首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The occipital bun ("chignon") is cited widely as a Neanderthal derived trait. It encompasses the posterior projection/convexity of the occipital squama and is associated with lambdoid flattening on the parietal. A 'hemibun' in some Upper Paleolithic Europeans is thought by some authors to indicate interbreeding between Neanderthals and early modern Europeans. However, 'bunning' is difficult to measure, and the term has been applied to a range of morphological patterns. Furthermore, its usefulness in phylogenetic reconstruction and its homologous status across modern and fossil humans have been disputed. We present a geometric morphometric study that quantitatively evaluates the chignon, assesses its usefulness in separating Neanderthals from modern humans, and its degree of similarity to Upper Paleolithic 'hemibuns.' We measured the three-dimensional coordinates of closely spaced points along the midsagittal plane from bregma to inion and of anatomical landmarks in a large series of recent human crania and several Middle and Late Pleistocene European and African fossils. These coordinate data were processed using the techniques of geometric morphometrics and analyzed with relative warps, canonical variates, and singular warps. Our results show no separation between Neanderthals and modern humans, including early modern Europeans, when the shape of the occipital plane midsagittal-profile is considered alone. On the other hand, Neanderthals are well separated from both recent and fossil modern humans when information about the occipital's relative position and relative size are also included. Furthermore, the occurrence of a highly convex and posteriorly projecting midline occipital profile (interpreted as the occipital bun) is highly correlated (>0.8) with a flat parietal midsagittal profile and with antero-superiorly positioned temporal bones across both our recent and our fossil human samples. We conclude that the shape of the occipital profile alone should not be considered an independent trait, as it is very tightly integrated with braincase shape. Our analysis does not support differences in integration of the posterior midsagittal profile and the cranial base in Pleistocene and recent humans.  相似文献   

2.
Analysis of ungulate bones recovered from a number of Upper and Middle Palaeolithic sites in southern Italy revealed differences in the presence of anatomical elements. There is a lack of clear evidence of carnivore activities, and differences can be attributed to human activity. Indeed, these differences were probably due to different patterns of skeletal exploitation between Homo neanderthalensis and H. sapiens. Small limb bones (carpals, tarsals, sesamoids, long bone epiphyses and especially phalanges) are rarely found in Middle Palaeolithic deposits, but are abundant in the Upper Palaeolithic. The observation of unidentified bone fragments at these sites indicates that during the middle Palaeolithic, marrow extraction regarded essentially the treatment of long bones. First and second phalanges were not frequently used for this practice, but they were often fragmented by H. sapiens. Lack of these bones among the remains of meals of Neanderthal suggests that these bones were probably destroyed by their utilisation as fuel.  相似文献   

3.
Neanderthal forearms have been described as being very powerful. Different individual features in the lower arm bones have been described to distinguish Neanderthals from modern humans. In this study, the overall morphology of the radius and ulna is considered, and morphological differences among Neanderthals, Upper Paleolithic Homo sapiens and recent H. sapiens are described.Comparisons among populations were made using a combination of 3D geometric morphometrics and standard multivariate methods. Comparative material included all available complete radii and ulnae from Neanderthals, early H. sapiens and archaeological and recent human populations, representing a wide geographical and lifestyle range.There are few differences among the populations when features are considered individually. Neanderthals and early H. sapiens fell within the range of modern human variation. When the suite of measurements and shapes were analyzed, differences and similarities became apparent. The Neanderthal radius is more laterally curved, has a more medially placed radial tuberosity, a longer radial neck, a more antero-posteriorly ovoid head and a well-developed proximal interosseous crest. The Neanderthal ulna has a more anterior facing trochlear notch, a lower M. brachialis insertion, larger relative mid-shaft size and a more medio-lateral and antero-posterior sinusoidal shaft. The Neanderthal lower arm morphology reflects a strong cold-adapted short forearm. The forearms of H. sapiens are less powerful in pronation and supination. Many differences between Neanderthals and H. sapiens can be explained as a secondary consequence of the hyper-polar body proportions of the Neanderthals, but also as retentions of the primitive condition of other hominoids.  相似文献   

4.
In the 1930s subadult hominin remains and Mousterian artifacts were discovered in the Teshik‐Tash cave in South Uzbekistan. Since then, the majority of the scientific community has interpreted Teshik‐Tash as a Neanderthal. However, some have considered aspects of the morphology of the Teshik‐Tash skull to be more similar to fossil modern humans such as those represented at Skhūl and Qafzeh, or to subadult Upper Paleolithic modern humans. Here we present a 3D geometric morphometric analysis of the Teshik‐Tash frontal bone in the context of developmental shape changes in recent modern humans, Neanderthals, and early modern humans. We assess the phenetic affinities of Teshik‐Tash to other subadult fossils, and use developmental simulations to predict possible adult shapes. We find that the morphology of the frontal bone places the Teshik‐Tash child close to other Neanderthal children and that the simulated adult shapes are closest to Neanderthal adults. Taken together with genetic data showing that Teshik‐Tash carried mtDNA of the Neanderthal type, as well as its occipital bun, and its shovel‐shaped upper incisors, these independent lines of evidence firmly place Teshik‐Tash among Neanderthals. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
The Middle to Later Stone Age (MSA/LSA) transition is a prominent feature of the African archeological record that began in some places ~30,000–60,000 years ago, historically associated with the origin and/or dispersal of “modern” humans. Unlike the analogous Middle to Upper Paleolithic transition in Eurasia and associated Neanderthal extinction, the African MSA/LSA record remains poorly documented, with its potential role in explaining changes in the behavioral diversity and geographic range of Homo sapiens largely unexplored. I review archeological and biogeographic data from East Africa, show regionally diverse pathways to the MSA/LSA transition, and emphasize the need for analytical approaches that document potential ancestor‐descendent relationships visible in the archeological record, needed to assess independent invention, population interaction, dispersal, and other potential mechanisms for behavioral change. Diversity within East Africa underscores the need for regional, rather than continental‐scale narratives of the later evolutionary history of H. sapiens.  相似文献   

6.
The autapomorphic status of the Neanderthal suprainiac fossa was recently confirmed. This was a result of a detailed analysis of the internal bone composition in the area of the suprainiac depression on Neanderthal and Homo sapiens specimens. However, while anatomical differences between Neanderthal suprainiac fossa and the depression in the inion region of the occipital bone of fossil and recent Homo sapiens have been discussed in detail, the etiology of these structures has not been resolved. In this article, the hypothesis that the Homo sapiens non-supranuchal fossa and the Neanderthal suprainiac fossa both formed to maintain the optimal shape of the occipital plane (to minimize strain on the posterior cranial vault) is tested. First, the variation in the expression of the fossa above inion in the crania of recent Homo sapiens from European, African, and Australian samples was examined, and the degree of structural similarity between these depressions and the Neanderthal suprainiac fossa was assessed. Next, the relationship between the shape of the occipital squama in the midsagittal plane and two particular features (the degree of the occipital torus development and the occurrence of a depression in the inion region that is not the supranuchal fossa) were analyzed. Based on the results, it is suggested that the Homo sapiens non-supranuchal fossa and Neanderthal suprainiac fossa are convergent traits.  相似文献   

7.
The excavations carried out in Cova Gran de Santa Linya (Southeastern PrePyrenees, Catalunya, Spain) have unearthed a new archaeological sequence attributable to the Middle Palaeoloithic/Upper Palaeolithic (MP/UP) transition. This article presents data on the stratigraphy, archaeology, and 14C AMS dates of three Early Upper Palaeolithic and four Late Middle Palaeolithic levels excavated in Cova Gran. All these archaeological levels fall within the 34-32 ka time span, the temporal frame in which major events of Neanderthal extinction took place. The earliest Early Upper Palaeolithic (497D) and the latest Middle Palaeolithic (S1B) levels in Cova Gran are separated by a sterile gap and permit pinpointing the time period in which the Mousterian disappeared from Northeastern Spain. Technological differences between the Early Upper Palaeolithic and Late Middle Palaeolithic industries in Cova Gran support a cultural rupture between the two periods. A series of 12 14C AMS dates prompts reflections on the validity of reconstructions based on radiocarbon data. Thus, results from excavations in Cova Gran lead us to discuss the scenarios relating the MP/UP transition in the Iberian Peninsula, a region considered a refuge of late Neanderthal populations.  相似文献   

8.
One of the largest skeletal series of the Upper Palaeolithic period from Predmostí was destroyed during the Second World War, but the study of this material continues up to the present. The discovery of Matiegka's original photographic documentation on glass plates [Velemínská et al., 2004. The use of recently re-discovered glass plate photo-documentation of those human fossil finds from Predmostí u Prerova destroyed during World War II. J. Nat. Mus. Nat. Hist. Ser. 173, 129-132] gives an opportunity to perform a new and detailed craniometric analysis of five adult skulls in their lateral projection. The craniometric data were analysed using specialised Craniometrics software, and the analysis included morphological and dimensional comparisons with current Central European norms. The aim of the study was not only to monitor the skull shape as a whole, but predominantly, to evaluate the size and shape of various parts of the splanchnocranium. The Upper Palaeolithic skulls are significantly longer, and male skulls are also higher than the current norms. The crania of anatomically modern humans are characterised by two general structural features: mid-lower facial retraction and neurocranial globularity. The height of the face of the Palaeolithic skulls corresponds to that of the current Central European population. The face has a markedly longer mandibular body (3-4 SD), while female mandibular rami are shorter. The skulls are further characterised by a smaller gonial angle, the increased steepness of the mandibular ramus, and the greater angle of the chin. These changes in the size and shape associated with anterior rotation of the face produce a strong protrusion of both jaws, but the sagittal inter-maxillary relationships remain unchanged. The observed facial morphology is similar to the Czech Upper Palaeolithic skulls from Dolní Vestonice. This study confirms the main diachronic changes between skulls of Upper Palaeolithic and present-day human populations.  相似文献   

9.
There is an ongoing debate in the field of human evolution about the possible contribution of Neanderthals to the modern human gene pool. To study how the Neanderthal private alleles may have spread over the genes of Homo sapiens, we propose a deterministic model based on recursive equations and ordinary differential equations. If the Neanderthal population was large compared to the Homo sapiens population at the beginning of the contact period, we show that genetic introgression should have been fast and complete meaning that most of the Neanderthal private alleles should be found in the modern human gene pool in case of ancient admixture. In order to test/reject ancient admixture from genome-wide data, we incorporate the model of genetic introgression into a statistical hypothesis-testing framework. We show that the power to reject ancient admixture increases as the ratio, at the time of putative admixture, of the population size of Homo sapiens over that of Neanderthal decreases. We find that the power to reject ancient admixture might be particularly low if the population size of Homo sapiens was comparable to the Neanderthal population size.  相似文献   

10.
This paper presents a comprehensive comparative analysis of the Neanderthal bony labyrinth, a structure located inside the petrous temporal bone. Fifteen Neanderthal specimens are compared with a Holocene human sample, as well as with a small number of European Middle Pleistocene hominins, and early anatomically modern and European Upper Palaeolithic humans. Compared with Holocene humans the bony labyrinth of Neanderthals can be characterized by an anterior semicircular canal arc which is smaller in absolute and relative size, is relatively narrow, and shows more torsion. The posterior semicircular canal arc is smaller in absolute and relative size as well, it is more circular in shape, and is positioned more inferiorly relative to the lateral canal plane. The lateral semicircular canal arc is absolutely and relatively larger. Finally, the Neanderthal ampullar line is more vertically inclined relative to the planar orientation of the lateral canal. The European Upper Palaeolithic and early modern humans are most similar, although not fully identical to Holocene humans in labyrinthine morphology. The European Middle Pleistocene hominins show the typical semicircular canal morphology of Neanderthals, with the exception of the arc shape and inferiorly position of the posterior canal and the strongly inclined ampullar line. The marked difference between the labyrinths of Neanderthals and modern humans can be used to assess the phylogenetic affinities of fragmentary temporal bone fossils. However, this application is limited by a degree of overlap between the morphologies. The typical shape of the Neanderthal labyrinth appears to mirror aspects of the surrounding petrous pyramid, and both may follow from the phylogenetic impact of Neanderthal brain morphology moulding the shape of the posterior cranial fossa. The functionally important arc sizes of the Neanderthal semicircular canals may reflect a pattern of head movements different from that of modern humans, possibly related to aspects of locomotor behaviour and the kinematic properties of their head and neck.  相似文献   

11.
A new model may resolve the problem of when and where did appear anatomically modern humans. According to this model, Neanderthals were probably neither our ancestor nor different species.Homo sapiens appeared probably in the Middle East, approximately 150 ka ago and differentiated to anatomically modern humans and Neanderthals because of the genetic programme. The fossils older than 150 ka are probably not Neanderthal such as Zuttiyeh and Biache-Saint-Vaast specimens. Cultural capacities of Neanderthals were probably equivalent to Moderns. Most of pre-Homo sapiens populations may be extinct without replacement byHomo sapiens. Language and modern behaviour should have arisen with our own species.  相似文献   

12.
Occipital bunning is a posterior projection of the occipital squama, which occurs in varying frequencies in samples of archaic Homo sapiens, Upper Pleistocene anatomically modern humans, and recent humans. It can be best interpreted as a product of the timing of posterior cerebral growth relative to the growth of the cranial vault bones. It is not a feature that was unique to the Neandertals.  相似文献   

13.
Since their discovery, Neanderthals have been described as having a marked degree of anteroposterior curvature of the femoral shaft. Although initially believed to be pathological, subsequent discoveries of Neanderthal remains lead femoral curvature to be considered as a derived Neanderthal feature. A recent study on Neanderthals and middle and early Upper Palaeolithic modern humans found no differences in femoral curvature, but did not consider size-corrected curvature. Therefore, the objectives of this study were to use 3D morphometric landmark and semi-landmark analysis to quantify relative femoral curvature in Neanderthals, Upper Palaeolithic and recent modern humans, and to compare adult bone curvature as part of the overall femoral morphology among these populations.Comparisons among populations were made using geometric morphometrics (3D landmarks) and standard multivariate methods. Comparative material involved all available complete femora from Neanderthal and Upper Palaeolithic modern human, archaeological (Mesolithic, Neolithic, Medieval) and recent human populations representing a wide geographical and lifestyle range. There are significant differences in the anatomy of the femur between Neanderthals and modern humans. Neanderthals have more curved femora than modern humans. Early modern humans are most similar to recent modern humans in their anatomy. Femoral curvature is a good indicator of activity level and habitual loading of the lower limb, indicating higher activity levels in Neanderthals than modern humans. These differences contradict robusticity studies and the archaeological record, and would suggest that femoral morphology, and curvature in particular, in Neanderthals may not be explained by adult behavior alone and could be the result of genetic drift, natural selection or differences in behavior during ontogeny.  相似文献   

14.
Two fossil hominid crania from Yunxian were found in 1989 and 1990 respectively, and were attributed toHomo eretus. For the purpose of examining the “Homo erectus features” in Yunxian crania, comparisons with crania from Zhoukoudian are made in this paper. The features examined include supraobital tori, occipital torus, angle between the occipital and nuchal planes, postorbital constriction, skull breadth conditions, lowness of skull, and frontal flatness and receding. Results show that the “Homo erectus features” are doubtful owing to damage to and distortion of Yunxian crania. Morphologically, the crania from Yunxian are likely ofHomo sapiens.  相似文献   

15.
There has been a protracted debate over the evidence for intentional cranial modification in the terminal Pleistocene Australian crania from Kow Swamp and Coobool Creek. Resolution of this debate is crucial to interpretations of the significance of morphological variation within terminal Pleistocene-early Holocene Australian skeletal materials and claims of a regional evolutionary sequence linking Javan Homo erectus and Australian Homo sapiens. However, morphological comparisons of terminal Pleistocene and recent Australian crania are complicated by the significantly greater average body mass in the former. Raw and size-adjusted metric comparisons of the terminal Pleistocene skeleton from Nacurrie, south-eastern Australia, with modified and unmodified H. sapiens and H. erectus, identified a suite of traits in the frontal, parietal, and occipital bones associated with intentional modification of a neonate’s skull. These traits are also present in some of the crania from Kow Swamp and Coobool Creek, which are in close geographic proximity to Nacurrie, but not in unmodified H. sapiens or Javan H. erectus. Frontal bone morphology in H. erectus was distinct from all of the Australian H. sapiens samples. During the first six months of life, Nacurrie’s vault may have been shaped by his mother’s hands, rather than though the application of fixed bandages. Whether this behaviour persisted only for several generations, or hundreds of years, remains unknown. The reasons behind the shaping of Nacurrie’s head, aesthetics or otherwise, and why this cultural practice was adopted and subsequently discontinued, will always remain a matter of speculation.  相似文献   

16.
A fossilized fragment of human parietal bone has been recently recovered from the lowest layer of the Casal de' Pazzi fluvial deposit (stratigraphically dated at about 200–250 ky BP). The fossil presents characters-i.e., thickness, degree and development of curvature, type of endocranial vascularization-which distinguish it from the corresponding cranial regions of both Homo erectus and anatomically modern Homo sapiens. While a morphological orientation towards Neanderthal characters can be considered, the affinities of the Casal de' Pazzi parietal are primarily with other late Middle Pleistocene specimens. The authors conclude that the Casal de' Pazzi human find can be assigned to the “archaic Homo sapiens” group falling within the European pre-Neanderthal range. Its particular morphology constitutes new evidence of human evolution from the geographical area of Rome.  相似文献   

17.
We present an analysis of cranial capacity of 118 hominid crania available from the literature. The crania belong to both the genusAustralopithecus andHomo and provide a clear outline of hominid cranial evolution starting at more than 3 million years ago. Beginning withA. afarensis there is a clear increase in both absolute and relative brain size with every successive time period.H.s. neandertal has an absolutely and relatively smaller brain size (1412cc, E.Q.=5.6) than fossil modernH.s. sapiens (1487cc, E.Q.=5.9). Three evolutionary models of hominid brain evolution were tested: gradualism, punctuated equilibrium, and a mixed model using both gradualism and punctuated equilibrium. Both parametric and non-parametric analyses show a clear trend toward increasing brain size withH. erectus and a possible relationship within archaicH. sapiens. An evolutionary stasis in cranial capacity could not be refuted for all other taxa. Consequently, the mixed model appears to more fully explain hominid cranial capacity evolution. However, taxonomic decisions could directly compromise the possibility of testing the evolutionary mechanisms hypothesized to be operating in hominid brain expansion.  相似文献   

18.
It has been proposed that a multiregional model could describe how Homo sapiens evolved in Africa beginning 300,000 years ago. Multiregionalism would require enduring morphological or behavioral differences among African regions and morphological or behavioral continuity within each. African fossils, archeology, and genetics do not comply with either requirement and are unlikely to, because climatic change periodically disrupted continuity and reshuffled populations. As an alternative to multiregionalism, I suggest that reshuffling produced novel gene constellations, including one in which the additive or cumulative effect of newly associated genes enhanced cognitive or communicative potential. Eventual fixation of such a constellation in the lineage leading to modern H. sapiens would explain the abrupt appearance of the African Later Stone Age 50–45 thousand years ago, its nearly simultaneous expansion to Eurasia in the form of the Upper Paleolithic, and the ability of fully modern Upper Paleolithic people to swamp or replace non‐modern Eurasians.  相似文献   

19.

Objectives

The diploic venous system has been hypothesized to be related to human brain evolution, though its evolutionary trajectory and physiological functions remain largely unclear. This study examines the characteristics of the diploic venous channels (DCs) in a selection of well-preserved Homo neanderthalensis and Upper Paleolithic Homo sapiens crania, searching for the differences between the two taxa and exploring the associations between brain anatomy and DCs.

Materials and Methods

Five H. neanderthalensis and four H. sapiens fossil specimens from Western Europe were analyzed. Based on Micro-CT scanning and 3D reconstruction, the distribution pattern and draining orifices of the DCs were inspected qualitatively. The size of the DCs was quantified by volume calculation, and the degree of complexity was quantified by fractal analyses.

Results

High-resolution data show the details of the DC structures not documented in previous studies. H. neanderthalensis and H. sapiens specimens share substantial similarities in the DCs. The noticeable differences between the two samples manifest in the connecting points surrounding the frontal sinuses, parietal foramina, and asterional area.

Discussion

This study provides a better understanding of the anatomy of the DCs in H. neanderthalensis and H. sapiens. The connection patterns of the DCs have potential utility in distinguishing between the two taxa and in the phylogenetic and taxonomic discussion of the Neandertal-like specimens with controversial taxonomic status.
  相似文献   

20.
The human skull of Petralona does not belong to the classical European Neanderthal men of the Upper Pleistocene but is shown to be a member of the lower Middle Pleistocene erectus group. In this group it may belong to the phylogenetical line conducting to the Neanderthal men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号