首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Effects of elevated CO2 on five plant-aphid interactions   总被引:3,自引:0,他引:3  
We investigated interactions between five species of phloem-feeding aphids (Homoptera: Aphididae) and their host plants at elevated CO2; Acyrthosiphon pisum (Harris) on Vicia faba L., Aphis nerii Boyer de Fonscolombe on Asclepias syriaca L., Aphis oenotherae Oestlund on Oenothera biennis L., Aulacorthum solani (Kaltenbach) on Nicotiana sylvestris Speg. & Comes and Myzus persicae (Sulzer) on Solanum dulcamara L. Host plants grown at elevated CO2 generally had greater biomass, leaf area and C:N ratios than those grown at ambient CO2, while plants with aphids had lower biomass and leaf area than those without aphids.The responses of aphid populations to elevated CO2 were species-specific with one species increasing (M. persicae), one decreasing (A. pisum), and the other three being unaffected. CO2 treatment did not affect the proportion of alate individuals produced. In general, aphid abundance was not significantly related to foliar nitrogen concentration.We performed separate analyses to test whether either aphid presence or aphid abundance modified the response of host plants to elevated CO2. In terms of aphid presence, only three of the potential 15 interactions (five aphid species x three plant traits) were significant; A. solani slightly modified the response of the plant biomass to elevated CO2 and M. persicae affected the response of leaf area and allocation. In terms of aphid abundance, only two of the potential 15 interactions were significant with A. nerii modifying the plant response to CO2 in terms of total leaf area and allocation.We conclude that, in contrast to other insect groups such as leaf chewers, populations of most phloem-feeders may not be negatively affected by increased CO2 concentrations in the future. The reasons for this difference include the possibility that aphids may be able to compensate for changes in host plant quality by altering feeding behaviour or by synthesizing amino acids. In addition, there is little evidence that aphid herbivory, even at high levels, will substantially modify the response of plants to elevated CO2.  相似文献   

2.
By altering myriad aspects of leaf chemistry, increasing concentrations of CO2 and O3 in the atmosphere derived from human activities may fundamentally alter the relationships between insect herbivores and plants. Because exposure to elevated CO2 can alter the nutritional value of leaves, some herbivores may increase consumption rates to compensate. The effects of O3 on leaf nutritional quality are less clear; however, increased senescence may also reduce leaf quality for insect herbivores. Additionally, changes in secondary chemistry and the microclimate of leaves may render plants more susceptible to herbivory in elevated CO2 and O3. Damage to soybean (Glycine max L.) leaves and the size and composition of the insect community in the plant canopy were examined in large intact plots exposed to elevated CO2 (~550 μmol mol−1) and elevated O3 (1.2*ambient) in a fully factorial design with a Soybean Free Air Concentration Enrichment system (SoyFACE). Leaf area removed by folivorous insects was estimated by digital photography and insect surveys were conducted during two consecutive growing seasons, 2003 and 2004. Elevated CO2 alone and in combination with O3 increased the number of insects and the amount of leaf area removed by insect herbivores across feeding guilds. Exposure to elevated CO2 significantly increased the number of western corn rootworm (Diabrotica virgifera) adults (foliage chewer) and soybean aphids (Aphis glycines; phloem feeder). No consistent effect of elevated O3 on herbivory or insect population size was detected. Increased loss of leaf area to herbivores was associated with increased carbon-to-nitrogen ratio and leaf surface temperature. Soybean aphids are invasive pests in North America and new to this ecosystem. Higher concentrations of CO2 in the atmosphere may increase herbivory in the soybean agroecosystem, particularly by recently introduced insect herbivores. Handling editor: Gary Felton.  相似文献   

3.
Elevated levels of CO2, equivalent to those projected to occur under global climate change scenarios, increase the susceptibility of soybean foliage to herbivores by down-regulating the expression of genes related to the defense hormones jasmonic acid and ethylene; these in turn decrease the gene expression and activity of cysteine proteinase inhibitors (CystPIs), the principal antiherbivore defenses in foliage. To examine the effects of elevated CO2 on the preference of Japanese beetle (JB; Popillia japonica) for leaves of different ages within the plant, soybeans were grown at the SoyFACE facility at the University of Illinois at Urbana-Champaign. When given a choice, JB consistently inflicted greater levels of damage on older leaves than on younger leaves, and there was a trend for a greater preference for young leaves grown under elevated CO2 compared to those grown under ambient CO2. More heavily damaged older leaves and those grown under elevated CO2 had reduced CystPI activity, and JB that consumed leaves with lower CystPI activity had correspondingly greater gut proteinase activity. Younger leaves with higher CystPI activity and photosynthetic rates may contribute disproportionately to plant fitness and are more protected against herbivore attack than older foliage. Cysteine proteinase inhibitors are potent defenses against JB, and the effectiveness of this defense is modulated by growth under elevated CO2 as well as leaf position.  相似文献   

4.
We carried out a factorial experiment to explore the effect of doubled CO2 concentration and a 3 °C temperature increase on the development of a complete generation of the beetles Octotoma championi Baly and O. scabripennis Guérin‐Méneville (Coleoptera: Chrysomelidae). These species are biological control agents of Lantana camara L. (Verbenaceae), with a leaf‐mining larval phase and free‐living, leaf‐chewing adults. Plants grown at elevated CO2 had enhanced above‐ground biomass, thicker leaves, reduced nitrogen concentration, and increased C:N ratios. Under the high temperature treatment, plants grown at ambient CO2 suffered wilting and premature leaf loss, despite daily watering; this effect was ameliorated at elevated CO2. The wilting of plants in the ambient CO2/high temperature treatment reduced the emergence success of the beetles, particularly O. championi. Development time was accelerated by approximately 10–13 days at the higher temperature, but was not affected by CO2. Neither CO2 nor temperature affected adult beetle weight. Consumption rates of free‐living beetles were not affected by either CO2 or temperature. By contrast, in the short‐term trials using excised foliage, beetles given no choice between ambient and elevated CO2‐grown foliage, consumed more from ambient plants. When beetles were offered a choice between foliage grown at the two CO2 levels, O. championi did not display a significant preference but O. scabripennis consumed more ambient CO2‐grown foliage when feeding at the lower temperature. This study indicates that under future conditions of higher temperatures, amelioration of water stress in host plants growing in elevated CO2 may benefit some endophagous insects by reducing premature leaf loss. Under some circumstances, this benefit may outweigh the deleterious effects of lower leaf nitrogen. Our results also indicate that foliage consumption under elevated CO2 by mobile, adult insects on whole plants may not be significantly increased, as was previously indicated by short‐term experiments using excised foliage.  相似文献   

5.
1 Broad beans (Vicia faba L.) were grown at either ambient (350 μL/L) or elevated (700 μL/L) CO2. Elevated CO2 increased shoot weight by 14% and root weight by 24% compared to ambient, but did not affect flowering. 2 A single pea aphid (Acyrthosiphon pisum (Harris)) and its progeny decreased shoot and root weights by 20 and 24%, respectively, at ambient CO2 after 20 days, but did not affect flower number. At elevated CO2A. pisum decreased shoot and root weights by 27 and 34% and flower number decreased by 73%. 3 A single glasshouse and potato aphid (Aulacorthum solani (Kaltenbach)) and its progeny had no effect on the growth of bean plants after 20 days at ambient CO2. At elevated CO2, A. solani decreased shoot and root weights by 20 and 18%, and flower number by 60%. 4 The large reduction in flowering caused by aphids at elevated CO2 suggests a change in resource allocation within the plants to compensate for aphid infestation. 5 Aphid density was unaffected by elevated CO2, although there were significant effects of CO2 on the resulting population structure of both A. pisum and A solani. We suggest that at elevated CO2, aphids appear not to achieve their maximum reproductive potential and their populations are limited by the lower carrying capacity of their host plants.  相似文献   

6.
Seedlings of Eucalyptus pauciflora, were grown in open-top chambers fumigated with ambient and elevated [CO2], and were divided into two populations using 10% light transmittance screens. The aim was to separate the effects of timing of light interception, temperature and [CO2] on plant growth. The orientation of the screens exposed plants to a similar total irradiance, but incident during either cold mornings (east-facing) or warm afternoons (west-facing). Following the first autumn freezing event elevated CO2-grown plants had 10 times more necrotic leaf area than ambient CO2 plants. West-facing plants had significantly greater (25% more) leaf damage and lower photochemical efficiency (Fv/Fm) in comparison with east-facing plants. Following a late spring freezing event east-facing elevated CO2 plants suffered a greater sustained loss in Fv/Fm than west-facing elevated CO2- and ambient CO2-grown plants. Stomatal conductance was lower under elevated CO2 than ambient CO2 except during late spring, with the highest leaf temperatures occurring in west-facing plants under elevated CO2. These higher leaf temperatures apparently interfered with cold acclimation thereby enhancing frost damage and reducing the ability to take advantage of optimal growing conditions under elevated CO2.  相似文献   

7.
After defoliation by herbivores, some plants exhibit enhanced rates of photosynthesis and growth that enable them to compensate for lost tissue, thus maintaining their fitness relative to competing, undefoliated plants. Our aim was to determine whether compensatory photosynthesis and growth would be altered by increasing concentrations of atmospheric CO2. Defoliation of developing leaflets on seedlings of a tropical tree, Copaifera aromatica, caused increases in photosynthesis under ambient CO2, but not under elevated CO2. An enhancement in the development of buds in the leaf axils followed defoliation at ambient levels of CO2. In contrast, under elevated CO2, enhanced development of buds occurred in undefoliated plants with no further enhancement in bud development due to exposure to elevated CO2. Growth of leaf area after defoliation was increased, particularly under elevated CO2. Despite this increase, defoliated plants grown under elevated CO2 were further from compensating for tissue lost during defoliation after 51/2 weeks than those grown under ambient CO2 concentrations.  相似文献   

8.
Effects of elevated CO2 levels on the amino acid constituents of cotton aphid, Aphis gossypii (Glover), fed on transgenic Bacillus thuringiensis (Berliner) (Bt) cotton [Cryl A(c)], grown in ambient and double‐ambient CO2 levels in closed‐dynamics CO2 chambers, were investigated. Lower amounts of amino acids were found in cotton phloem under elevated CO2 than under ambient CO2 levels. However, higher amounts of free amino acids were found in A. gossypii fed on elevated CO2‐grown cotton than those fed ambient CO2‐grown cotton, and the contents of amino acids in honeydew were not significantly affected by elevated CO2 levels. A larger amount of honeydew was produced by cotton aphids feeding on leaves under elevated CO2 treatment than those feeding on leaves under ambient CO2 treatment, which indicates that A. gossypii ingests more cotton phloem because of the higher C:N ratio of cotton phloem under elevated CO2 levels. Moreover, the amino acid composition was similar in bodies of aphids ingesting leaves under both CO2 treatments, except for two alkaline amino acids, lysine and arginine. This suggests that the nutritional constitution of the phloem sap was important for A. gossypii. Our data suggest that more phloem sap will be ingested by A. gossypii to satisfy its nutritional requirement and balance the break‐even point of amino acid in elevated CO2. Larger amounts of honeydew produced by A. gossypii under elevated CO2 will reduce the photosynthesis and result in the occurrence of some Entomophthora spp.  相似文献   

9.
Elevation in CO2 concentration broadly impacts plant physiological characteristics, which influences herbivores and biotrophic pathogens, which in turn regulate the plant defensive response. In this study, responses of tobacco plants to stress in the form of the green peach aphid, Myzus persicae (Sulzer), or cucumber mosaic virus (CMV), or both aphid and CMV combined were investigated in open‐top chambers under ambient and elevated CO2 concentrations. We measured aboveground biomass and foliar chlorophyll, nitrogen, non‐structural carbohydrates, soluble protein, total amino acid and nicotine content in tobacco plants and also measured aphid population dynamics, body weight, honeydew production and anti‐oxidative enzyme activities in individual aphids. Plants produced more secondary metabolites for defence in both CO2 treatments when treated with aphid and CMV combined than with either alone. Aphid density significantly increased on CMV‐infected tobacco plants (relative to uninfected plants) under ambient CO2 but not under elevated CO2. This suggests that plant defences against virus and aphid would be more efficient under elevated CO2. Plant defence appears to shift from plant virus to aphid under increasing CO2 levels, which highlights the potential influences of multiple biotic stressors on plants under elevated CO2.  相似文献   

10.
Sap-feeding insects such as aphids are the only insect herbivores that show positive responses to elevated CO2. Recent models predict that increased nitrogen will increase aphid population size under elevated CO2, but few experiments have tested this idea empirically. To determine whether soil nitrogen (N) availability modifies aphid responses to elevated CO2, we tested the performance of Macrosiphum euphorbiae feeding on two host plants; a C3 plant (Solanum dulcamara), and a C4 plant (Amaranthus viridis). We expected aphid population size to increase on plants in elevated CO2, with the degree of increase depending on the N availability. We found a significant CO2× N interaction for the response of population size for M. euphorbiae feeding on S. dulcamara: aphids feeding on plants grown in ambient CO2, low N conditions increased in response to either high N availability or elevated CO2. No population size responses were observed for aphids infesting A. viridis. Elevated CO2 increased plant biomass, specific leaf weight, and C : N ratios of the C3 plant, S. dulcamara but did not affect the C4 plant, A. viridis. Increased N fertilization significantly increased plant biomass, leaf area, and the weight : height ratio in both experiments. Elevated CO2 decreased leaf N in S. dulcamara and had no effect on A. viridis, while higher N availability increased leaf N in A. viridis and had no effect in S. dulcamara. Aphid infestation only affected the weight : height ratio of S. dulcamara. We only observed an increase in aphid population size in response to elevated CO2 or increased N availability for aphids feeding on S. dulcamara grown under low N conditions. There appears to be a maximum population growth rate that M. euphorbiae aphids can attain, and we suggest that this response is because of intrinsic limits on development time and fecundity.  相似文献   

11.
Stomata help plants regulate CO2 absorption and water vapor release in response to various environmental changes, and plants decrease their stomatal apertures and enhance their water status under elevated CO2. Although the bottom‐up effect of elevated CO2 on insect performance has been extensively studied, few reports have considered how insect fitness is altered by elevated CO2‐induced changes in host plant water status. We tested the hypothesis that aphids induce stomatal closure and increase host water potential, which facilitates their passive feeding, and that this induction can be enhanced by elevated CO2. Our results showed that aphid infestation triggered the abscisic acid (ABA) signaling pathway to decrease the stomatal apertures of Medicago truncatula, which consequently decreased leaf transpiration and helped maintain leaf water potential. These effects increased xylem‐feeding time and decreased hemolymph osmolarity, which thereby enhanced phloem‐feeding time and increased aphid abundance. Furthermore, elevated CO2 up‐regulated an ABA‐independent enzyme, carbonic anhydrase, which led to further decrease in stomatal aperture for aphid‐infested plants. Thus, the effects of elevated CO2 and aphid infestation on stomatal closure synergistically improved the water status of the host plant. The results indicate that aphid infestation enhances aphid feeding under ambient CO2 and that this enhancement is increased under elevated CO2.  相似文献   

12.
Heteroblastic leaf development in Taraxacum officinale is compared between plants grown under ambient (350 ppm) vs. elevated (700 ppm) CO2 levels. Leaves of elevated CO2 plants exhibited more deeply incised leaf margins and relatively more slender leaf laminae than leaves of ambient CO2 plants. These differences were found to be significant in allometric analyses that controlled for differences in leaf size, as well as analyses that controlled for leaf developmental order. The effects of elevated CO2 on leaf shape were most pronounced when plants were grown individually, but detectable differences were also found in plants grown at high density. Although less dramatic than in Taraxacum, significant effects of elevated CO2 on leaf shape were also found in two other weedy rosette species, Plantago major and Rumex crispus. These observations support the long-standing hypothesis that leaf carbohydrate level plays an important role in regulating heteroblastic leaf development, though elevated C02 may also affect leaf development through direct hormonal interactions or increased leaf water potential. In Taraxacum, pronounced modifications of leaf shape were found at CO2 levels predicted to occur within the next century.  相似文献   

13.
The performance of predators of plant pests is mainly driven by their ability to find prey. Recent studies suggest that rising atmospheric carbon dioxide (CO2) concentrations will affect the semiochemistry of plant–insect relationships, possibly altering prey‐finding behaviour. In the present study, we test the hypothesis that higher atmospheric CO2 concentrations affect the oviposition behaviour of an aphidophagous hoverfly and alter the development of its larvae. We also test the hypothesis that volatile compounds released by the plant–aphid association are modified under elevated CO2. Broad bean plants infested with pea aphids are grown under ambient (450 ppm) or elevated CO2 (800 ppm) concentrations. Plants raised under each treatment are then presented to gravid hoverfly females in a dual‐choice bioassay. In addition, emerging Episyrphus balteatus larvae are directly fed with aphids reared under ambient or elevated CO2 conditions and then measured and weighed daily until pupation. Odours emitted by the plant–aphid association are sampled. A larger number of eggs is laid on plants grown under ambient CO2 conditions. However, no significant difference is observed between the two groups of predatory larvae grown under different CO2 concentrations, indicating that the CO2 concentration does not affect the quality of their aphid diet. Although plant volatiles do not differ between the ambient and elevated CO2‐treated plants, we find that the quantity of aphid alarm pheromone is lower on the plant–aphid association raised under the elevated CO2 condition. This suggests that an alteration of semiochemical emissions by elevated CO2 concentrations impacts the oviposition behaviour of aphid predators.  相似文献   

14.
Seedlings of loblolly pine Pinus taeda (L.), were grown in open-topped field chambers under three CO2 regimes: ambient, 150 l l–1 CO2 above ambient, and 300 l l–1 CO2 above ambient. A fourth, non-chambered ambient treatment was included to assess chamber effects. Needles were used in 96 h feeding trials to determine the performance of young, second instar larvae of loblolly pine's principal leaf herbivore, red-headed pine sawfly, Neodiprion lecontei (Fitch). The relative consumption rate of larvae significantly increased on plants grown under elevated CO2, and needles grown in the highest CO2 regime were consumed 21% more rapidly than needles grown in ambient CO2. Both the significant decline in leaf nitrogen content and the substantial increase in leaf starch content contributed to a significant increase in the starch:nitrogen ratio in plants grown in elevated CO2. Insect consumption rate was negatively related to leaf nitrogen content and positively related to the starch:nitrogen ratio. Of the four volatile leaf monoterpenes measured, only -pinene exhibited a significant CO2 effect and declined in plants grown in elevated CO2. Although consumption changed, the relative growth rates of larvae were not different among CO2 treatments. Despite lower nitrogen consumption rates by larvae feeding on the plants grown in elevated CO2, nitrogen accumulation rates were the same for all treatments due to a significant increase in nitrogen utilization efficiency. The ability of this insect to respond at an early, potentially susceptible larval stage to poorer food quality and declining levels of a leaf monoterpene suggest that changes in needle quality within pines in future elevated-CO2 atmospheres may not especially affect young insects and that tree-feeding sawflies may respond in a manner similar to herb-feeding lepidopterans.  相似文献   

15.
We report the results of a baseline study on the effects of Russian wheat aphid infestation on barley lines grown under ambient and elevated (450 and 550 μmol mol 1) CO2 concentrations [CO2]. Elevated CO2 impacted on plant biomass, C:N ratios and leaf nitrogen concentrations. Visible manifestation of aphid feeding related damage was assessed by examining resultant chlorosis and leaf roll under ambient and two elevated [CO2] levels using a control and three resistant barley host combinations. Elevated [CO2] had a significant positive effect on the growth of the four barley lines that were not infested by the aphids. However under the same conditions aphid feeding under elevated CO2 conditions caused very high biomass loss, which was more noticeable in experiments involving non-resistant PUMA than in the resistant barley lines. The results of this study demonstrate that CO2 enrichment substantially increases aphid populations of RWASA1 and RWASA2 on the four barley lines investigated. Furthermore, aphid populations were higher on non-resistant PUMA than the three resistant lines and the RWASA2 biotype out-performed RWASA1 in each case. Under elevated [CO2], aphid feeding, resulted in a significant increase in the leaf C:N ratios (as a percentage change) in most treatments, compared to levels recorded on uninfested plants. The resistant lines also showed a significant reduction in leaf nitrogen (~ 40% for PUMA and not less than 30% for the resistant STARS lines tested). C:N ratio changes and N loss correlated to [CO2] and aphid biotype. By 28 days of infestation, most of the non-resistant PUMA line in particular showed significant irrecoverable levels of leaf chlorosis. At level 9 rating on the chlorosis scale (i.e. plant death when recovery was not possible), experiments were terminated. As aphid success is unlikely to be the sole product of [CO2], but also of other limiting nutrients such as N, it may be worth further investigating the effect of plant quality and ultimately plant nutrition on the population growth of aphids.  相似文献   

16.
Upland rice (Oryza sativa L.) was grown at both ambient (350 μmol mol?1) and elevated (700 μmol mol?1) CO2 in either the presence or absence of the root hemi‐parasitic angiosperm Striga hermonthica (Del) Benth. Elevated CO2 alleviated the impact of the parasite on host growth: biomass of infected rice grown at ambient CO2 was 35% that of uninfected, control plants, while at elevated CO2, biomass of infected plants was 73% that of controls. This amelioration occurred despite the fact that O. sativa grown at elevated CO2 supported both greater numbers and a higher biomass of parasites per host than plants grown at ambient CO2. The impact of infection on host leaf area, leaf mass, root mass and reproductive tissue mass was significantly lower in plants grown at elevated as compared with ambient CO2. There were significant CO2 and Striga effects on photosynthetic metabolism and instantaneous water‐use efficiency of O. sativa. The response of photosynthesis to internal [CO2] (A/Ci curves) indicated that, at 45 days after sowing (DAS), prior to emergence of the parasites, uninfected plants grown at elevated CO2 had significantly lower CO2 saturated rates of photosynthesis, carboxylation efficiencies and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) contents than uninfected, ambient CO2‐grown O. sativa. In contrast, infection with S. hermonthica prevented down‐regulation of photosynthesis in O. sativa grown at elevated CO2, but had no impact on photosynthesis of hosts grown at ambient CO2. At 76 DAS (after parasites had emerged), however, infected plants grown at both elevated and ambient CO2 had lower carboxylation efficiencies and Rubisco contents than uninfected O. sativa grown at ambient CO2. The reductions in carboxylation efficiency (and Rubisco content) were accompanied by similar reductions in nitrogen concentration of O. sativa leaves, both before and after parasite emergence. There were no significant CO2 or infection effects on the concentrations of soluble sugars in leaves of O. sativa, but starch concentration was significantly lower in infected plants at both CO2 concentrations. These results demonstrate that elevated CO2 concentrations can alleviate the impact of infection with Striga on the growth of C3 hosts such as rice and also that infection can delay the onset of photosynthetic down‐regulation in rice grown at elevated CO2.  相似文献   

17.
The effects of long‐term (4 year) CO2 enrichment (70 Pa versus 35 Pa) and nitrogen nutrition (8 mm versus 1 mm NO3) on biomass accumulation and the development of photosynthetic capacity in leaves of cork oak (Quercus suber L., a Mediterranean evergreen tree) were studied. The evolution of photosynthetic parameters with leaf development was estimated by fitting the biochemical model of Farquhar et al. (Planta 149, 78–90, 1980) with modifications by Sharkey (Botanical Review 78, 71–75, 1985) to ACi response curves. CO2 enrichment had a small reduction effect on the development of the maximum CO2 fixation capacity by Rubisco (VCmax), and no effect over maximum electron transport capacity (Jmax), day‐time respiration (Rd) and Triose‐P utilization (TPU). However, there was a statistically significant effect of N fertilization and the interaction CO2 × N over the evolution of VCmax, Jmax and TPU. Relative stomatal limitation (estimated from ACi curves) was higher (+20%) for plants grown under ambient CO2 than for plants grown under elevated CO2. There was a significant effect of CO2 and N fertilization over total biomass accumulation as well as leaf area. Plants grown at elevated CO2 had 27% more biomass than plants grown at ambient CO2 when given high N. However, for plants grown under low N there was no significant effect of CO2 enrichment on biomass accumulation. Plants grown under low N also had significantly higher root : shoot ratios whereas there were no differences between CO2 treatments. The larger biomass accumulation of Q. suber under elevated CO2 is attributable to a higher availability of CO2 coupled to a larger leaf area, with no significant decrease in photosynthetic capacity under CO2 enrichment and elevated N fertilization. For low N fertilization, the effects of CO2 enrichment over leaf area and biomass accumulation are lost, suggesting that in native ecosystems with low N availability, the effects of CO2 enrichment may be insignificant.  相似文献   

18.
Trees growing in natural systems undergo seasonal changes in environmental factors that generate seasonal differences in net photosynthetic rates. To examine how seasonal changes in the environment affect the response of net photosynthetic rates to elevated CO2, we grew Pinus taeda L. seedlings for three growing seasons in open-top chambers continuously maintained at either ambient or ambient + 30 Pa CO2. Seedlings were grown in the ground, under natural conditions of light, temperature nd nutrient and water availability. Photosynthetic capacity was measured bimonthly using net photosynthetic rate vs. intercellular CO2 partial pressure (A-Ci) curves. Maximum Rubisco activity (Vcmax) and ribulose 1,5-bisphosphate regeneration capacity mediated by electron transport (Jmax) and phosphate regeneration (PiRC) were calculated from A-Ci curves using a biochemically based model. Rubisco activity, activation state and content, and leaf carbohydrate, chlorophyll and nitrogen concentrations were measured concurrently with photosynthesis measurements. This paper presents results from the second and third years of treatment. Mean leaf nitrogen concentrations ranged from 13.7 to 23.8 mg g?1, indicating that seedlings were not nitrogen deficient. Relative to ambient CO2 seedlings, elevated CO2 increased light-saturated net photosynthetic rates 60–110% during the summer, but < 30% during the winter. A relatively strong correlation between leaf temperature and the relative response of net photosynthetic rates to elevated CO2 suggests a strong effect of leaf temperature. During the third growing season, elevated CO2 reduced Rubisco activity 30% relative to ambient CO2 seedlings, nearly completely balancing Rubisco and RuBP-regeneration regulation of photosynthesis. However, reductions in Rubisco activity did not eliminate the seasonal pattern in the relative response of net photosynthetic rates to elevated CO2. These results indicate that seasonal differences in the relative response of net photosynthetic rates to elevated CO2 are likely to occur in natural systems.  相似文献   

19.
We investigated how light and CO2 levels interact to influence growth, phenology, and the physiological processes involved in leaf senescence in red oak (Quercus rubra) seedlings. We grew plants in high and low light and in elevated and ambient CO2. At the end of three years of growth, shade plants showed greater biomass enhancement under elevated CO2 than sun plants. We attribute this difference to an increase in leaf area ratio (LAR) in shade plants relative to sun plants, as well as to an ontogenetic effect: as plants increased in size, the LAR declined concomitant with a decline in biomass enhancement under elevated CO2 Elevated CO2 prolonged the carbon gain capacity of shade‐grown plants during autumnal senescence, thus increasing their functional leaf lifespan. The prolongation of carbon assimilation, however, did not account for the increased growth enhancement in shade plants under elevated CO2. Elevated CO2 did not significantly alter leaf phenology. Nitrogen concentrations in both green and senesced leaves were lower under elevated CO2 and declined more rapidly in sun leaves than in shade leaves. Similar to nitrogen concentration, the initial slope of A/Ci curves indicated that Rubisco activity declined more rapidly in sun plants than in shade plants, particularly under elevated CO2. Absolute levels of chlorophyll were affected by the interaction of CO2 and light, and chlorophyll content declined to a minimal level in sun plants sooner than in shade plants. These declines in N concentration, in the initial slope of A/Ci curves, and in chlorophyll content were consistent with declining photosynthesis, such that elevated CO2 accelerated senescence in sun plants and prolonged leaf function in shade plants. These results have implications for the carbon economy of seedlings and the regeneration of red oak under global change conditions.  相似文献   

20.
Few studies have investigated how tree species grown under elevated CO2 and elevated temperature alter the performance of leaf‐feeding insects. The indirect effects of an elevated CO2 concentration and temperature on leaf phytochemistry, along with potential direct effects on insect growth and consumption, may independently or interactively affect insects. To investigate this, we bagged larvae of the gypsy moth on leaves of red and sugar maple growing in open‐top chambers in four CO2/temperature treatment combinations: (i) ambient temperature, ambient CO2; (ii) ambient temperature, elevated CO2 (+ 300 μL L?1 CO2); (iii) elevated temperature (+ 3.5°C), ambient CO2; and (iv) elevated temperature, elevated CO2. For both tree species, leaves grown at elevated CO2 concentration were significantly reduced in leaf nitrogen concentration and increased in C: N ratio, while neither temperature nor its interaction with CO2 concentration had any effect. Depending on the tree species, leaf water content declined (red maple) and carbon‐based phenolics increased (sugar maple) on plants grown in an enriched CO2 atmosphere. The only observed effect of elevated temperature on leaf phytochemistry was a reduction in leaf water content of sugar maple leaves. Gypsy moth larval responses were dependent on tree species. Larvae feeding on elevated CO2‐grown red maple leaves had reduced growth, while temperature had no effect on the growth or consumption of larvae. No significant effects of either temperature or CO2 concentration were observed for larvae feeding on sugar maple leaves. Our data demonstrate strong effects of CO2 enrichment on leaf phytochemical constituents important to folivorous insects, while an elevated temperature largely has little effect. We conclude that alterations in leaf chemistry due to an elevated CO2 atmosphere are more important in this plant–folivorous insect system than either the direct short‐term effects of temperature on insect performance or its indirect effects on leaf chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号