDa protein, however, are expressed in different seed tissues and at different stages of seed development. Received: 15 May 1998 / Accepted: 18 June 1998  相似文献   

6.
Mutants of Pisum sativum L. with seeds containing low-amylose starch were isolated by screening a population derived from chemically mutagenized material. In all of the mutant lines selected, the low-amylose phenotype was caused by a recessive mutation at a single locus designated lam. In embryos of all but one mutant line, the 59 kDa granule-bound starch synthase (GBSSI) was absent or greatly reduced in amount. The granule-bound starch synthase activity in developing embryos of the mutants was reduced but not eliminated. These results provide further evidence that amylose synthesis is unique to GBSSI. Other granule-bound isoforms of starch synthase cannot substitute for this protein in amylose synthesis. Examination of iodine-stained starch granules from mutant embryos by light microscopy revealed large, blue-staining cores surrounded by a pale-staining periphery. In this respect, the low-amylose mutants of pea differ from those of other species. The differential staining may indicate that the structure of amylopectin varies between the core and peripheral regions.  相似文献   

7.
The percentage of amylose in the endosperm of rice (Oryza sativa) largely determines grain cooking and eating qualities. Granule‐bound starch synthase I (GBSSI) and GBSSII are responsible for amylose biosynthesis in the endosperm and leaf, respectively. Here, we identified OsGBP, a rice GBSS‐binding protein that interacted with GBSSI and GBSSII in vitro and in vivo. The total starch and amylose contents in osgbp mutants were significantly lower than those of wild type in leaves and grains, resulting in reduced grain weight and quality. The carbohydrate‐binding module 48 (CBM48) domain present in the C‐terminus of OsGBP is crucial for OsGBP binding to starch. In the osgbp mutant, the extent of GBSSI and GBSSII binding to starch in the leaf and endosperm was significantly lower than wild type. Our data suggest that OsGBP plays an important role in leaf and endosperm starch biosynthesis by mediating the binding of GBSS proteins to developing starch granules. This elucidation of the function of OsGBP enhances our understanding of the molecular basis of starch biosynthesis in rice and contributes information that can be potentially used for the genetic improvement of yield and grain quality.  相似文献   

8.
Reasons for the variable amylose content of endosperm starch from waxy cultivars of barley (Hordeum vulgare) were investigated. The mature grains of most such cultivars contain some amylose, although amounts are much lower than in wild-type cultivars. In these low-amylose cultivars, amylose synthesis starts relatively late in grain development. Starch granules in the outer cell layers of the endosperm contain more amylose than those in the center. This distribution corresponds to that of granule-bound starch synthase I (GBSSI), which is more severely reduced in amount in the center of the endosperm than in the outer cell layers, relative to wild-type cultivars. A second GBSSI in the barley plant, GBSSIb, is not detectable in the endosperm and cannot account for amylose synthesis in the low-amylose cultivars. The change in the expression of GBSSI in the endosperm of the low-amylose cultivars appears to be due to a 413-bp deletion of part of the promoter and 5'-untranslated region of the gene. Although these cultivars are of diverse geographical origin, all carry this same deletion, suggesting that the low-amylose cultivars have a common waxy ancestor. Records suggest a probable source in China, first recorded in the 16th century. Two further families of waxy cultivars have no detectable amylose in the endosperm starch. These amylose-free cultivars were selected in the 20th century from chemically mutagenized populations of wild-type barley. In both cases, 1-bp alterations in the GBSSI gene completely eliminate GBSSI activity.  相似文献   

9.
10.
11.
The biochemical and molecular basis of the wrinkled-seeded phenotype of rug4 mutants of pea ( Pisum sativum L.) has been investigated. Mutant embryos have reduced starch contents and only 5% of the sucrose synthase activity of wild-type embryos during development. Activities of other enzymes involved in the conversion of sucrose to starch are unaffected. A gene encoding an isoform of sucrose synthase expressed in the embryo co-segregates with the rug4 locus, and one of the three mutant alleles has been show to carry a point mutation in this gene that converts a highly conserved arginine residue to a lysine residue. It is highly likely that the reduced starch content of the mutant embryo is a direct consequence of the loss of sucrose synthase activity. The mutations reduce the activity of sucrose synthase in the testa and the leaf by 50% or less, but activity in Rhizobium -infected root nodules is reduced by 85%. Although the nodules of mutant plants contain metabolically active bacteroids, the N content and δ15N values of these plants in the field indicate that, unlike wild-type plants, they derive little of their N from N2 fixation via Rhizobium . Sucrose synthase thus appears to be essential for the supply of carbon for bacteroid metabolism and/or ammonia assimilation during nitrogen assimilation.  相似文献   

12.
Waxy wheat (Triticum aestivum L.) lacks the waxy protein, which is also known as granule-bound starch synthase I (GBSSI). The starch granules of waxy wheat endosperm and pollen do not contain amylose and therefore stain red-brown with iodine. However, we observed that starch from pericarp tissue of waxy wheat stained blue-black and contained amylose. Significantly higher starch synthase activity was detected in pericarp starch granules than in endosperm starch granules. A granule-bound protein that differed from GBSSI in molecular mass and isoelectric point was detected in the pericarp starch granules but not in granules from endosperm. This protein was designated GBSSII. The N-terminal amino acid sequence of GBSSII, although not identical to wheat GBSSI, showed strong homology to waxy proteins or GBSSIs of cereals and potato, and contained the motif KTGGL, which is the putative substrate-binding site of GBSSI of plants and of glycogen synthase of Escherichia coli. GBSSII cross-reacted specifically with antisera raised against potato and maize GBSSI. This study indicates that GBSSI and GBSSII are expressed in a tissue-specific manner in different organs, with GBSSII having an important function in amylose synthesis in the pericarp.  相似文献   

13.
AFM studies have been made of the internal structure of pea starch granules. The data obtained provides support for the blocklet model of starch granule structure (Carbohydr. Polym. 32 (1997) 177-191). The granules consist of hard blocklets dispersed in a softer matrix material. High-resolution images have yielded new insights into the detailed structure of growth rings within the granules. The blocklet structure is continuous throughout the granule and the growth rings originate from localised defects in blocklet production distributed around the surface of spheroidal shells within the granules. A mutation at the rb locus did not lead to significant changes in granule architecture. However, a mutation at the r locus led to loss of growth rings and changed blocklet structure. For this mutant the blocklets were distributed within a harder matrix material. This novel composite arrangement was used to explain why the granules had internal fissures and also changes in gelatinisation behaviour. It is suggested that the matrix material is the amylose component of the granule and that both amylose and amylopectin are present within the r mutant starch granules in a partially-crystalline form. Intermediate changes in granule architecture have been observed for the double mutant rrb.  相似文献   

14.
15.
We have isolated cDNA clones to two isoforms of granule-bound starch synthase (GBSS) from pea embryos and potato tubers. The sequences of both isoforms are related to that of glycogen synthase from E. coli and one, GBSSI, is very similar to the waxy protein of maize and other species. In pea, GBSSII carries a novel 203-amino-acid domain at its N-terminus. Genes encoding both proteins are expressed during pea embryo development, but GBSSII is most highly expressed earlier in development than GBSSI. Similarly, GBSSI and GBSSII are differentially expressed in developing potato tubers. Expression of both isoforms is much lower in other organs of pea than in embryos. GBSSII is expressed in every organ tested while GBSSI is not expressed in roots, stipules or flowers. The possible consequences of this differential use of GBSS isoforms are discussed.  相似文献   

16.
In this paper we provide further evidence about the nature of a 77-kD starch synthase (SSII) that is both soluble and bound to the starch granules in developing pea (Pisum sativum L.) embryos. Mature SSII gives rise to starch synthase activity when expressed in a strain of Escherichia coli lacking glycogen synthase. In transgenic potatoes (Solanum tuberosum L.) expressing SSII, the protein is both soluble and bound to the starch granules. These results confirm that SSII is a starch synthase and indicate that partitioning between the soluble and granule-bound fraction of storage organs is an intrinsic property of the protein. A 60-kD isoform of starch synthase found both in the soluble and granule-bound fraction of the pea embryos is probably derived by the processing of SSII and is a different gene product from GBSSI, the exclusively granule-bound 59-kD isoform of starch synthase that is similar to starch synthases encoded by the waxy genes of cereals and the amf gene of potatoes. Consistent with this, expression in E. coli of an N-terminally truncated version of SSII gives rise to starch synthase activity.  相似文献   

17.
The quality of cassava starch, an important trait in cassava breeding programs, determines its applications in various industries. For example, development of waxy (having a low level of amylose) cassava is in demand. Amylose is synthesized by granule-bound starch synthase I (GBSSI) in plants, and therefore, down-regulation of GBSSI expression in cassava might lead to reduced amylose content. We produced 63 transgenic cassava plant lines that express hair-pin dsRNAs homologous to the cassava GBSSI conserved region under the control of the vascular-specific promoter p54/1.0 from cassava (p54/1.0::GBSSI-RNAi) or cauliflower mosaic virus (CaMV) 35S (35S::GBSSI-RNAi). After the screening storage roots and starch granules from field-grown plants with iodine staining, the waxy phenotype was discovered: p54/1.0::GBSSI-RNAi line A8 and 35S::GBSSI-RNAi lines B9, B10, and B23. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that there was no detectable GBSSI protein in the starch granules of plants with the waxy phenotype. Further, the amylose content of transgenic starches was significantly reduced (<5%) compared with the level in starch granules from the wild-type (about 25%). The inner structure of the waxy starch granules differed from that of the untransformed ones, as revealed by transmission electron microscopy analysis as well as morphological changes in the iodine-starch complex. Endothermic enthalpy was reduced in waxy cassava starches, according to differential scanning calorimeter analysis. Except B9, all waxy starches displayed the A-type X-ray diffraction pattern. Amylogram patterns of the waxy cassava starches were analyzed using a rapid viscosity analyzer and found to have increased values for clarity, peak viscosity, gel breakdown, and swelling index. Setback, consistency, and solubility were notably reduced. Therefore, waxy cassava with novel starch in its storage roots was produced using the biotechnological approach, promoting its industrial utilization.  相似文献   

18.
Kay Denyer  Alison M. Smith 《Planta》1992,186(4):609-617
Soluble starch synthase was purified 10000-fold from developing embryos of pea (Pisum sativum L.). The activity was resolved into two forms which together account for most if not all of the soluble starchsynthase activity in the embryo. The two isoforms differ in their molecular weights but are similar in many other respects. Their kinetic properties are similar, neither isoform is active in the absence of primer, and both are unstable at high temperatures, the activity being abolished by a 20-min incubation at 45° C. Both isoforms are recognised by antibodies raised to the granule-bound starch synthase of pea. Isoform II, which has the same molecular weight (77 kDa) as the granulebound enzyme, is recognised more strongly than Isoform I.  相似文献   

19.
The granule-bound starch synthase I (GBSSI or waxy) enzyme catalyzes one of the enzymatic steps of starch synthesis. This enzyme is responsible for the synthesis of amylose and is also involved in building the final structure of amylopectin. Little is known about expression of GBSSI genes in tissues other than storage organs, such as seeds, endosperm, and tuber. We have isolated a gene encoding the GBSSI from snapdragon (Antirrhinum majus). This gene is present as a single copy in the snapdragon genome. There is a precise spatial and developmental regulation of its expression in flowers. GBSSI expression was observed in all floral whorls at early developmental stages, but it was restricted to carpel before anthesis. These results give new insights into the role of starch in later reproductive events such as seed filling. In leaves the mRNA level of GBSSI is regulated by an endogenous circadian clock, indicating that the transition from day to night may be accompanied by abolition of expression of starch synthesis genes. This mechanism does not operate in sink tissues such as roots when grown in the dark.  相似文献   

20.
Granule-bound starch synthase I (GBSSI) is one of the key enzymes catalyzing the formation of amylose, a linear α(1,4)D-glucan polymer, from ADP-glucose. Amylose-free transgenic sweet potato plants were produced by inhibiting sweet potato GBSSI gene expression through RNA interference. The gene construct consisting of an inverted repeat of the first exon separated by intron 1 of GBSSI driven by the CaMV 35S promoter was integrated into the sweet potato genome by Agrobacterium tumefaciens-mediated transformation. In over 70% of the regenerated transgenic plants, the expression of GBSSI was inactivated giving rise to storage roots containing amylopectin but not amylose. Electrophoresis analysis failed to detect the GBSSI protein, suggesting that gene silencing of the GBSSI gene had occurred. These results clearly demonstrate that amylose synthesis is completely inhibited in storage roots of sweet potato plants by the constitutive production of the double-stranded RNA of GBSSI fragments. We conclude that RNA interference is an effective method for inhibiting gene expression in the starch metabolic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号