首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hoover JP  Reetz MJ 《Oecologia》2006,149(1):165-173
Interspecific brood parasitism in birds presents a special problem for the host because the parasitic offspring exploit their foster parents, causing them to invest more energy in their current reproductive effort. Nestling brown-headed cowbirds (Molothrus ater) are a burden to relatively small hosts and may reduce fledgling quality and adult survival. We documented food-provisioning rates of one small host, the prothonotary warbler (Protonotaria citrea), at broods that were similar in age (containing nestlings 8–9 days old), but that varied in composition (number of warbler and cowbird nestlings) and mass, and measured the effect of brood parasitism on offspring recruitment and adult returns in the host. The rate of food provisioning increased with brood mass, and males and females contributed equally to feeding nestlings. Controlling for brood mass, the provisioning rate was higher for nests with cowbirds than those without. Recruitment of warbler fledglings from unparasitized nests was 1.6 and 3.7 times higher than that of fledglings from nests containing one or two cowbirds, respectively. Returns of double-brooded adult male and female warblers decreased with an increase in the number of cowbirds raised, but the decrease was more pronounced in males. Reduced returns of warbler adults and recruitment of warbler fledglings with increased cowbird parasitism was likely a result of reduced survival. Cowbird parasitism increased the warblers’ investment in current reproductive effort, while exerting additional costs to current reproduction and residual reproductive value. Our study provides the strongest evidence to date for negative effects of cowbird parasitism on recruitment of host fledglings and survival of host adults.  相似文献   

2.
Avian brood parasitism often has multiple negative effects on the reproductive success of the host. Most studies have focused on one or two of these effects, but rarely have they all been studied simultaneously for one species. I studied prothonotary warblers to quantify the effects of different intensities of (i.e. multiple) brood parasitism by brown-headed cowbirds, Molothrus ater, on the production of host and cowbird young and on the between-year returns of adult warblers. Host clutch size decreased with an increase in the number of cowbird eggs laid in nests. The hatching success of warbler and cowbird eggs decreased with increased cowbird eggs in nests, but was always higher for cowbird eggs than warbler eggs. The survival of warbler nestlings, but not cowbird nestlings, decreased with increased cowbird nestlings in the brood. An increase in the number of cowbird nestlings in broods resulted in a reduction in the average mass of warbler nestlings but not cowbird nestlings. The number of cowbird eggs or nestlings present did not affect nest predation, and the fledging of cowbirds did not influence the renesting interval of female warblers. In addition, the between-year returns of adult warblers were not negatively affected by brood parasitism. Decreased hatching success and nestling survival reduced the reproductive output of the warblers the most. These effects were substantial and appear to favour the evolution of behavioural responses that reduce the effects of brood parasitism on prothonotary warblers. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour   相似文献   

3.
The onset of incubation before the end of laying imposes asynchrony at hatching and, therefore, a size hierarchy in the brood. It has been argued that hatching asynchrony might be a strategy to improve reproductive output in terms of quality or quantity of offspring. However, little is known about the mediating effect of hatching asynchrony on offspring quality when brood reduction occurs. Here, we investigate the relationship between phenotypic quality and hatching asynchrony in Common Kestrel Falco tinnunculus nestlings in Spain. Hatching asynchrony did not increase breeding success or nestling quality. Furthermore, hatching asynchrony and brood reduction had different effects on nestlings’ phytohaematogglutinin (PHA)‐mediated immune response and nestling growth. In asynchronous and reduced broods (in which at least one nestling died), nestlings showed a stronger PHA‐mediated immune response and tended to have a smaller body size compared with nestlings raised in synchronous and reduced broods. When brood reduction occurred in broods hatched synchronously, there was no effect on nestling size, but nestlings had a relatively poor PHA‐mediated immune response compared with nestlings raised in asynchronous and reduced broods. We suggest that resources for growth can be directed to immune function only in asynchronously hatched broods, resulting in improved nestling quality, as suggested by their immune response. We also found that males produced a greater PHA‐mediated immune response than females only in brood‐reduced nests without any effect on nestling size or condition, suggesting that females may trade off immune activities and body condition, size or weight. Overall, our results suggest that hatching pattern and brood reduction may mediate resource allocation to different fitness traits. They also highlight that the resolution of immune‐related trade‐offs when brood reduction occurs may differ between male and female nestlings.  相似文献   

4.
Hosts of generalist brood parasites often vary with regardsto their life-history traits, and these differences have thepotential to influence the competitive environment experiencedby brood-parasitic nestlings. Although begging by brood parasitesis more exaggerated than their hosts, it is unclear if generalistbrood parasites modulate their begging behavior relative tohost size. I examined the begging behavior of brown-headed cowbird(Molothrus ater) nestlings when competing against nest matesthat differ in size and under different levels of short-termneed. Cowbird nestlings begged on nearly all feeding visits,responded to adults as fast as (or faster than) their nest mates,and typically begged more intensively than their nest mates.Latency to beg, time spent begging, and maximum begging postureof cowbirds were similar during supplementation and deprivationtreatments, indicating begging intensity was not influencedby short-term need. Time spent begging by cowbirds varied amonghosts of 3 different sizes when short-term need was standardized,suggesting that nest mate size strongly influenced begging behavior.Cowbirds obtained more food when competing against an intermediate-sizedhost due to lower provisioning rates of small hosts or becauseof increased competitive ability of large host nestlings. Overall,cowbirds obtained the greatest volume of food per unit timespent begging when competing against intermediate hosts, butthis value approached that of the small host when adjusted formodal brood size. These results demonstrate that cowbirds adjusttheir begging relative to the size of the hosts against whichthey compete but not to levels of short-term need.  相似文献   

5.
Despite the costs to avian parents of rearing brood parasitic offspring, many species do not reject foreign eggs from their nests. We show that where multiple parasitism occurs, rejection itself can be costly, by increasing the risk of host egg loss during subsequent parasite attacks. Chalk-browed mockingbirds (Mimus saturninus) are heavily parasitized by shiny cowbirds (Molothrus bonariensis), which also puncture eggs in host nests. Mockingbirds struggle to prevent cowbirds puncturing and laying, but seldom remove cowbird eggs once laid. We filmed cowbird visits to nests with manipulated clutch compositions and found that mockingbird eggs were more likely to escape puncture the more cowbird eggs accompanied them in the clutch. A Monte Carlo simulation of this 'dilution effect', comparing virtual hosts that systematically either reject or accept parasite eggs, shows that acceptors enjoy higher egg survivorship than rejecters in host populations where multiple parasitism occurs. For mockingbirds or other hosts in which host nestlings fare well in parasitized broods, this benefit might be sufficient to offset the fitness cost of rearing parasite chicks, making egg acceptance evolutionarily stable. Thus, counterintuitively, high intensities of parasitism might decrease or even reverse selection pressure for host defence via egg rejection.  相似文献   

6.
Brown-headed cowbirds, Molothrus ater, frequently parasitize red-winged blackbirds,Agelaius phoeniceus . The presence of a brood parasite, unrelated to both host nestlings and parents, has provoked speculation regarding within-brood food allocation and parental provisioning. This study is the first to compare directly the effect of brood parasitism on host parent and offspring behaviour in younger and older broods. We videotaped 28 unparasitized red-winged blackbird broods and compared them to 22 parasitized broods. Red-winged blackbird nestling begging appears largely unaffected by cowbird parasitism. The presence of the cowbird in the nest affected neither the latency nor duration of host nestling begging, but stimulated more frequent begging by red-winged blackbird nestlings following food distribution. Begging by cowbirds was unique in two ways: (1) cowbirds maintained a consistent begging effort throughout the nestling period (but did not receive a consistent food share); and (2) cowbirds begged longer and more frequently following the allocation of food. Persistent begging by the cowbird following the allocation of food has implications for the division of parental care, if by doing so the brood parasite is able to provoke the foster parent to increase provisioning, at the expense of brooding. We found no evidence for the adjustment of parental care. Neither the foraging rates nor the lengths of the parental feeding visits differed markedly between parasitized and unparasitized broods. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

7.
Female brood parasites are recognized as threats to reproductive success by many host species. Male brood parasites may accompany females while they search for nests to parasitize and males depredate nests throughout the nesting cycle. Hence, selection may also favour recognition of males. We examined whether two common host species perceive male brown-headed cowbirds ( Molothrus ater ) as brood parasites, as nest predators, or neither. We quantified visits of male cowbirds to nests of yellow warblers ( Dendroica petechia ) and red-winged blackbirds ( Ageliaus phoeniceus ) to assess the frequency with which these host species interact with male cowbirds. Males were observed near nests during hosts' laying and incubating stages, although less frequently than female cowbirds. No visits by cowbirds occurred while parents cared for nestlings. We then presented models of male and female cowbirds plus a non-threatening control to yellow warblers and red-winged blackbirds during laying and nestling periods. If hosts perceive males and females similarly, they should respond more intensely to the cowbird models during the laying period, when nests are most likely to be parasitized. Both species responded similarly to male and female cowbird models during laying, which suggests that hosts view cowbirds of both sexes as threats. The responses of yellow warblers with nestlings to male cowbirds were strongly influenced by the order of model presentation. Warblers first presented with the male cowbird gave much reduced anti-parasite responses than those that first interacted with the female then the male cowbird. These results suggest that yellow warblers recognized male vs. female cowbirds, but that discrimination was not expressed during laying. By contrast, red-winged blackbirds did not discriminate between male and female cowbirds at either nesting stage.  相似文献   

8.
In many bird species, eggs in a brood hatch within days of each other, leading to a size asymmetry detrimental to younger siblings. Hatching asynchrony is often thought of as an adaptive strategy, and the most widely studied hypothesis in relation to this is the ‘brood reduction hypothesis’. This hypothesis states that when food resources are unpredictable, hatching asynchrony will allow the adjustment of the brood size maximizing fledging success and benefitting parents. The Magellanic penguin Spheniscus magellanicus is an appropriate species to test this hypothesis because it has a 2‐egg clutch that hatches over a 2‐d interval with a broad range of variation (–1 to 4 d), it shows facultative brood reduction, and food abundance between breeding seasons is variable. We performed a manipulative study at Isla Quiroga, Argentina, during three breeding seasons (2010–2012) by forcing broods to hatch synchronously (0 d) or asynchronously (2 or 4 d). Years were categorized based on estimated food abundance. Our study provided mixed results because in the low estimated food abundance year asynchronous broods did not have higher nestling survival than synchronous broods, and the second‐hatchling in asynchronous broods did not die more often than those in synchronous broods. On the other hand, younger siblings of 4‐d asynchronous broods starved earlier than those of synchronous broods, and 2‐d asynchronous broods fledged heavier young than synchronous broods. Asynchronous hatching would seem to benefit reproduction in this species, not with respect to survival, but in terms of the advantages it can accord to nestlings and, in terms of lower costs, for parents raising nestlings.  相似文献   

9.
Parasitic cowbirds lay eggs in the nests of other species anddupe them into caring for their young. Unlike other brood parasites,cowbirds have not developed egg mimicry or bizarre chick morphology.However, most of them parasitize a large number of hosts. Severalfeatures of cowbirds have been proposed as more general adaptationsto brood parasitism. In this study, we used a recent molecularphylogeny as a historical framework to test the possible adaptationsof the parasitic cowbird, including egg size, eggshell thicknessand energy content of the eggs, length of the incubation period,and growth pattern of cowbird nestlings. We used a recentlydeveloped extension of independent contrasts to test whetherthe five cowbird species deviate from general allometric equations.We generated prediction intervals for a nonparasite that evolvedin the place of the cowbirds. By using these prediction intervals,we found that parasitic cowbirds had not reduced weight or energycontent of their eggs, nor their incubation period over evolutionarytime. Cowbird chicks and those of nonparasitic relatives hadsimilar growth pattern. The only characteristic that separatedparasitic cowbirds from their nonparasitic relatives was anincrease in eggshell thickness. All these findings were robustand resisted the use of three models of character evolution.The fact that most traits exhibited by cowbirds were inheritedfrom a nonparasitic ancestor does not rule out that they areadvantageous for parasitism. Future research should focus onsuch traits of cowbird relatives and on how these traits preadapteda particular lineage to become parasites.  相似文献   

10.
We tested the brood-reduction hypothesis by adding three nestlingsto naturally occurring synchronous and asynchronous broods ofthe house wren (Troglodytes aedon) in order to mimic food shortagesfor the broods. Two types of controls were established in whichbrood size remained unchanged: those in which nestlings wereexchanged among broods and those in which no nestlings wereexchanged. The critical test of the hypothesis was in 1988 whenthere was a food shortage for enlarged broods. Although broodreduction occurred, enlarged synchronous broods produced asmany fledglings as did enlarged asynchronous broods, and fledgingmass was similar. Juvenile recapture 2-8 weeks after fledgingand offspring recruitment to subsequent breeding populationswere not related to treatment. The results are not consistentwith the brood-reduction hypothesis as an explanation for theoccurrence of hatching asynchrony in the house wren.  相似文献   

11.
Avian obligate brood parasites, which rely solely on hosts to raise their young, should choose the highest quality hosts to maximize reproductive output. Brown-headed cowbirds (Molothrus ater) are extreme host generalists, yet female cowbirds could use information based on past reproductive outcomes to make egg-laying decisions thus minimizing fitness costs associated with parasitizing low-quality hosts. We use a long-term (21 years) nest-box study of a single host, the prothonotary warbler (Protonotaria citrea), to show that local cowbird reproductive success, but not host reproductive success, was positively correlated with the probability of parasitism the following year. Experimental manipulations of cowbird success corroborated that female cowbirds make future decisions about which hosts to use based on information pertaining to past cowbird success, both within and between years. The within-year pattern, in particular, points to local cowbird females selecting hosts based on past reproductive outcomes. This, coupled with high site fidelity of female cowbirds between years, points to information use, rather than cowbird natal returns alone, increasing parasitism rates on highly productive sites between years.  相似文献   

12.
Identifying the natal origins of brood parasites is a major challenge that usually requires labor-intensive searching for nests of host species. Stable isotope analysis of feathers and other body tissues of parasitic young could be a possible tool for determining natal origins if tissues reflect the isotopic composition of the diet fed to nestlings. We measured the carbon (13C) and nitrogen (15N) isotope compositions of feathers for two age-classes of brown-headed cowbirds Molothrus ater at the Konza Prairie Biological Station near Manhattan, Kansas: nestlings raised by five species of songbird hosts in two different habitats, and juveniles captured after independence. Isotope values from cowbird nestlings did not differ among host species and we were unable to assign juvenile cowbirds to their natal hosts. However, nestlings raised in grassland habitat had feathers that contained significantly higher δ13C values and lower δ15N values than nestlings raised in shrub habitats. In addition, independent juveniles had isotopic signatures that were similar to cowbird nestlings raised on shrub habitats. Although dickcissel Spiza americana comprised the majority of samples from shrub habitats, our conclusions reflect the natural pattern of parasitism at the site and should be representative of cowbirds raised at Konza. We conclude that stable isotope analysis of feathers is effective for determining the natal origins of parasitic young if isotope values from nestlings are isotopically distinct among habitats.  相似文献   

13.
Brood-parasitic young are reared in the nests of different species and can derive no genetic benefit from the survival of host offspring. However, although the nestlings of many parasitic cuckoo and honeyguide species routinely kill host young soon after hatching, nestling brown-headed cowbirds, Molothrus ater, tolerate host offspring and are commonly reared alongside them for at least part of the nestling period. I used comparative analyses of data from the literature to investigate whether brown-headed cowbird nestlings gain direct benefits by allowing host young to live. The brown-headed cowbird (44 g) parasitizes many passerines (adult mass range about 5-90 g) and the likelihood that host young survive to fledge from parasitized nests varies between species. In common with previous work, I found that host offspring mortality was highest in species whose offspring were relatively small compared with the cowbird nestling. Furthermore, cowbird nestlings were most likely to fledge when reared alongside host young of intermediate size. In these nests, one or two host young typically fledged as well. I suggest that cowbirds, and other host-tolerant brood parasites, could benefit from the presence of host nestlings through the assistance that host chicks offer in soliciting a higher provisioning rate, and that such benefits might outweigh the costs of having competition for food at each nest visit. Variation in this cost-benefit ratio could explain differences between brood parasite species in their tolerance of host young.  相似文献   

14.
Costs imposed by brood parasitic birds exert strong selection on their hosts to avoid parasitism. While egg rejection is a common defence, nestling rejection is rarer and less well understood. Theoretical models suggest that among non‐evicting parasites such as cowbirds nestling rejection can only evolve when levels of parasitism are high. Here we describe a possible case of early rejection of cowbird nestlings, by an infrequently parasitised host, the firewood‐gatherer Anumbius annumbi. Firewood‐gatherers accepted most shiny cowbird Molothrus bonariensis eggs despite clear differences in coloration. Cowbird eggs usually hatched 4–5 d before host eggs. All parasitic nestlings died within 48 h, and hosts continued their breeding attempts. Nestling death was most likely due to neglect since little food was found in the stomach of dead nestlings. Feeding neglect could be due to differences in visual or acoustic appearance between host and parasite hatchlings. Alternatively, hosts may refrain from feeding nestlings that hatch too early compared to their normal incubation time. At the moment our data do not allow distinction between active nestling recognition or cowbird nestling failure due to the unsuitability of the firewood‐gatherer as a host (i.e. too long incubation). Experiments are needed to tease these alternatives apart.  相似文献   

15.
HATCHING ASYNCHRONY IN ALTRICIAL BIRDS   总被引:6,自引:0,他引:6  
1. The review aims to provide a simple conceptual framework on which to place recent studies of hatching asynchrony in altricial birds and to assess the evidence used in support of specific hypotheses. 2. Hatching asynchrony arises bsecause parents start incubation before laying is complete, but the precision of parental control is largely unknown. 3. Hypothesses concerning the functional significance of hatching asynchrony fall into four broad types. Hatching asynchrony might: (i) arise because of selection on the timing of events during the nesting period; (ii) facilitate the adaptive reduction in brood size; (iii) increase the energetic efficiency of raising the brood, or (iv) result from environmental or phylogenetic constraints. 4. The incubation pattern could function to minimize the losses of eggs, nestlings or adults to predators (or climatic sources of mortality), particularly in species which cannot actively defend their nest. The best evidence comes from comparative studies of hatching asynchrony. Early incubation might also be favoured if the food supply declines sharply through the breeding season, although the evidence is weak and indirect, or if there is a risk of brood parasitism. In species in which only the female incubates, early incubation could ‘force’ the male to invest more in the nestlings, but this idea remains to be tested. Males may be constrained by the risk of cuckoldry to delay incubation until laying is complete. 5. Hatching asynchrony could be adaptive by enabling the efficient reduction of brood size if food proves short after hatching (primarily because of a shortage of food in the environment or possibly because of a large proportion of ‘expensive’ nestlings in the brood in species which are sexually dimorphic). Observational evidence is often consistent with this hypothesis but few experimental studies provide adequate tests. Brood reduction could be adaptive in species (primarily eagles and pelecaniformes) which lay an extra egg to act as insurance against hatching failure, and again hatching asynchrony might facilitate brood reduction, although there are few experimental tests on such species. Hatching asynchrony might also enable sex ratio manipulation through selective brood reduction, although there is as yet no clear supportive evidence. 6. Ins species in which young have a marked peak in energy demand during the period of parental care, hatching asynchrony can reduce the peak demand of the brood, which might allow the parents to raise more healthy young. In many species such savings are likely to be small or absent. There is some behavioural evidence that hatching asynchrony can reduce fighting amongst nestlings and therefore lead to the more efficient use of energy by the brood. In general this effect seems small and the only energetic study found no difference in the energy requirements of synchronous and asynchronous broods. Other possible energetic advantages to hatching asynchrony have not been tested. 7. Environmental conditions during laying can influence both egg size and laying interval in aerial insectivores, and might directly influence incubation in this and other groups. Thus some variation in hatching asynchrony and the relative size of siblings is probably non-adaptive. The variability of incubation pattern within and across species suggests that hatching asynchrony is not under strong phylogenetic constraint. 8. The hypotheses about the adaptive significance of hatching asynchrony are complementary rather than mutually exclusive: within a species, several selective pressures could influence the optimal incubation pattern, and the relative importance of selective pressures will differ among species. Furthermore one should expect that the incubation pattern and parent–offspring interactions will be coadapted to maximize brood productivity.  相似文献   

16.
Studies of avian brood parasitism have provided some of the best evidence of coevolutionary arms races. One of the parasitic adaptations exhibited by cuckoos (family Cuculidae) and cowbirds (family Icteridae) is the development of a thick eggshell, presumably to avoid damage from puncture ejection by some hosts and/or accidental damage during egg-laying in the host nest. However, it is unknown whether this trait constrains the hatching of parasitic young. The differences in hatching characteristics between the host red-winged blackbird (“redwing;” Agelaius phoeniceus) and the parasitic brown-headed cowbird (Molothrus ater) were examined. Prehatched cowbird young were found to spend more time hatching than pre-hatched redwing young and to emit click sounds at a greater rate in relation to pulmonary respiration than pre-hatched redwing young. However, cowbird hatchlings appear to have evolved other hatching-related traits that may compensate for the greater hatching effort, such as body parts and an egg tooth that are relatively large compared with those of redwing hatchlings.  相似文献   

17.
The brown-headed cowbird (Molothrusater) is a generalist obligate brood parasite. Despite intensive study and growing concern over the negative impact of cowbird parasitism on populations of many hosts, very little is known about the factors influencing community-wide patterns of cowbird parasitism. Using systematic nest searches, nest parasitism was studied over two breeding seasons at a study site in northeastern Illinois encompassing grassland, forest-edge, and forest habitat, supporting a diverse avian community. Parasitism was observed for 18 out of 34 altricial bird species found nesting at the study site. A total of 299 cowbird eggs and nestlings were found in 191 of a total of 593 nests. Analyses revealed several ecological and behavioral factors associated with frequency of parasitism and the resulting distribution of cowbird eggs. Much higher frequencies of parasitism were found in edge and forest habitats than in grassland. Within the edge habitat, open nests were parasitized significantly more often than cavity nests. Among open nests in the edge habitat, the two largest species were never parasitized. Host behavior, particularly egg-ejection behavior, was associated with a reduced observed frequency of parasitism, but at least three species known to eject cowbird eggs were sometimes parasitized. For six common hosts capable of rearing cowbirds, we found no correlation between level of parasitism and host nest-survivorship, suggesting that fine-grained assessments of host quality by female cowbirds do not influence patterns of parasitism among acceptable host species, or that differences in host quality are not great and/or predictable enough for such fine-grained assessments. Our results suggest that when a variety of possible nests are available, the level of parasitism on a particular species is a balance between a␣cowbird's preference for a particular species and the effectiveness of host species' defenses. A conceptual model was developed that incorporates the observed correlation of cowbird eggs or nestlings with habitat, nest-type, host species' body mass, and host behavioral defenses. Additional community-wide studies of cowbird parasitism will test if this model is applicable to other avian communities. Received: 20 December 1996 / Accepted: 17 May 1997  相似文献   

18.
The Australian zebra finch, Taeniopygia guttata, is a widely used model organism, yet few studies have compared domesticated and wild birds with the aim of examining its relevance as an evolutionary model species. Domestic and wild broods hatch over approximately 4 and 2 days, respectively, which is important given that nestlings can fledge after as little as 12 days, although 16–18 days is common. We aimed to evaluate the extent to which the greater hatching asynchrony in domestic stock may effect reproductive success through greater variance in size hierarchies, variance in within‐brood growth rates, and partial brood mortality. Therefore, by simultaneously controlling brood sizes and experimentally manipulating hatching intervals in both domesticated and wild birds, we investigated the consequences of hatching intervals for fledging success and nestling growth patterns, as well as trade‐offs. Fledging success was similarly high in domestic and wild broods of either hatching pattern. Nonetheless, between‐brood analyses revealed that domestic nestlings had significantly higher masses, larger skeletal characters, and longer wings than their wild counterparts, although wild nestlings had comparable wing lengths at the pre‐fledging stage. Moreover, within‐brood analyses revealed only negligible differences between domestic and wild nestlings, and larger effects of hatching order and hatching pattern. Therefore, despite significant differences in the hatching intervals, and the ultimate size achieved by nestlings, the domestication process does not appear to have significantly altered nestling growth trade‐offs. The present study provides reassuring evidence that studies involving domesticated zebra finches, or other domesticated model organisms, may provide reasonable adaptive explanations in behavioural and evolutionary ecology. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 763–773.  相似文献   

19.
Nestling brown-headed cowbirds Molothrus ater typically hatch earlier and grow faster than young of the many host species of this generalist obligate brood parasite. However, a cowbird chick also benefits from the presence of some host nest mates as the parasite is provisioned disproportionately more with increasing brood size. Since asynchronous hatching affects both cowbird and host nestlings' growth and survival, mechanisms that optimize the timing of egg-laying by female parasites should be prevalent. Several habitat features might facilitate optimal timing of parasitic egg-laying and we examined whether aspects of host nesting habitat predicted cowbird hatching synchrony. We tested whether synchronous nests were less concealed, closer to perches, and located in areas of higher host density than asynchronous nests using a broad-scale information theoretic approach. There was no support for these predictions regarding song sparrow ( Melospiza melodia ; n=55) or yellow warbler ( Dendroica petechia ; n=67) nests parasitized by brown-headed cowbirds at Mono Lake, USA. For example, the best statistical models for predicting hatching synchrony in yellow warbler nests included nesting-patch width and nest-substrate shrub species. However, these relationships were relatively weak: both synchronous and asynchronous nests were in patches with statistically indistinguishable widths and the two dominant shrub species at our site contained similar proportions of synchronous and asynchronous nests. We conclude that the variability of host nesting habitats does not contribute to a biologically consistent effect on hatching synchrony by this generalist brood parasite.  相似文献   

20.
Ectoparasites are a ubiquitous environmental component of breedingbirds, and it has repeatedly been shown that hematoph-agousectoparasites such as fleas and mites reduce the quality andnumber of offspring of bird hosts, thereby lowering the valueof a current brood. Selection acting on the hosts will favorphysiological and behavioral responses that will reduce theparasites' impact. However, the results of the few bird studiesthat addressed the question of whether parasitism leads to ahigher rate of food provisioning are equivocal, and the beggingresponse to infestation has rarely been quantified. A changein begging activity and parental rate of food provisioning couldbe predicted in either direction: parents could reduce theirinvestment in the brood in order to invest more in future broods,or they could increase their investment in order to compensatefor the parasites' effect on the current brood. Since the nestlingsare weakened by the ectoparasites they may beg less, but onthe other hand they may beg more in order to obtain more food.In this study we show experimentally that (1) hen fleas (Ceratophyllusgallinae) reduce the body mass and size of great tit (Parusmajor) nestlings, (2) nestlings of parasitized broods more thandouble their begging rate, (3) the male parents increase thefrequency of feeding trips by over 50%, (4) the females do notadjust feeding rate to the lowered nutritional state of nestlings,and (5) food competition among siblings of parasitized broodsis increased. Ultimately the difference in the parental feedingresponse may be understood as the result of a sex-related differencein the trade-off of i0vesting in current versus future broods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号