首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anomalous secondary thickening occurs in the main axis of Bougainvillea spectabilis as a result of a primary thickening meristem which differentiates in pericycle. The primary thickening meristem first appears in the base of the primary root about 6 days after germination and differentiates acropetally as the root elongates. It begins differentiating from the base of the hypocotyl toward the shoot apex about 33 days after germination. The primary thickening meristem is first observable at the base of the first internode about 60 days after germination. It then becomes a cylinder in the main axis of the seedling. No stelar cambial cylinder forms in the primary root, hypocotyl, or stem because vascular cambium differentiation occurs neither in the pericycle opposite xylem points in the primary root nor in interfascicular parenchyma in the hypocotyl or stem. The primary vascular system of the stem appears anomalous because an inner and an outer ring of vascular bundles differentiate in the stele. Bundles of the inner ring anastomose in internodes, whereas those of the outer ring do not. Desmogen strands each of which is composed of phloem, xylem with both tracheids and vessels, and a desmogic cambium, differentiate from prodesmogen strands in conjunctive tissue. The parenchymatous cells surrounding desmogen strands then differentiate into elongated simple-pitted fibers and thick-walled fusiform cells that are about the same length as the primary thickening meristem initials.  相似文献   

2.
We conducted anatomical studies of girdled stems ofEucommia ulmoides at various developmental stages to elucidate the origin and development of callus and the vascular cambium. In the transverse view, ray initial cells in the cambial zone began to divide both periclinally and anticlinally 2 d after girdling. Fusiform initial cells started to enlarge at 3 d, then gradually proliferated via periclinal divisions. Thus, the callus was derived from the ray initial cells of the cambial zone as well as from fusiform initial cells. In the tangential view, callus cells derived from ray initial cells were short while those from fusiform initial cells were long, thereby producing a heterogeneous structure. However, the fusiform initial cells underwent transverse divisions 10 d after girdling, which resulted in shorter cells and a homogeneous callus structure. Afterward, some short cells divided transversely while others elongated, so that a heterogeneous form was regained. Finally, the vascular meristem that was girdled early in its development redifferentiated from short and long cells in the callus. The long cells developed into fusiform initials, with the short ones becoming ray initials.  相似文献   

3.
Developmental changes in the vascular cambium of Leitneria floridana, a shrub, were determined primarily by an analysis of the secondary xylem. During the production of the first growth ring of secondary xylem, 37% of the anticlinal divisions in the fusiform initials were lateral, the remaining were oblique. The oblique partition averaged ½ of the length of the dividing initials during this period of growth. Following their origin in anticlinal division, daughter cells elongated at a rapid rate until they were about as long as the mean for all cells, and then most cells elongated at a slow rate. Almost all initials survived during the formation of the inner secondary xylem (growth rings 1–10), and few new rays were formed from fusiform initials. During the production of the outer secondary xylem (growth rings 22–26), lateral divisions accounted for less than 5% of all anticlinal divisions. The oblique partition averaged only ¼ of the length of the dividing cells during this period, although the mean length of dividing initials was relatively constant throughout secondary growth. About 20% of the initials studied during the deposition of the outer secondary xylem disappeared from the cambium, and many others were transformed into ray initials. The findings are discussed in relation to the developmental changes in the vascular cambium in plants of different habits.  相似文献   

4.
ON THE FINE STRUCTURE OF THE CAMBIUM OF FRAXINUS AMERICANA L   总被引:4,自引:1,他引:3       下载免费PDF全文
The fine structure of ash cambium was studied after glutaraldehyde-osmium tetroxide fixation. The fusiform and ray initials are essentially alike, and both have the basic complement of organelles and membranes typical of parenchyma cells. The varied behavior of the two types of initials and the role of cambium in oriented production of the xylem and phloem are still unexplained phenomena. Actively growing cambial cells are highly vacuolate. They are rich in endoplasmic reticulum of the rough cisternal form, ribosomes, dictyosomes, and coated vesicles. Microtubules are present in the peripheral cytoplasm. The plasmalemma appears to be continuous with the endoplasmic reticulum and produces coated vesicles as well as micropinocytotic vesicles with smooth surfaces. The plastids have varying amounts of an intralamellar inclusion which may be a lipoprotein. The quiescent cambium is deficient in rough ER and coated vesicles and has certain structures which may be condensed proteins.  相似文献   

5.
Patterns of activity in the vascular cambium of Carboniferous arborescent lycopods (Paralycopodites and Stigmaria) were studied by analysis of serial tangential sections of the secondary xylem. The analysis assumes that cell patterns in the wood accurately reflect those of the corresponding cambium. An evaluation using indirect evidence indicates that the assumption is valid as far as can be determined from comparison with living plants. The tracheids of the secondary xylem enlarge in a centrifugal pattern, suggesting a progressive enlargement of the fusiform initials. There is no evidence of periodic anticlinal division of these initials, and it is proposed that the increase in cambial circumference was accommodated primarily by an increase in fusiform initial size. In some axes with abundant secondary xylem there is evidence that isolated initials or groups of initials sporadically subdivided to form numerous, spindle-shaped meristematic cells. Some of these cells subsequently developed into typical cambial initials. Tissues presumably formed during the cessation of cambial growth in Lepidodendron and Stigmaria are described; the structure of the tissues is suggestive of a postmeristematic parenchymatous sheath. It is concluded that cambial activity in these arborescent cryptogams was clearly different from that of modern seed plants, further attesting to the distinctive nature of this ancient group.  相似文献   

6.
Mature stems of Sesuvium sesuvioides (Fenzl) Verdc. were found to be composed of successive rings of xylem alternating with phloem. Repeated periclinal divisions in the parenchyma outside the primary phloem gave rise to conjunctive tissue and the lateral meristem that differentiate into the vascular cambium on its inner side. After the formation of the vascular cambium, the lateral meristem external to it became indistinct as long as the cambium was functional. As the cambium ceased to divide, the lateral meristem again became apparent prior to the initiation of the next cambial ring. The cambium was exclusively composed of fusiform cambial cells with no rays. In the young saplings, the number of cambial cylinders in the axis varied from the apex to the base, indicating formation of several rings within the year. In each successive ring of the lateral meristem, small segments differentiated into the vascular cambium and gave rise to vessels, axial parenchyma, fibres and fibriform vessels towards the inside, and secondary phloem on the outer side. In the old stems, non‐functional phloem of the innermost rings was replaced by a new set of sieve tube elements formed by periclinal divisions in the cambial segments associated with the non‐functional phloem. In some places the cambial segments completely differentiate into derivatives leaving no cambial cells between the xylem and phloem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 548–555.  相似文献   

7.
The developmental anatomy of the vascular cambium and periderm ofBotrypus virginianus was studied, and its bearing on the systematic position of Ophioglossacease is discussed. The cambial zone including cambium is initiated in a procambial ring of the stem before primary vascular tissue is well differentiated. The presumed cambium is composed of fusiform and ray initials. The cambium is extremely unequally bifacial, producing secondary xylem centripetally, and quite a small number of parenchymatous cells but no secondary phloem centrifugally. The cambial activity persists long, although it is very low in the mature part of the stem. It seems that the circumferential increase of the cambium is accommodated by an increase in the number of cambial initials. Secondary xylem is nonstoried and composed of tracheids with circular-bordered pits with evenly thick pit membranes, and uniseriate or partly biseriate radial rays. It makes up the bulk of the stem xylem. Periderm is formed almost entirely around the stem, simultaneous with its increment due to the secondary xylem. The combination of these anatomical features of secondary tissue supports the idea that Ophioglossaceae are living progymnosperms.  相似文献   

8.
The radially seriate xylem of Botrychium dissectum Sprengel resembles secondary xylem, particularly that of gymnosperms, in many important details. It is derived from a layer of cells which strongly resembles a vascular cambium. Presumptive cambial initials are fusiform, and derivatives are radially seriate. The walls of the initials and derivatives have a beaded appearance when viewed in tangential section. The number of xylem elements increases in seasonal increments. Circular-bordered pit pairs occur where tracheids abut other tracheids, and specialized cross-field pit pairs occur where they abut the radially-aligned parenchyma or rays. Cambial activity in Botrychium differs from that found in seed plants and progymnosperms in not producing secondary phloem. Tracheids are less similar to those known in progymnosperms than previously assumed, and some supposed similarities may be less significant than previously assumed. The significance of these dissimilarities is unclear. The recognition that the bulk of the xylem is secondary and that protoxylem strands are arranged as sympodia suggests that Botrychium may be eustelic rather than siphonostelic.  相似文献   

9.
Following a general outline on the functioning of the cambium, the authors review the data acquired over the last 20 years. The interest is focused on: i) the ultrastructural characteristics of the two kinds of initials; ii) the early structural, metabolic and molecular modifications occurring during the first stages of daughter cell differentiation into either xylem or phloem; iii) the complex rhythmic changes of structure, metabolism and activity undergone by cambial cells during the seasonal cycle; iv) the characteristics and control of the cessation of cambial activity in autumn and of its reactivation in spring; v) the main research approaches in cell and molecular biology presently open to the students of the cambial meristem.  相似文献   

10.
Cumbie, B. G. (U. Missouri, Columbia.) The vascular cambium and xylem development in Hibiscus lasiocarpus. Amer. Jour. Bot. 50(9): 944–951. Illus. 1963.—Circumferential growth of the vascular cambium, as determined primarily by an analysis of the secondary xylem, in Hibiscus lasiocarpus, an herbaceous dicotyledon, occurred through both radial and oblique anticlinal divisions. Divisions to produce segments were less frequent. Although the fusiform initials usually elongated somewhat between successive divisions, this accounted for very little increase in circumference of the cambium. A fusiform initial underwent a specific pattern of anticlinal divisions, determined primarily by its length, at the beginning of cambial activity. There was no loss of fusiform initials, except by ray formation. Most new rays originated only after considerable secondary xylem had been formed. The findings are discussed in relation to circumferential growth of the vascular cambium in woody dicotyledons.  相似文献   

11.
Observation was made on early ontogeny of vascular cambium in the developing root ofGinkgo biloba L. After completion of root elongation, the vascular meristem gradually acquires cambial characteristics. Strips of the periclinal division of cells in transverse section are observed on the inner side of phloem when the primary xylem and phloem in the stele have been established. The strips are united into a continuous layer between phloem and xylem. In tangenital section, the procambium shows a homogeneous structure, which is initially composed of short cells with transverse end walls and subsequently, of long cells with tapering ends. Then, the procambium is organized into two systems of cells; axial strands of short cells with transverse end walls resulting from the sporadic transverse divisions of long cells, and long cells with tapering ends. Still later, the short cells are divided frequently in a trasverse plane exhibiting one or a few cells in width and several decades of cells in height, while the long cells are elongated. The frequency of transverse divisions of the short cells decreases in subsequent stages. Eventually, the short cells in axial strands are vertically separated from one another by the elongation of neighboring long cells and by the decrease in the frequency of transverse divisions of short cells themselves. Cambial initials occur in two forms; ray initials a few cells in height and one cell in width derived from the short cells, and fusiform initials with tapering ends derived from the long cells.  相似文献   

12.
S. Pramod  Priti B. Patel  Karumanchi S. Rao 《Flora》2013,208(10-12):549-555
The effect of exogenous ethephon on cambial activity, xylem production and ray population in young shoots of Leucaena leucocephala was investigated anatomically. The application of ethephon showed a diphasic effect on cambial activity and xylogenesis in a dose dependent manner. Lower concentration of ethephon enhanced cambial activity while high concentrations reduced cambial cell divisions and daughter-cell differentiation. High ethephon concentration also resulted in shorter vessel elements, thick walled fibers and phenolic accumulation in ray cells and vessel elements, whereas low concentration allowed elongation of fibers and vessel elements. The density of rays increased significantly with increase in ethylene concentration. The evaluation of longitudinal sections of cambial zone in ethephon treated plants showed high frequency of transformation of fusiform initials into ray initials through divisions and segmentation, resulting in high ray frequency in both xylem and phloem. The present study demonstrates that ethylene plays an important role in regulating secondary vascular tissue composition by reducing the population of fusiform initials in the cambium.  相似文献   

13.
Evert , R. F. (U. Wisconsin, Madison.) The cambium and seasonal development of the phloem in Pyrus malus. Amer. Jour. Bot. 50(2): 149–159. Illus. 1963.—The cambium in apple consists of several layers of cells at all times, and practically all cambial cells divide periclinally one or more times before undergoing differentiation. The cambial initials do not seem to be in a uniform, uniseriate layer. Judged by collections made during 2 seasons (August, 1958–October, 1960), the seasonal cycle of phloem development is as follows. Early in April, cells in the outer margin of the cambial zone begin to differentiate into sieve elements. At approximately the same time, activity (division) commences throughout the cambial zone. By the end of July or early August, sieve-element differentiation is completed. Cessation of function begins in either late September or in October with the formation of definitive callose on the sieve areas of sieve elements in the outer margin of the functional phloem. By late November, all sieve elements are devoid of contents and most of their companion cells collapsed. Phloem differentiation precedes xylem differentiation by approximately a month and a half; xylem and phloem differentiation cease almost simultaneously; and fiber-sclereid development is coincident with the period of maximal xylem differentiation.  相似文献   

14.
15.
The vascular cambium produces secondary xylem and phloem in plants and is responsible for wood formation in forest trees. In this study we used a microscale mass-spectrometry technique coupled with cryosectioning to visualize the radial concentration gradient of endogenous indole-3-acetic acid (IAA) across the cambial meristem and the differentiating derivatives in Scots pine (Pinus sylvestris L.) trees that had different rates of cambial growth. This approach allowed us to investigate the relationship between growth rate and the concentration of endogenous IAA in the dividing cells. We also tested the hypothesis that IAA is a positional signal in xylem development (C. Uggla, T. Moritz, G. Sandberg, B. Sundberg [1996] Proc Natl Acad Sci USA 93: 9282–9286). This idea postulates that the width of the radial concentration gradient of IAA regulates the radial number of dividing cells in the cambial meristem, which is an important component for determining cambial growth rate. The relationship between IAA concentration in the dividing cells and growth rate was poor, although the highest IAA concentration was observed in the fastest-growing cambia. The radial width of the IAA concentration gradient showed a strong correlation with cambial growth rate. The results indicate that IAA gives positional information in plants.  相似文献   

16.
In contrast to common belief, recent studies have confirmed that intrusive growth of fusiform cambial initials has a significant role in the rearrangement of the initials, but does not contribute to the cambial circumference increment. We observed a rapid rearrangement of cambial initials on a long series of transverse sections of the vascular cambium and the wood of a 50-year-old pine (Pinus sylvestris L.) tree. A comparison of cell arrangement in consecutive sections, as well as a critical analysis of tangential reconstructions, has confirmed that changes in cell locations in a group of cells on the tangential surface caused no change in the total tangential width of the whole group. Models illustrating changes in locations of the initials have been proposed, assuming that intrusive growth, which makes the growing initials intrude between the neighbouring initials and their immediate derivatives, is localized on the longitudinal edges of cells. We infer that intrusive growth of the cambial initials in P. sylvestris is not involved in the cambial circumference increment, but plays a significant role in the rearrangement of the initials, probably allowing for a relaxation of shearing strains generated during radial growth. The relationship of intrusive growth with the elimination of initials has been discussed with reference to the frequency of anticlinal divisions. It has been proposed that the occurrence of anticlinal divisions in excess over the actual requirement for increase in the cambial circumference could be due to internal shearing strains.  相似文献   

17.
In Juniperus californica, all sieve cells of the previous season's phloem growth increment overwinter in a mature state. Initiation of cambial activity begins in early March and, by the end of March, the oldest sieve cells that overwintered lose their contents and die. By mid-April, even the youngest sieve cells of the previous season's growth increment have lost their contents. The period of greatest cambial activity begins in the last half of April and continues through May. With the slowing of cambial activity in June, callose begins to collect on the sieve areas of the first-formed sieve cells of the new increment. By July, the cambium and phloem are in a dormant state. Initiation of phloem production precedes that of the xylem by about 1 month. Production of new xylem and phloem ceases simultaneously in July.  相似文献   

18.
The growth period of Salix viminalis L. (clone 683) plants near Stockholm, Sweden, (59.5°N, 18.3°E) started in April with flowering and ended in October with abscission of the shoot tips. Cell divisions in the vascular cambium started almost two months before sprouting and ceased at about the same time as the elongation growth of the shoots. Phloem cells were apparently produced before flowering, while new xylem production started at the time of flushing. Cytodifferentiation in immature xylem continued until November. Thick-walled cells with protoplasm were observed adjacent to xylem mother cells in the cambium during the winter. The number of radially arranged cells in the cambial zone increased from 3–4 during dormancy to about 18 during the mitotic maximum in July. Seasonal variation was apparent in vacuolization, wall thickness and presence of storage material in the cells. Lipid bodies and protein bodies occurred in both fusiform and ray initials, while starch was observed in ray initials, ray cells and in the phloem. In September the ultrastructure of the cambium showed anatomical features characteristic for both active and dormant cells. Dictyosomes with vesicles and rough ER were present in thick-walled cells that contained lipid bodies and starch granules. Nuclear divisions in the cambium ended in October.  相似文献   

19.
Starch, lipids and proteins are localized histochemically in fusiform and ray initials ofTectona grandis andGmelina arborea during the periodicity of cambium in the year 1978. The histochemical variations are correlated with the seasonal activity and dormancy of the cambium and phenology. Starch grains appear in the cambial cells with the development of young leaves after defoliation. Lipid and protein bodies are significantly high in dormant cambial cells and scarce in active ones.  相似文献   

20.
Corm tissue of Isoetes muricata Dur. was fixed in glutaraldehyde and postfixed in osmium tetroxide for electron microscopy. Very young secondary sieve elements can be distinguished from contiguous cambial cells by their distinctive plastids and by the presence of crystalline and/or fibrillar proteinaceous material in dilated cisternae of rough endoplasmic reticulum (ER). At maturity, the sieve elements are lined by the plasmalemma and a parietal, anastomosing network of smooth ER. Degenerate nuclei persist in all mature sieve elements. In addition, mature sieve elments contain plastids and mitochondria. Sieve-area pores are present in all walls. The lateral meristem of I. muricata consists of 2–3 layers of cells year-round. Judging from numerous collections made between October 1972 and July 1975, new sieve-element differentiation precedes cambial activity by about a month. Early in May, 1–2 cells immediately adjacent to already mature sieve elements differentiate directly into sieve elements without prior division. In early June, at about the time sieve-element differentiation is completed, cambial division begins. Division is sporadic, not uniform throughout the meristem. Dormancy callose accumulates in the secondary sieve elements in late October, and is removed in early May, at about the same time new sieve-element differentiation begins. Cells of the dormant cambium are characterized by the presence of numerous small vacuoles and large quantities of storage materials, including lipid droplets, starch grains, and tannin. By contrast, active cambial cells contain few large vacuoles with little or no tannin, and they have little storage material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号