首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence.  相似文献   

2.
We attempt to determine the discriminability and organization of neural activation corresponding to the experience of specific emotions. Method actors were asked to self-induce nine emotional states (anger, disgust, envy, fear, happiness, lust, pride, sadness, and shame) while in an fMRI scanner. Using a Gaussian Naïve Bayes pooled variance classifier, we demonstrate the ability to identify specific emotions experienced by an individual at well over chance accuracy on the basis of: 1) neural activation of the same individual in other trials, 2) neural activation of other individuals who experienced similar trials, and 3) neural activation of the same individual to a qualitatively different type of emotion induction. Factor analysis identified valence, arousal, sociality, and lust as dimensions underlying the activation patterns. These results suggest a structure for neural representations of emotion and inform theories of emotional processing.  相似文献   

3.
The ability to recognize emotions contained in facial expressions are affected by both affective traits and states and varies widely between individuals. While affective traits are stable in time, affective states can be regulated more rapidly by environmental stimuli, such as music, that indirectly modulate the brain state. Here, we tested whether a relaxing or irritating sound environment affects implicit processing of facial expressions. Moreover, we investigated whether and how individual traits of anxiety and emotional control interact with this process. 32 healthy subjects performed an implicit emotion processing task (presented to subjects as a gender discrimination task) while the sound environment was defined either by a) a therapeutic music sequence (MusiCure), b) a noise sequence or c) silence. Individual changes in mood were sampled before and after the task by a computerized questionnaire. Additionally, emotional control and trait anxiety were assessed in a separate session by paper and pencil questionnaires. Results showed a better mood after the MusiCure condition compared with the other experimental conditions and faster responses to happy faces during MusiCure compared with angry faces during Noise. Moreover, individuals with higher trait anxiety were faster in performing the implicit emotion processing task during MusiCure compared with Silence. These findings suggest that sound-induced affective states are associated with differential responses to angry and happy emotional faces at an implicit stage of processing, and that a relaxing sound environment facilitates the implicit emotional processing in anxious individuals.  相似文献   

4.
情绪对记忆的影响是十分重要的,记忆与情绪存在很多的相互作用,主要包括积极和消极两方面。本文从神经机制的角度论述了自传体记忆与情绪的关系,不同情绪状况的自传体记忆的大脑神经机制特征,积极情绪状况下,记忆效果比较好;但消极情绪状态下,记忆效果比较差。其次,自传体记忆是关于个人自己生活事件的记忆;阈下抑郁一般指的是具有抑郁症状,但达不到抑郁诊断标准的个体。阈下抑郁作为一种常见的消极情绪状况对于记忆的影响也是很明显的,尤其是对于自传体记忆的干扰具有明显的情绪一致性效应,既消极情感的视角看待所有的自传体记忆。本文重点分析了阈下抑郁对自传体记忆影响的神经机制,包括脑成像、脑损伤以及临床研究方面的研究现状。最后对相关研究的不足和未来的展望做出了述评。  相似文献   

5.
Philippe Fossati 《PSN》2005,3(4):178-183
Functional brain imaging studies in healthy subjects suggest that several regions (prefrontal cortex, amygdala, thalamus, hippocampus, anterior cingulate) have specialized functions for emotional operations. Within these regions, the medial prefrontal cortex (MPFC) is considered to have a general role in emotional processing. Using a memory paradigm with verbal material, we recently demonstrated that the MPFC is specifically involved in self-related processing of emotional stimuli. Study with mood induction also suggest that personality traits may modulate the reactivity of the MPFC to emotional Stressors. Taken together these findings support the hypothesis that the MPFC subserve processes involved in emotion regulation. Dysfunction of the MPFC and related structures (i.e. amygdala) may increase the vulnerability to emotional disorders.  相似文献   

6.
Montague PR  Lohrenz T 《Neuron》2007,56(1):14-18
Compliance with social norms requires neural signals related both to the norm and to deviations from it. Recent work using economic games between two interacting subjects has uncovered brain responses related to norm compliance and to an individual's strategic outlook during the exchange. These brain responses possess a provocative relationship to those associated with negative emotional outcomes, and hint at computational depictions of emotion processing.  相似文献   

7.
Cognitive research has long been aware of the relationship between individual differences in personality and performance on behavioural tasks. However, within the field of cognitive neuroscience, the way in which such differences manifest at a neural level has received relatively little attention. We review recent research addressing the relationship between personality traits and the neural response to viewing facial signals of emotion. In one section, we discuss work demonstrating the relationship between anxiety and the amygdala response to facial signals of threat. A second section considers research showing that individual differences in reward drive (behavioural activation system), a trait linked to aggression, influence the neural responsivity and connectivity between brain regions implicated in aggression when viewing facial signals of anger. Finally, we address recent criticisms of the correlational approach to fMRI analyses and conclude that when used appropriately, analyses examining the relationship between personality and brain activity provide a useful tool for understanding the neural basis of facial expression processing and emotion processing in general.  相似文献   

8.
雌激素通过复杂的生理和心理学机制对中枢神经系统施加影响.生理学方面包括:雌激素在杏仁核、海马和前额叶等这些与情绪认知相关的重要脑区内影响神经递质的产生和效能;雌激素可以作用于下丘脑-垂体-肾上腺轴,改变情绪性行为;雌激素受体的基因转录也可以调节情绪性行为的变化.雌激素也通过神经心理学的因素影响情绪加工:雌激素可以提高情绪编码技能,提升表情识别的准确性;雌激素能够影响情绪的唤醒,改变个体情绪体验的强度.未来的研究要融合心理、神经和内分泌等各种因素,以解决女性情绪障碍这一难题.  相似文献   

9.
Recent investigations addressing the role of the synaptic multiadaptor molecule AKAP5 in human emotion and behavior suggest that the AKAP5 Pro100Leu polymorphism (rs2230491) contributes to individual differences in affective control. Carriers of the less common Leu allele show a higher control of anger as indicated by behavioral measures and dACC brain response on emotional distracters when compared to Pro homozygotes. In the current fMRI study we used an emotional working memory task according to the n-back scheme with neutral and negative emotional faces as target stimuli. Pro homozygotes showed a performance advantage at the behavioral level and exhibited enhanced activation of the amygdala and fusiform face area during working memory for emotional faces. On the other hand, Leu carriers exhibited increased activation of the dACC during performance of the 2-back condition. Our results suggest that AKAP5 Pro100Leu effects on emotion processing might be task-dependent with Pro homozygotes showing lower control of emotional interference, but more efficient processing of task-relevant emotional stimuli.  相似文献   

10.
A characterizing symptom of social anxiety disorder (SAD) is increased emotional reactivity towards potential social threat in combination with impaired emotion and stress regulation. While several neuroimaging studies have linked SAD with hyperreactivity in limbic brain regions when exposed to emotional faces, little is known about habituation in both the amygdala and neocortical regulation areas. 15 untreated SAD patients and 15 age- and gender-matched healthy controls underwent functional magnetic resonance imaging during repeated blocks of facial emotion () and object discrimination tasks (). Emotion processing networks were defined by a task-related contrast (). Linear regression was employed for assessing habituation effects in these regions. In both groups, the employed paradigm robustly activated the emotion processing and regulation network, including the amygdalae and orbitofrontal cortex (OFC). Statistically significant habituation effects were found in the amygdalae, OFC, and pulvinar thalamus of SAD patients. No such habituation was found in healthy controls. Concurrent habituation in the medial OFC and the amygdalae of SAD patients as shown in this study suggests intact functional integrity and successful short-term down-regulation of neural activation in brain areas responsible for emotion processing. Initial hyperactivation may be explained by an insufficient habituation to new stimuli during the first seconds of exposure. In addition, our results highlight the relevance of the orbitofrontal cortex in social anxiety disorders.  相似文献   

11.

Background

Previous investigations revealed that the impact of task-irrelevant emotional distraction on ongoing goal-oriented cognitive processing is linked to opposite patterns of activation in emotional and perceptual vs. cognitive control/executive brain regions. However, little is known about the role of individual variations in these responses. The present study investigated the effect of trait anxiety on the neural responses mediating the impact of transient anxiety-inducing task-irrelevant distraction on cognitive performance, and on the neural correlates of coping with such distraction. We investigated whether activity in the brain regions sensitive to emotional distraction would show dissociable patterns of co-variation with measures indexing individual variations in trait anxiety and cognitive performance.

Methodology/Principal Findings

Event-related fMRI data, recorded while healthy female participants performed a delayed-response working memory (WM) task with distraction, were investigated in conjunction with behavioural measures that assessed individual variations in both trait anxiety and WM performance. Consistent with increased sensitivity to emotional cues in high anxiety, specific perceptual areas (fusiform gyrus - FG) exhibited increased activity that was positively correlated with trait anxiety and negatively correlated with WM performance, whereas specific executive regions (right lateral prefrontal cortex - PFC) exhibited decreased activity that was negatively correlated with trait anxiety. The study also identified a role of the medial and left lateral PFC in coping with distraction, as opposed to reflecting a detrimental impact of emotional distraction.

Conclusions

These findings provide initial evidence concerning the neural mechanisms sensitive to individual variations in trait anxiety and WM performance, which dissociate the detrimental impact of emotion distraction and the engagement of mechanisms to cope with distracting emotions. Our study sheds light on the neural correlates of emotion-cognition interactions in normal behaviour, which has implications for understanding factors that may influence susceptibility to affective disorders, in general, and to anxiety disorders, in particular.  相似文献   

12.
Chiew KS  Braver TS 《PloS one》2011,6(3):e17635

Background

Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality.

Methodology/Principal Findings

Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC.

Conclusions/Significance

These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference.  相似文献   

13.
记忆是进行思维、想象等高级心理活动的基础,是累积经验、促进个体生存的重要功能。然而,创伤后应激障碍和物质滥用障碍具有某种非适应性记忆过强的特征,不利于个体生存。因此,以病理性改变的记忆为靶点,通过削弱或更新非适应性记忆,可以达到缓解症状甚至治愈的目的。记忆并非是对经验的刻板记录,而是对经验不断更新整合的过程,因此记忆有被干预的可能。记忆的再次激活可能会诱发记忆消退和再巩固,这为记忆相关精神疾病的干预提供了思路和启发。非侵入性脑刺激(noninvasive brain stimulation,NIBS)技术作为一种时间、空间分辨率较高的无创神经调控技术,近年来开始被结合运用到记忆干预研究中。不同刺激参数的NIBS (如频率、极性,以及受刺激区域的初始神经激活状态)应用于特定大脑皮质区域,可以调节神经可塑性,增强或降低靶点脑区的兴奋性,从而削弱或增强行为表现,实现记忆消退增强或在再巩固时间窗内干预记忆。本文首先介绍了记忆相关的脑功能基础研究与局部脑区干预方案的理论联系,继而回顾了近年来NIBS与记忆干预相结合应用于创伤或物质滥用相关障碍的临床干预研究,为精神疾病临床诊疗提供理论依据和启发。  相似文献   

14.
Phelps EA  LeDoux JE 《Neuron》2005,48(2):175-187
Research on the neural systems underlying emotion in animal models over the past two decades has implicated the amygdala in fear and other emotional processes. This work stimulated interest in pursuing the brain mechanisms of emotion in humans. Here, we review research on the role of the amygdala in emotional processes in both animal models and humans. The review is not exhaustive, but it highlights five major research topics that illustrate parallel roles for the amygdala in humans and other animals, including implicit emotional learning and memory, emotional modulation of memory, emotional influences on attention and perception, emotion and social behavior, and emotion inhibition and regulation.  相似文献   

15.
Visual cues from faces provide important social information relating to individual identity, sexual attraction and emotional state. Behavioural and neurophysiological studies on both monkeys and sheep have shown that specialized skills and neural systems for processing these complex cues to guide behaviour have evolved in a number of mammals and are not present exclusively in humans. Indeed, there are remarkable similarities in the ways that faces are processed by the brain in humans and other mammalian species. While human studies with brain imaging and gross neurophysiological recording approaches have revealed global aspects of the face-processing network, they cannot investigate how information is encoded by specific neural networks. Single neuron electrophysiological recording approaches in both monkeys and sheep have, however, provided some insights into the neural encoding principles involved and, particularly, the presence of a remarkable degree of high-level encoding even at the level of a specific face. Recent developments that allow simultaneous recordings to be made from many hundreds of individual neurons are also beginning to reveal evidence for global aspects of a population-based code. This review will summarize what we have learned so far from these animal-based studies about the way the mammalian brain processes the faces and the emotions they can communicate, as well as associated capacities such as how identity and emotion cues are dissociated and how face imagery might be generated. It will also try to highlight what questions and advances in knowledge still challenge us in order to provide a complete understanding of just how brain networks perform this complex and important social recognition task.  相似文献   

16.
Human emotional expressions serve a crucial communicatory role allowing the rapid transmission of valence information from one individual to another. This paper will review the literature on the neural mechanisms necessary for this communication: both the mechanisms involved in the production of emotional expressions and those involved in the interpretation of the emotional expressions of others. Finally, reference to the neuro-psychiatric disorders of autism, psychopathy and acquired sociopathy will be made. In these conditions, the appropriate processing of emotional expressions is impaired. In autism, it is argued that the basic response to emotional expressions remains intact but that there is impaired ability to represent the referent of the individual displaying the emotion. In psychopathy, the response to fearful and sad expressions is attenuated and this interferes with socialization resulting in an individual who fails to learn to avoid actions that result in harm to others. In acquired sociopathy, the response to angry expressions in particular is attenuated resulting in reduced regulation of social behaviour.  相似文献   

17.
Emotions can impact cognition by exerting both enhancing (e.g., better memory for emotional events) and impairing (e.g., increased emotional distractibility) effects (reviewed in 1). Complementing our recent protocol 2 describing a method that allows investigation of the neural correlates of the memory-enhancing effect of emotion (see also 1, 3-5), here we present a protocol that allows investigation of the neural correlates of the detrimental impact of emotion on cognition. The main feature of this method is that it allows identification of reciprocal modulations between activity in a ventral neural system, involved in ''hot'' emotion processing (HotEmo system), and a dorsal system, involved in higher-level ''cold'' cognitive/executive processing (ColdEx system), which are linked to cognitive performance and to individual variations in behavior (reviewed in 1). Since its initial introduction 6, this design has proven particularly versatile and influential in the elucidation of various aspects concerning the neural correlates of the detrimental impact of emotional distraction on cognition, with a focus on working memory (WM), and of coping with such distraction 7,11, in both healthy 8-11 and clinical participants 12-14.  相似文献   

18.
Emotional intelligence (EI) is a multi-faceted construct consisting of our ability to perceive, monitor, regulate and use emotions. Despite much attention being paid to the neural substrates of EI, little is known of the spontaneous brain activity associated with EI during resting state. We used resting-state fMRI to investigate the association between the amplitude of low-frequency fluctuations (ALFFs) and EI in a large sample of young, healthy adults. We found that EI was significantly associated with ALFFs in key nodes of two networks: the social emotional processing network (the fusiform gyrus, right superior orbital frontal gyrus, left inferior frontal gyrus and left inferior parietal lobule) and the cognitive control network (the bilateral pre-SMA, cerebellum and right precuneus). These findings suggest that the neural correlates of EI involve several brain regions in two crucial networks, which reflect the core components of EI: emotion perception and emotional control.  相似文献   

19.
The prefrontal cortex (PFC) is involved in mediating important higher-order cognitive processes such as decision making, prompting thereby our actions. At the same time, PFC activation is strongly influenced by emotional reactions through its functional interaction with the amygdala and the striatal circuitry, areas involved in emotion and reward processing. The PFC, however, is able to modulate amygdala reactivity via a feedback loop to this area. A role for serotonin in adjusting for this circuitry of cognitive regulation of emotion has long been suggested based primarily on the positive pharmacological effect of elevating serotonin levels in anxiety regulation. Recent animal and human functional magnetic resonance studies have pointed to a specific involvement of the 5-hydroxytryptamine (5-HT)2A serotonin receptor in the PFC feedback regulatory projection onto the amygdala. This receptor is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control of emotion-based actions, such as addiction and other impulse-related behaviors. In this review, we give an overview of the 5-HT2A receptor distribution (neuronal, intracellular, and anatomical) along with its functional and physiological effect on PFC activation, and how that relates to more recent findings of a regulatory effect of the PFC on the emotional control of our actions.  相似文献   

20.
The sophisticated analysis of gestures and vocalizations, including assessment of their emotional valence, helps group-living primates efficiently navigate their social environment. Deficits in social information processing and emotion regulation are important components of many human psychiatric illnesses, such as autism, schizophrenia and social anxiety disorder. Analyzing the neurobiology of social information processing and emotion regulation requires a multidisciplinary approach that benefits from comparative studies of humans and animal models. However, many questions remain regarding the relationship between visual attention and arousal while processing social stimuli. Using noninvasive infrared eye-tracking methods, we measured the visual social attention and physiological arousal (pupil diameter) of adult male rhesus monkeys (Macaca mulatta) as they watched social and nonsocial videos. We found that social videos, as compared to nonsocial videos, captured more visual attention, especially if the social signals depicted in the videos were directed towards the subject. Subject-directed social cues and nonsocial nature documentary footage, compared to videos showing conspecifics engaging in naturalistic social interactions, generated larger pupil diameters (indicating heightened sympathetic arousal). These findings indicate that rhesus monkeys will actively engage in watching videos of various kinds. Moreover, infrared eye tracking technology provides a mechanism for sensitively gauging the social interest of presented stimuli. Adult male rhesus monkeys' visual attention and physiological arousal do not always trend in the same direction, and are likely influenced by the content and novelty of a particular visual stimulus. This experiment creates a strong foundation for future experiments that will examine the neural network responsible for social information processing in nonhuman primates. Such studies may provide valuable information relevant to interpreting the neural deficits underlying human psychiatric illnesses such as autism, schizophrenia and social anxiety disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号