首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
A foolproof protocol was developed for the construction of mutant DNA library for directed protein evolution. First, a library of linear mutant gene was generated by error‐prone PCR or molecular shuffling, and a linear vector backbone was prepared by high‐fidelity PCR. Second, the amplified insert and vector fragments were assembled by overlap‐extension PCR with a pair of 5'‐phosphorylated primers. Third, full‐length linear plasmids with phosphorylated 5'‐ends were self‐ligated with T4 ligase, yielding circular plasmids encoding mutant variants suitable for high‐efficiency transformation. Self‐made competent Escherichia coli BL21(DE3) showed a transformation efficiency of 2.4 × 105 cfu/µg of the self‐ligated circular plasmid. Using this method, three mutants of mCherry fluorescent protein were found to alter their colors and fluorescent intensities under visible and UV lights, respectively. Also, one mutant of 6‐phosphorogluconate dehydrogenase from a thermophilic bacterium Moorella thermoacetica was found to show the 3.5‐fold improved catalytic efficiency (kcat/Km) on NAD+ as compared to the wild‐type. This protocol is DNA‐sequence independent, and does not require restriction enzymes, special E. coli host, or labor‐intensive optimization. In addition, this protocol can be used for subcloning the relatively long DNA sequences into any position of plasmids.  相似文献   

2.
Summary Only multimeric, and not monomeric forms of B. subtilis plasmids can transform B. subtilis cells (Canosi et al. 1978). This finding prompted us to study the physico-chemical fate of plasmid DNA in transformation. Competent cells of B. subtilis were exposed to either unfractionated preparations or to preparations of multimeric plasmid DNA. Plasmid DNA was re-extracted from such cells and then analyzed by sedimentation and isopycnic centrifugation and also defined by its sensitivity to nuclease S1 degradation. No double-stranded plasmid DNA could be recovered from cells transformed with unfractionated plasmid preparations which contained predominantly monomeric covalently closed circular (CCC) DNA, Re-extracted plasmid DNA was single-stranded, had a molecular weight considerably smaller than monomer length DNA and had been subject to degradation to acid soluble products. However, when transformations were performed with multimeric DNA (constructed by in vitro ligation of linearized pC194 DNA), both double-stranded and partially double-stranded DNA could be recovered in addition to single-stranded DNA.We assume that plasmid DNA is converted to a single-stranded form in transformation, irrespective of its molecular structure. Double-stranded and partially double-stranded DNAs found in transformation with multimeric DNA would be the products of intramolecular annealing.Some of these results were presented at the 5th European Meeting on Bacterial Transformation and Transfection, September 1980, Florence  相似文献   

3.
Summary The streptococcal plasmids pMV158 and pLS1, grown in Streptococcus pneumoniae, were transferred to Bacillus subtilis by DNA-mediated transformation. The plasmids were unchanged in the new host; no deletions were observed in 80 instances of transfer. Their copy number was similar to that in S. pneumoniae. Two B. subtilis plasmids, pUB110 and pBD6, could not be transferred to S. pneumoniae. Hybrid plasmids were produced by recombining the EcoRI fragment of pBD6 that confers Kmr with EcoRI-cut pLS1, which confers Tcr. The simple hybrid, pMP2, was transferable to both species and expressed Tcr and Kmr in both. A derivative, pMP5, which contained an insertion in the pBD6 component, expressed a higher level of kanomycin resistance and was more easily selected in S. pneumoniae. Another derivative, pMP3, which contained an additional EcoRI fragment, presumably of pneumococcal chromosomal DNA, could not be transferred to B. subtilis. Previous findings that monomeric plasmid forms could transform S. pneumoniae but not B. subtilis were confirmed using single plasmid preparations. Although plasmids extracted from either species were readily transferred to S. pneumoniae, successive passage in B. subtilis increased the ability of plasmid extracts to transfer the plasmid to a B. subtilis recipient. This adaptation was tentatively ascribed to an enrichment of multimeric forms in extracts of B. subtilis as compared to S. pneumoniae. A review of host ranges exhibited by plasmids of Gram-positive bacteria suggested differences in their ability to use particular host replication functions. The pMP5 plasmid, with readily selectable Kmr and Tcr markers in both hosts, and with the potential for inactivation of Kmr by insertion in the Bg/II site, could be a useful shuttle vector for cloning in S. pneumoniae and B. subtilis.  相似文献   

4.
Summary Two spore genes, spoOB and spoIIG have been cloned from the B. subtilis genome library, constructed by ligating Sau3A partially digested DNA to the dephosphorylated pHV33 plasmid vector at its BamH1 site.An hybrid plasmid pGsOB2, carrying a 1.7 Kb insert of B. subtilis DNA amplifiable in E. coli was cloned. This recombinant plasmid was capable of transforming the appropriate B. subtilis Rec+ and Rec- recipients to Spo+ at very high efficiency. The pGsOB2 was further subcloned and four hybrid plasmids, pGsOB8, pGsOB9, pGsOB10 and pGsOB11 were selected and their restriction enzyme maps established. The four subcloned hybrid plasmids retained their entire transforming activity in both Rec+ and Rec- recipients although two of them carry the insert in an inverse orientation, indicating thus, that the spoOB gene in these plasmids is being transcribed by the B. subtilis RNA polymerase using an internal promotor of the cloned DNA fragment. The adjacent genes spoIVF and pheA, mapped respectively to the right and left of the spoOB locus, that normally show 90% cotransformation, are absent on the cloned DNA fragments. The cloned hybrid plasmids have been expressed in E. coli minicells and it was shown that the spoOB locus encoded a polypeptide of 24 K.We have also cloned the spoIIG gene in two hybrid plasmids, pGsIIG24 and pGsIIG26, carrying respectively inserts of 2 and 3 Kb. From the transforming activity and the endonuclease cleavage maps it was shown that these two hybrid plasmids do not carry the entire spoIIG locus. The use of these plasmids for further cloning of this gene is discussed.  相似文献   

5.
Summary A collection of about 2500 clones containing hybrid plasmids representative of nearly the entire genome of B. subtilis 168 was established in E. coli SK1592 by using the poly(dA)·poly(dT) joining method with randomly sheared DNA fragments and plasmid pHV33, a bifunctional vector which can replicate in both E. coli and B. subtilis. Detection of cloned recombinant DNA molecules was based on the insertional inactivation of the Tc gene occurring at the unique BamHI cleavage site present in the vector plasmid.Thirty individual clones of the collection were shown to hybridize specifically with a B. subtilis rRNA probe. CCC-recombinant plasmids extracted from E. coli were pooled in lots of 100 and used to transform auxotrophic mutants of B. subtilis 168. Complementation of these auxotrophic mutations was observed for several markers such as thr, leuA, hisA, glyB and purB. In several cases, markers carried by the recombinant plasmids were lost from the plasmid and integrated into the chromosomal DNA. Loss of genetic markers from the hybrid plasmids did not occur when a rec - recipient strain of B. subtilis was used.Abbreviations ApR resistance to ampicillin - TcR resistance to tetracycline - CmR resistance to chloramphenicol - CCC covalently closed circular duplex - Mdal magadalton  相似文献   

6.
Summary We have cloned the hisH tyrA wild-type genes of Bacillus subtilis with the aid of the chimeric plasmid pBJ194, which replicates both in B. subtilis and Escherichia coli. Primary cloning was done in E. coli. The original E. coli clone, carrying the recombinant plasmid (pGR1) which complements hisH tyrA mutants of B. subtilis, was selected directly from a mixture of plated E. coli clones by replicaplating these clones onto minimal agar plates without tyrosine spread just before with competent B. subtilis cells. After overnight incubation clusters of small colonies had developed exclusively in the E. coli [pGR1] colony prints.The Tyr+ minicolonies were shown to be B. subtilis carrying pGR1 because (i) their appearance depended linearly on the number of B. subtilis cells plated, (ii) they produced extracellular protease and amylase and (iii) plasmids could be reisolated from the minicolonies and used to transform B. subtilis recE4 tyrA1 both to Cmr and Tyr+.Plasmid pGR1 transfer through replica plating was compared with plasmid transfer in liquid. Both systems depended on transformable B. subtilis strains and were sensitive to DNAseI. However, whereas integration of the tyrA + gene into the chromosome and concomittant loss of plasmids occurred frequently during regular plasmid transformation of Rec+ B. subtilis, this was a rare event during plasmid transfer through replica plating.  相似文献   

7.
Bacillus subtilis strains are used for extracellular expression of enzymes (i.e., proteases, lipases, and cellulases) which are often engineered by directed evolution for industrial applications. B. subtilis DB104 represents an attractive directed evolution host since it has a low proteolytic activity and efficient secretion. B. subtilis DB104 is hampered like many other Bacillus strains by insufficient transformation efficiencies (≤103 transformants/μg DNA). After investigating five physical and chemical transformation protocols, a novel natural competent transformation protocol was established for B. subtilis DB104 by optimizing growth conditions and histidine concentration during competence development, implementing an additional incubation step in the competence development phase and a recovery step during the transformation procedure. In addition, the influence of the amount and size of the transformed plasmid DNA on transformation efficiency was investigated. The natural competence protocol is “easy” in handling and allows for the first time to generate large libraries (1.5 × 105 transformants/μg plasmid DNA) in B. subtilis DB104 without requiring microgram amounts of DNA.  相似文献   

8.
Summary The illegitimate recombination between Staphylococcus aureus plasmids pE194 (or pGG20, the hybrid between pE194 and Escherichia coli plasmid pBR322) and pBD17 (plasmid pUB110 without HpaII C-fragment) was studied in Bacillus subtilis. Cointegrates were generated with the frequency of 1–3x10-8. Among 22 hybrids analysed 9 types of recombinants were found. Nucleotide sequences of all three parental plasmids were involved in intermolecular recombination. Nucleotide sequencing of recombinant DNA junctions revealed that in 8 cases recombination occurred between short homologous regions (9–15 bp). One recombinant was formed using nonhomologous sites. The similarity was demonstrated between nucleotide sequences of the recombination sites of two types of cointegrates and those used for pE194 integration into the B. subtilis chromosome. Possible mechanisms of illegitimate recombination are discussed.  相似文献   

9.
Summary (1) The low residual transforming activity in preparations of monomeric, supercoiled, circular (CCC) forms of the plasmids pC194 and pHV14 could be attributed to the presence in such isolates of a small number of contaminating multimeric molecules. (2) E. coli derived preparations of pHV14, an in vitro recombinant plasmid capable of replication in both E. coli and B. subtilis, contain oligomeric forms of plasmid DNA in addition to the prevalent monomeric CCC form. The specific transforming activity of pHV14 DNA for E. coli is independent of the degree of oligomerization, whereas in transformation of B. subtilis the specific activity of the purified monomeric CCC molecules is at least four orders of magnitude less than that of the unfractionated preparation. (3) Oligomerization of linearized pHV14 DNA by T4 ligase results in a substantial increase of specific transforming activity when assayed with B. subtilis and causes a decrease when used to transform E. coli.  相似文献   

10.
Summary An isogenic set of 11 recombination-deficient mutant strains of Bacillus subtilis has been constructed. Whereas plasmid pUB110 is stably maintained in such Rec- cells, the high copy number plasmid pC194 is unstable. Instability in Rec- strains could be mostly attributed to the deleterious effect of the presence of the plasmid on the Rec- cells' growth capability. In part, instability of pC194 derivatives could also be correlated with the presence of an unusually high amount of multimeric DNA molecules.  相似文献   

11.
Sierd Bron  Erik Luxen 《Plasmid》1985,14(3):235-244
To study plasmid instability in Bacillus subtilis the pUB110-derived hybrid plasmid pLB2 (3.6 kb) and the bifunctional replicon pLB5 (5.9 kb), able to replicate in B. subtilis and Escherichia coli, were constructed. In both vectors homologous B. subtilis, or heterologous E. coli DNA fragments of various lengths were inserted. Irrespective of the source of the cloned DNA, the segregational stability of the recombinant plasmids in B. subtilis was severely affected by the DNA inserts. In contrast, no instability was observed in E. coli. In B. subtilis a steep inverse relationship existed between the size of the inserts and the level of stability. Increased size of the pLB plasmids resulted in strongly reduced copy numbers. This seems to be the primary cause of the size-dependent segregational instability.  相似文献   

12.
We report eight variable dinucleotide microsatellite loci cloned from flowering dogwood (Cornus florida L.) using a biotin enrichment protocol. Degenerate oligonucleotide primer‐polymerase chain reaction (DOP‐PCR) was used to generate a population of DNA fragments, from which adenine‐cytosine dinucleotide (AC) and adenine‐guanine dinucleotide (AG) repeats were captured using biotinylated probes and streptavidin coated magnetic particles. The captured fragments were cloned into plasmids, and the plasmid library was screened for microsatellites using a simple PCR technique. Selected plasmids were sequenced, and PCR primers were designed and optimized using a thermal‐gradient thermocycler. The loci reported are highly variable with an average of 9.25 allele per locus and an average heterozygosity of 0.84.  相似文献   

13.
Summary ExposingBacillus subtilis cultures to high concentrations of alkali cations, especially K+, allows efficient transformation by plasmids. The method allows transformation with unfractionated plasmid DNA, monomeric plasmid DNA as well as linear plasmid DNA.B. subtilis strains, not amenable to natural transformation, were also transformed by the present method.  相似文献   

14.
Summary Using the bifunctional cloning vehicle pHP13, which carries the replication functions of the cryptic Bacillus subtilis plasmid pTA1060, the effects of BsuM restriction on the efficiency of shotgun cloning of heterologous Escherichia coli DNA were studied. In a restriction-deficient but modification-proficient mutant of B. subtilis, clones were obtained at a high frequency, comparable to frequencies normally obtained in E. coli (104 clones per g target DNA). Large inserts were relatively abundant (26% of the clones contained inserts in the range of 6 to 15 kb), which resulted in a high average insert length (3.6 kb). In the restriction-proficient B. subtilis strain, the class of large inserts was underrepresented. Transformation of B. subtilis with E. coli-derived individual recombinant plasmids was affected by BsuM restriction in two ways. First, the transforming activities of recombinant plasmids carrying inserts larger than 4 kb, were, in comparison with the vector pHP13, reduced to varying degrees in the restricting host. The levels of the reduction increased with insert length, resulting in a 7800-fold reduction for the largest plasmid used (pC23; insert length 16 kb). Second, more than 80% of the pC23 transformants in the restricting strain contained a deleted plasmid. In the non-restricting strain, the transforming activities of the plasmids were fairly constant as a function of insert length (in the range of 0–16 kb), and no structural instability was observed. It is concluded that for shotgun cloning in B. subtilis, the use of restriction-deficient strains is highly preferable. Evidence is presented that in addition to XhoI other sequences are involved in BsuM restriction. It is postulated that AsuII sites are additional target sites for BsuM restriction.  相似文献   

15.
Aims: To optimize the transformation conditions and improve the transformation efficiency of Bacillus subtilis WB800 and DB104. Methods and Results: Trehalose, which could decrease the damage of electric shock to the cells, was added to the electroporation medium containing sorbitol and mannitol. The factors affecting the transformation efficiency, such as the growth phase of bacteria, cell concentration, electric field strength and plasmid variety, were examined and improved. The new method increased the transformation efficiency of B. subtilis by nearly 100‐fold compared with the conventional one. Conclusions: With the optimized method, the transformation efficiency came up to 3·64 × 105 transformants μg?1 DNA for WB800, and 2·10 × 105 transformants μg?1 DNA for DB104. Significance and Impact of the Study: This improvement in transformation efficiency will be largely attributed to the research of expression of exogenous genes in B. subtilis, gene library construction for directed evolution and transformation of wild‐type B. subtilis strains.  相似文献   

16.
Summary The effects of the rolling-circle mode of replication and the generation of single-stranded DNA (ss DNA) on plasmid deletion formation between short direct repeats in Bacillus subtilis were studied. Deletion units consisting of direct repeats (9, 18, or 27 bp) that do or do not flank inverted repeats (300 bp) were introduced into various plasmid replicons that generate different amounts of ss DNA (from 0% to 40% of the total plasmid DNA). With ss DNA-generating rolling-circle-type plasmids, deletion frequencies between the direct repeats were 3- to 13-fold higher than in plasmids not generating ss DNA. When the direct repeats flanked inverted repeats the deletion frequencies in ss DNA-generating plasmids were increased by as much as 20- to 140-fold. These results support models for deletion formation based on template-switching errors during complementary strand synthesis of rolling-circle-type plasmids. The structural instability (deletion formation between short direct repeats) of the ss DNA-generating plasmid pTA1060 in B. subtilis was very low in the presence of a functional initiation site for complementary strand synthesis (minus origin). This observation suggests that it will be possible to develop stable host-vector cloning systems for B. subtilis.  相似文献   

17.
Summary We used the Escherichia coli-Bacillus subtilis shuttle vector pHP13, which carries the replication functions of the cryptic B. subtilis plasmid pTA1060, to study the effects of BsuM restriction, plasmid size and DNA concentration on the efficiency of shotgun cloning of heterologous E. coli DNA in B. subtilis protoplasts. In a restriction-deficient strain, clones were obtained with low frequency (19% of the transformants contained a recombinant plasmid) and large inserts (>6 kb) were relatively rare (12% of the clones contained inserts in the range of 6–9 kb). The efficiency of shotgun cloning was severely reduced in restricting protoplasts: the class of large inserts (>6 kb) was under-represented in the clone bank (4% of the clones contained inserts in the range of 6–6.1 kb). Furthermore, BsuM restriction caused structural instability of some recombinant plasmids. Transformation of protoplasts with individual recombinant plasmids showed that plasmid size and transforming activity were negatively correlated. The size effect was most extreme with cut and religated plasmid DNA. The yield of clones was independent of the DNA concentration during transformation. It is therefore unlikely that clones were not detected because of simultaneous uptake of more than one plasmid. It is concluded that shotgun cloning in B. subtilis protoplasts is inferior to that in competent cells.  相似文献   

18.
Summary Cloning in Escherichia coli and Bacillus subtilis was carried out using the bifunctional plasmid pDH5060. B. subtilis chromosomal DNA and pDH5060 DNA were digested with either BamHI or SalI, then annealed, ligated, and transformed into E. coli SK2267. Transformants containing sequences ligated into the BamHI or SalI sites in the Tcr gene of pDH5060 were selected directly using a modification of the fusaric acid technique. The BamHI and SalI clone banks contain about 250 and 140 B. subtilis fragments, respectively, with an average insert size of 8–9 Kbp in the BamHI and 4–5 Kbp in the SalI bank. The inserts ranged in size from 0.3 Kbp to greater than 20 Kbp. The vector used here therefore accepts inserts which are significantly larger than previously reported for other B. subtilis cloning systems. All individual cloned B. subtilis sequences examined were stably propagated in E. coli SK2267. Eight of eighteen B. subtilis auxotrophic markers tested (aroG, gltA, glyB, ilvA, metC, purA, pyrD, and thrA) were transformed to prototrophy with BamHI or SalI clone bank DNA. All or part of the hybrid plasmid DNA recombined at the sites of homology in the chromosome of these Rec+ recipients. Loss of sequences from hybrid plasmids was not prevented in a r - m - recE4 recipient strain of B. subtilis. Although the recE4 background prevented recombination between homologous chromosomal DNA, a variety of cloned fragments were shown to be unstable and undergo deletions of both insert and plasmid sequences. In addition, B. subtilis sequences propagated in E. coli transformed B. subtilis recE4 recipients with a 500-1,000-fold reduced efficiency.  相似文献   

19.
    
Summary B. subtilis A 18, a producer of exocellular amylase, was found to carry covalently closed DNA plasmid molecules (pMI 10). The pMI 10 was isolated and characterized by electron microscopy, electrophoretic mobility and restriction endonuclease cleavage pattern. The pMI 10 was absent in all -amylase low productive or nonproductive clones. The pMI 10 DNA was transformed together with pUB 110 DNA into B. subtilis RM 125 arg-leu- recipient cells, and, hence, compatibility of these plasmids could be demonstrated.  相似文献   

20.
Summary Optimal conditions for the transformation of Bacillus subtilis by electroporation were achieved. Frequencies of greater than 105 transformants/μg of plasmid DNA were obtained for a number of strains and plasmids. Increased transformation efficiency of mini-prep DNA from B. subtilis and Escherichia coli was obtained after microdialysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号