首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
The sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present in the cytosolic tails of the proteins. A subset of these signals conform to the [DE]XXXL[LI] consensus motif and mediate sorting via interactions with heterotetrameric adaptor protein (AP) complexes. However, the identity of the AP subunits that recognize these signals remains controversial. We have used a yeast three-hybrid assay to demonstrate that [DE]XXXL[LI]-type signals from the human immunodeficiency virus negative factor protein and the lysosomal integral membrane protein II interact with combinations of the gamma and sigma1 subunits of AP-1 and the delta and sigma3 subunits of AP-3, but not the analogous combinations of AP-2 and AP-4 subunits. The sequence requirements for these interactions are similar to those for binding to the whole AP complexes in vitro and for function of the signals in vivo. These observations reveal a novel mode of recognition of sorting signals involving the gamma/delta and sigma subunits of AP-1 and AP-3.  相似文献   

3.
4.
5.
6.
7.
8.
The role of the carboxy-terminal amino acids of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1, in DNA binding was analyzed. Chain-terminating mutations truncating the normally 99-amino-acid TF1 at amino acids 96, 97, and 98 were constructed, as were missense mutations substituting cysteine, arginine, and serine for phenylalanine at amino acid 97 and tryptophan for lysine at amino acid 99. The binding of the resulting proteins to a synthetic 44-bp binding site in 5-(hydroxymethyl)uracil DNA, to binding sites in larger SPO1 [5-(hydroxymethyl)uracil-containing] DNA fragments, and to thymine-containing homologous DNA was analyzed by gel retardation and also by DNase I and hydroxy radical footprinting. We conclude that the C tail up to and including phenylalanine at amino acid 97 is essential for DNA binding and that the two C-terminal amino acids, 98 and 99, are involved in protein-protein interactions between TF1 dimers bound to DNA.  相似文献   

9.
10.
11.
12.
13.
The heterotetrameric (ϵ-β4-μ4-σ4) complex adaptor protein 4 (AP-4) is a component of a non-clathrin coat involved in protein sorting at the trans-Golgi network (TGN). Considerable interest in this complex has arisen from the recent discovery that mutations in each of its four subunits are the cause of a congenital intellectual disability and movement disorder in humans. Despite its physiological importance, the structure and function of this coat remain poorly understood. To investigate the assembly of the AP-4 coat, we dissected the determinants of interaction of AP-4 with its only known accessory protein, the ENTH/VHS-domain-containing protein tepsin. Using a variety of protein interaction assays, we found that tepsin comprises two phylogenetically conserved peptide motifs, [GS]LFXG[ML]X[LV] and S[AV]F[SA]FLN, within its C-terminal unstructured region, which interact with the C-terminal ear (or appendage) domains of the β4 and ϵ subunits of AP-4, respectively. Structure-based mutational analyses mapped the binding site for the [GS]LFXG[ML]X[LV] motif to a conserved, hydrophobic surface on the β4-ear platform fold. Both peptide-ear interactions are required for efficient association of tepsin with AP-4, and for recruitment of tepsin to the TGN. The bivalency of the interactions increases the avidity of tepsin for AP-4 and may enable cross-linking of multiple AP-4 heterotetramers, thus contributing to the assembly of the AP-4 coat. In addition to revealing critical aspects of this coat, our findings extend the paradigm of peptide-ear interactions, previously established for clathrin-AP-1/AP-2 coats, to a non-clathrin coat.  相似文献   

14.
15.
16.
Short amino acid sequences in the cytosolic domains of transmembrane proteins are recognized by specialized adaptor [corrected] proteins which are part of coated vesicles utilized to transport membrane proteins between the trans-Golgi network (TGN) and the plasma membrane (forward and backward). Previously, we and others reported that the membrane-proximal tyrosine residues Y712 (human immunodeficiency virus [HIV]) and Y721 (simian immunodeficiency virus [SIV]) in the envelope glycoprotein (Env) of the primate lentiviruses are crucial for the association of Env with clathrin-associated adaptor [corrected] complex AP-2. The same tyrosine-based endocytosis motifs in the cytosolic domains (EnvCD) of transmembrane gp41 of HIV type 1 (HIV-1) and SIV, respectively, were also shown to modulate the interaction with TGN- and endosome-based clathrin-associated complex AP-1. Our findings suggested that EnvCD binding to AP-1, unlike the association of EnvCD with AP-2, is dependent largely on residues other than Y712 and Y721. Here, we tested if motifs downstream of Y712 affect HIV-1 EnvCD-AP-1 binding and Env trafficking. Mutational analysis revealed that the C-terminal leucine-based motif in Env was crucial for the recruitment of AP-1 in vitro and in Env-expressing cells. In addition to affecting Env-AP-1 association, mutations at the C terminus of Env also altered the subcellular localization of Env, suggesting that proper post-Golgi routing of Env depends on its recruitment of AP-1. Finally, the C-terminal dileucine was shown to assist the membrane-proximal Y712 motif in restricting the cell surface expression of Env.  相似文献   

17.
18.
19.
20.
A synthetic gene encoding the histone-like DNA-binding protein HBsu from Bacillus subtilis has been expressed in Escherichia coli. Yields of the purified protein are at least 20 mg/l culture medium. The recombinant HBsu protein is chromatographically, immunologically and functionally identical with the authentic wild-type protein. N-terminal sequencing of the purified protein confirms the fidelity of expression of the synthetic gene in E. coli. Site-directed mutagenesis of the synthetic gene was employed to replace several amino acid residues of HBsu protein with tryptophan to facilitate the determination of DNA-binding parameters by fluorescence spectroscopy. According to gel-retardation experiments, the mutant protein [Phe47----Trp]HBsu shows identical DNA binding to wild-type HBsu protein. Analysis of fluorescence binding data reveals that [Phe47----Trp]HBsu binds double-stranded DNA with a dissociation constant in the micromolar range. Computer-assisted fit of binding models to the experimental data renders positive cooperativity of binding unlikely. A dimer of [Phe47----Trp]HBsu appears to contact three or four base pairs of DNA. These results are in partial disagreement with earlier measurements on closely homologous proteins which tended to show cooperative binding and a longer DNA contact region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号