首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
Positive interactions often play an important role in structuring plant communities and increasing biological diversity. Using three scales of resolution, we examine the importance of a long-lived desert tree, ironwood (Olneya tesota), in structuring plant communities and promoting biological diversity in the Sonoran Desert. We examined the positive effects of Olneya canopies of different sizes on plant communities in mesic and xeric habitats throughout the central Gulf Coast subregion of Sonora, Mexico. In xeric sites, Olneya canopies had strong positive effects on plant richness and abundance, and small positive effects on the size of plants, underscoring the role of facilitation in extreme environments. In mesic sites, Olneya canopies had very little effect on perennials and a negative effect on ephemeral richness, suggesting predominantly competitive effects in this less stressful environment. Overall, Olneya canopies increased biological diversity where abiotic stress was high, but did not increase diversity in more mesic areas. Thus Olneya canopies caused consistent shifts in plant-community structure among xeric and mesic sites, but not when these landscapes were combined. Benefactor size also mediated positive interactions, with larger Olneya canopies supporting larger perennials in both xeric and mesic sites. Thus stress gradients and benefactor size both influenced the balance of facilitative and competitive effects under nurse-plant canopies, and the spatial scale at which facilitative effects shape community structure.  相似文献   

2.
Question. Competitive and facilitative interactions among plant species in different abiotic environments potentially link productivity, vegetation structure, species composition and functional diversity. We investigated these interactions among four alpine communities along an environmental productivity gradient in a generally harsh climate. We hypothesised that the importance of competition would be higher in more productive sites. Location. Mt. M. Khatipara (43°27′N, 41°41′E, altitude 2750 m), NW Caucasus, Russia. Communities ranged from low‐productivity alpine lichen heath (ALH) and snowbed communities (SBC), to intermediate productivity Festuca grassland (FVG), and high‐productivity Geranium‐Hedysarum meadow (GHM). Methods. We quantified the relative influence of competition and facilitation on community structure by expressing biomass of target species within each natural community proportionally to biomass of the species in a “null community” with experimental release from interspecific competition by removing all other species (for 6 years). An overall index of change in community composition due to interspecific interactions was calculated as the sum of absolute or proportional differences of the component species. Results. Species responses to neighbour removal ranged from positive to neutral. There was no evidence of facilitation among the selected dominant species. As expected, competition was generally most important in the most productive alpine community (GHM). The intermediate position for low‐productivity communities of stressful environments (ALH, SBC) and the last position of intermediately productive FVG were unexpected. Conclusions. Our results appear to support the Fretwell‐Oksanen hypothesis in that competition in communities of intermediate productivity was less intense than in low‐ or high‐productive communities. However, the zero net effect of competition and facilitation in FVG might be the result of abiotic stress due to strong sun exposure and high soil temperatures after neighbour removal. Thus, non‐linear relationships between soil fertility, productivity and different abiotic stresses may also determine the balance between competition and facilitation.  相似文献   

3.
In a current article in the Journal of Vegetation Science, Molina‐Montenegro and colleagues extend the study of plant–plant interactions on stress gradients to extremes – the moss and lichen‐dominated communities of Antarctica. They found that the importance of facilitation at this extreme end of a ‘cold–harsh continuum’ was similar to that reported at the extreme ends of alpine gradients around the world. In other words, in contrast to recent theory and case studies in other systems, facilitative effects did not wane in extremely stressful conditions.  相似文献   

4.
Spatially disjunct effects of co-occurring competition and facilitation   总被引:4,自引:0,他引:4  
Little is known of the co‐occurrence and implications of competitive and facilitative interactions within sites. Here we show spatially disjunct competition and facilitation at forest edges, with beneficial influences of trees on seedling growth via increased ectomycorrhizal infection apparent from 12 to 20 m while closer to trees seedling growth is negatively correlated with canopy closure. As a result, seedling growth is maximized at intermediate distances. Facilitative interactions were nonlinear: being within 15.7 m of a tree maximized seedling mycorrhizal infection; while competitive effects were correlated with canopy closure, which was related to distance and generally scales with density. These patterns result in a positive correlation of tree density and seedling growth at low densities of trees, and negative correlation at higher densities because of competition. A spatial model suggests that plant communities are a mosaic of positive and negative interactions, which may contribute to population homeostasis and plant diversity.  相似文献   

5.
Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy‐dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy‐dominant species can also limit the performance of edge‐dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.  相似文献   

6.
Abstract. Question: In semi‐arid systems, rainfall gradients can cause plant‐plant interactions to shift from negative to positive or vice versa. However, the importance of a second major abiotic factor, soil nutrients, has rarely been considered. We consider different combinations of both factors and ask: do net adult‐seedling interactions become less competitive and more facilitative with increasing overall abiotic harshness? Location: Succulent Karoo, Western Cape, South Africa. Methods: We examined the interactions between seedlings and adult shrubs at two sites. Sites differ in rainfall, and each contain two habitats: Nutrient‐rich mounds associated with underground termitaria and a relatively nutrient‐poor matrix. We carried out a spatial pattern analysis of community‐wide seedling‐adult associations. We then conducted field and greenhouse experiments to test the effects of soil and the presence of neighbouring shrubs on the growth and survival of six seedling species. Results: At the higher rainfall site, both competitive and facilitative effects of adults on seedlings were found but did not differ by habitat, despite the more benign conditions in the mound habitat. At the lower rainfall site, adult shrubs generally had neutral effects on seedlings in the matrix habitat. In the nutrient‐rich mound habitat, however, adult shrubs had strong and consistently competitive effects on seedlings. Conclusion: Seedling‐adult interactions could not be predicted by a simple overall gradient of abiotic harshness, demonstrating the need for more complex, mechanistic models to predict plant‐plant interactions. We suggest that rainfall and soil nutrients affect seedling‐adult relations through their interactive effects on the life‐history attributes of the species involved.  相似文献   

7.
A humped-back relationship between species richness and community biomass has frequently been observed in plant communities, at both local and regional scales, although often improperly called a productivity-diversity relationship. Explanations for this relationship have emphasized the role of competitive exclusion, probably because at the time when the relationship was first examined, competition was considered to be the significant biotic filter structuring plant communities. However, over the last 15 years there has been a renewed interest in facilitation and this research has shown a clear link between the role of facilitation in structuring communities and both community biomass and the severity of the environment. Although facilitation may enlarge the realized niche of species and increase community richness in stressful environments, there has only been one previous attempt to revisit the humped-back model of species richness and to include facilitative processes. However, to date, no model has explored whether biotic interactions can potentially shape both sides of the humped-back model for species richness commonly detected in plant communities. Here, we propose a revision of Grime's original model that incorporates a new understanding of the role of facilitative interactions in plant communities. In this revised model, facilitation promotes diversity at medium to high environmental severity levels, by expanding the realized niche of stress-intolerant competitive species into harsh physical conditions. However, when environmental conditions become extremely severe the positive effects of the benefactors wane (as supported by recent research on facilitative interactions in extremely severe environments) and diversity is reduced. Conversely, with decreasing stress along the biomass gradient, facilitation decreases because stress-intolerant species become able to exist away from the canopy of the stress-tolerant species (as proposed by facilitation theory). At the same time competition increases for stress-tolerant species, reducing diversity in the most benign conditions (as proposed by models of competition theory). In this way our inclusion of facilitation into the classic model of plant species diversity and community biomass generates a more powerful and richer predictive framework for understanding the role of plant interactions in changing diversity. We then use our revised model to explain both the observed discrepancies between natural patterns of species richness and community biomass and the results of experimental studies of the impact of biodiversity on the productivity of herbaceous communities. It is clear that explicit consideration of concurrent changes in stress-tolerant and competitive species enhances our capacity to explain and interpret patterns in plant community diversity with respect to environmental severity.  相似文献   

8.
Maternal effects can have substantial impacts on plant fitness and plant populations. Stressful environmental conditions can cause a maternal plant to inadequately provision its progeny, resulting in poor seedling growth, low reproductive success, and decreased competitive ability. Maternal effects consist of environmental and genetic load components, but the interactions between these two components have rarely been considered. To determine the effects of maternal drought stress and maternal inbreeding on progeny biomass (a fitness correlate) and physiological responses to drought stress, we conducted a greenhouse experiment with genetic lines from two populations (mesic site vs. dry site) of the herbaceous annual Impatiens capensis (Balsaminaceae). Seeds were collected from cleistogamous flowers of inbred or outcrossed maternal plants that were subject to either a drought or control treatment. These seeds were grown into juvenile plants that were also subject to either a drought stress or a control treatment. Plants from the mesic site had significantly reduced biomass from maternal drought stress, while plants from the dry site maintained biomass despite adverse maternal environmental conditions. Juvenile plants of both populations had reduced biomass only as a result of maternal inbreeding. Interestingly, inbreeding depression was more apparent when maternal environmental conditions were benign.  相似文献   

9.
Investigating how interactions among plants depend on environmental conditions is key to understand and predict plant communities’ response to climate change. However, while many studies have shown how direct interactions change along climatic gradients, indirect interactions have received far less attention. In this study, we aim at contributing to a more complete understanding of how biotic interactions are modulated by climatic conditions. We investigated both direct and indirect effects of adult tree canopy and ground vegetation on seedling growth and survival in five tree species in the French Alps. To explore the effect of environmental conditions, the experiment was carried out at 10 sites along a climatic gradient closely related to temperature. While seedling growth was little affected by direct and indirect interactions, seedling survival showed significant patterns across multiple species. Ground vegetation had a strong direct competitive effect on seedling survival under warmer conditions. This effect decreased or shifted to facilitation at lower temperatures. While the confidence intervals were wider for the effect of adult canopy, it displayed the same pattern. The monitoring of micro‐environmental conditions revealed that competition by ground vegetation in warmer sites could be related to reduced water availability; and weak facilitation by adult canopy in colder sites to protection against frost. For a cold‐intolerant and shade‐tolerant species (Fagus sylvatica), adult canopy indirectly facilitated seedling survival by suppressing ground vegetation at high temperature sites. The other more cold tolerant species did not show this indirect effect (Pinus uncinata, Larix decidua and Abies alba). Our results support the widely observed pattern of stronger direct competition in more productive climates. However, for shade tolerant species, the effect of direct competition may be buffered by tree canopies reducing the competition of ground vegetation, resulting in an opposite trend for indirect interactions across the climatic gradient.  相似文献   

10.
Information about the relative importance of competitive or facilitative pollinator‐mediated interactions in a multi‐species context is limited. We studied interspecific pollen transfer (IPT) networks to evaluate quantity and quality effects of pollinator sharing among plant species on three high‐Andean communities at 1600, 1800 and 2000 m a.s.l. To estimate the sign of the effects (positive, neutral or negative), the relation between conspecific and heterospecific pollen deposited on stigmas was analysed with GLMMs. Network analyses showed that communities were characterised by the presence of pollen hub‐donors and receptors. We inferred that facilitative and neutral pollinator‐mediated interactions among plants prevailed over competition. Thus, the benefits from pollinator sharing seem to outweigh the costs (i.e. heterospecific deposition and conspecific pollen loss). The largest proportion of facilitated species was found at the highest elevation community, suggesting that under unfavourable conditions for the pollination service and at lower plant densities facilitation can be more common.  相似文献   

11.
Biotic interactions play an important role in ecosystem function and structure in the face of global climate change. We tested how plant–plant interactions, namely competition and facilitation among grassland species, respond to extreme drought and heavy rainfall events. We also examined how the functional composition (grasses, forbs, legumes) of grassland communities influenced the competition intensity for grass species when facing extreme events. We exposed experimental grassland communities of different functional compositions to either an extreme single drought event or to a prolonged heavy rainfall event. Relative neighbour effect, relative crowding and interaction strength were calculated for five widespread European grassland species to quantify competition. Single climatic extremes caused species specific shifts in plant–plant interactions from facilitation to competition or vice versa but the nature of the shifts varied depending on the community composition. Facilitation by neighbouring plants was observed for Arrhenatherum elatius when subjected to drought. Contrarily, the facilitative effect of neighbours on Lotus corniculatus was transformed into competition. Heavy rainfall increased the competitive effect of neighbours on Holcus lanatus and Lotus corniculatus in communities composed of three functional groups. Competitive pressure on Geranium pratense and Plantago lanceolata was not affected by extreme weather events. Neither heavy rainfall nor extreme drought altered the overall productivity of the grassland communities. The complementary responses in competition intensity experienced by grassland species under drought suggest biotic interactions as one stabilizing mechanism for overall community performance. Understanding competitive dynamics under fluctuating resources is important for assessing plant community shifts and degree of stability of ecosystem functions.  相似文献   

12.
A popular hypothesis for tree and grass coexistence in savannas is that tree seedlings are limited by competition from grasses. However, competition may be important in favourable climatic conditions when abiotic stress is low, whereas facilitation may be more important under stressful conditions. Seasonal and inter-annual fluctuations in abiotic conditions may alter the outcome of tree–grass interactions in savanna systems and contribute to coexistence. We investigated interactions between coolibah (Eucalyptus coolabah) tree seedlings and perennial C4 grasses in semi-arid savannas in eastern Australia in contrasting seasonal conditions. In glasshouse and field experiments, we measured survival and growth of tree seedlings with different densities of C4 grasses across seasons. In warm glasshouse conditions, where water was not limiting, competition from grasses reduced tree seedling growth but did not affect tree survival. In the field, all tree seedlings died in hot dry summer conditions irrespective of grass or shade cover, whereas in winter, facilitation from grasses significantly increased tree seedling survival by ameliorating heat stress and protecting seedlings from herbivory. We demonstrated that interactions between tree seedlings and perennial grasses vary seasonally, and timing of tree germination may determine the importance of facilitation or competition in structuring savanna vegetation because of fluctuations in abiotic stress. Our finding that trees can grow and survive in a dense C4 grass sward contrasts with the common perception that grass competition limits woody plant recruitment in savannas.  相似文献   

13.
Desertification can be an irreversible process due to positive feedback among degraded plant and soil dynamics. The recovery of semiarid degraded ecosystems may need human intervention. In restoration practices, the abiotic conditions often need to be improved to overcome the positive plant–soil feedback loops. Using nurse‐plants to improve abiotic conditions for introduced individuals (facilitation) has been suggested as an alternative to direct abiotic amelioration. Here, we compared direct abiotic amelioration and facilitation as tools for restoration of semiarid grasslands in Spain. Seedlings and seeds of Lygeum spartum and Salsola vermiculata were planted and sown in a stably degraded semiarid area in Northeast Spain. Two levels of direct abiotic amelioration (ploughing and damming) and indirect abiotic amelioration through facilitation by Suaeda vera nurse shrubs were compared with a control with no amelioration treatment. The control treatment showed low plant establishment, confirming the practical irreversibility of the degraded state. Plant establishment was significantly higher in the three treatments with interventions than in the control treatment. The best treatment depended on the plant trait considered, but damming was in most cases better than plant facilitation. However, facilitation maintained the nutrient‐rich topsoil layer. Given the relative success of facilitation, revegetation using the facilitative effect of nurse‐plants would, in principle, be recommended for restoring semiarid grasslands. Direct abiotic amelioration would be needed under extreme degradation or harsh climatic conditions.  相似文献   

14.
In stressful environments, facilitation often aids plant establishment, but invasive plant pathogens may potentially disrupt these interactions. In many treeline communities in the northern Rocky Mountains of the U.S. and Canada, Pinus albicaulis, a stress‐tolerant pine, initiates tree islands at higher frequencies than other conifers – that is, leads to leeward tree establishment more frequently. The facilitation provided by a solitary (isolated) P. albicaulis leading to tree island initiation may be important for different life‐history stages for leeward conifers, but it is not known which life‐history stages are influenced and protection provided. However, P. albicaulis mortality from the non‐native pathogen Cronartium ribicola potentially disrupts these facilitative interactions, reducing tree island initiation. In two Rocky Mountain eastern slope study areas, we experimentally examined fundamental plant–plant interactions which might facilitate tree island formation: the protection offered by P. albicaulis to leeward seed and seedling life‐history stages, and to leeward krummholz conifers. In the latter case, we simulated mortality from C. ribicola for windward P. albicaulis to determine whether loss of P. albicaulis from C. ribicola impacts leeward conifers. Relative to other common solitary conifers at treeline, solitary P. albicaulis had higher abundance. More seeds germinated in leeward rock microsites than in conifer or exposed microsites, but the odds of cotyledon seedling survival during the growing season were highest in P. albicaulis microsites. Planted seedling survival was low among all microsites examined. Simulating death of windward P. albicaulis by C. ribicola reduced shoot growth of leeward trees. Loss of P. albicaulis to exotic disease may limit facilitation interactions and conifer community development at treeline and potentially impede upward movement as climate warms.  相似文献   

15.
Ectomycorrhizal (EM) networks are hypothesized to facilitate regeneration under abiotic stress. We tested the role of networks in interactions between P. menziesii var. glauca trees and conspecific seedlings along a climatic moisture gradient to: (1) determine the effects of climatic factors on network facilitation of Pseudotsuga menziesii (Mirb.) Franco var. glauca (Mayr) seedling establishment, (2) infer the changing importance of P. menziesii var. glauca parent trees in conspecific regeneration with climate, and (3) parse the competitive from facilitative effects of P. menziesii var. glauca trees on seedlings. When drought conditions were greatest, seedling growth increased when seedlings could form a network with trees in the absence of root competition, but was reduced when unable to form a network. Survival was maximized when seedlings were able to form a network in the absence of root competition. Seedling stem natural abundance δ13C increased with drought due to increasing water use efficiency, but was unaffected by distance from tree or network potential. We conclude that P. menziesii seedlings may benefit from the presence of established P. menziesii trees when growing under climatic drought, but that this benefit is contingent upon the establishment of an EM network prior to the onset of summer drought. These results suggest that networks are an important mechanism for EM plants establishing in a pattern consistent with the stress-gradient hypothesis, and therefore the importance of EM networks to facilitation in regeneration of EM trees is expected to increase with drought.  相似文献   

16.
The mosaic of trees, shrubs and open grassland in mesic African savannas is highly dynamic and strongly influenced by mammal herbivory and fire. We investigated the bird fauna in four different savanna habitats to help assess the impacts of vegetation change on this component of faunal diversity. Birds were censused, plant species were identified and vegetation structure was measured in four different vegetation types (Acacia nilotica woodland, Acacia nigrescens woodland, broadleaf thicket and open grassland) in the Hluhluwe-Umfolozi Park in northern KwaZulu Natal, South Africa. Multivariate ordination analyses were used to determine the relative importance of vegetation structure and floristic composition in defining bird assemblages. The bird communities of the grasslands, the acacia woodlands, and the broadleaf woodlands were clearly separated on the first axis of the detrended canonical correspondence analysis (DCCA). Canopy cover and foliage height diversity (FHD) were strongly correlated with the first axis of DCCA, possibly reflecting a secondary successional series from grassland to woodland, known as bush encroachment. Floristic composition (based on presence–absence data only) seemed to be less important for bird community composition than vegetation structure. The results indicate that changes in vegetation structure, caused by bush encroachment, could cause concomitant changes in bird community composition.  相似文献   

17.

Background

The stress‐gradient hypothesis predicts a shift from facilitative to competitive plant interactions with decreasing abiotic stress. This has been supported by studies along elevation and temperature gradients, but also challenged by the hypothesis of a facilitation collapse at extremely harsh sites. Although facilitation is known to be important in primary succession, few studies have examined these hypotheses along primary succession gradients.

Aim

To examine whether there is a relationship between the presence of the circumpolar cushion plant Silene acaulis and other species, and if so, whether there is a shift between positive and negative interactions along a primary succession gradient in a glacier foreland.

Location

Finse, southern Norway.

Methods

We examined the performance of the common alpine forb Bistorta vivipara, species richness of vascular plants, bryophytes and lichens, and the number of seedlings and fertile vascular plants in S. acaulis cushions, and control plots without S. acaulis, along a succession gradient with increasing distance from a glacier front, and thus decreasing abiotic stress. To examine if S. acaulis cushions modify the abiotic environment, we recorded soil temperature, moisture, organic content and pH in cushions and control plots.

Results

Bistorta vivipara performed better, as shown by bigger leaves in S. acaulis cushions compared to control plots in the harshest part of the gradient close to the glacier. There were few differences in B. vivipara performance between cushion and control plots in the more benign environment further away from the glacier. This suggests a shift from facilitative to mainly neutral interactions by S. acaulis on the performance of B. vivipara with decreasing abiotic stress. A trend, although not significant, of higher vascular species richness and fertility inside S. acaulis cushions along the whole gradient, suggests that S. acaulis also facilitates community‐level species richness. The causal mechanism of this facilitation is likely that the cushions buffer extreme temperatures.

Conclusions

Our results support the stress‐gradient hypothesis for the relationship between the cushion plant S. acaulis and the performance of a single species along a primary succession gradient in a glacier foreland. S. acaulis also tended to increase vascular plant species richness and fertility regardless of stress level along the gradient, suggesting facilitation at the community level. We found no collapse of facilitation at the most stressful end of the gradient in this alpine glacier foreland.  相似文献   

18.
The stress‐gradient hypothesis predicts that the importance of facilitation relative to competition should increase with increasing stress. The hypothesis has received support from several environments, but multi‐gradient studies on the generality of the hypothesis are exceptionally rare. A within‐species experiment with mountain birch Betula pubescens subsp. czerepanovii was conducted to test the hypothesis in the extreme ends of two subarctic stress gradients (elevation and seashore) in the Kola Peninsula, northwestern Russia. The high stress sites were characterized by strong winds, temperature extremes and potentially drought. The negative effects of abiotic stress on the study seedlings were verified from performance characteristics. Effects of adult hosts as well as seedling–seedlings interactions were studied. Positive host–seedling interactions dominated in each study site, and three out of four performance variables indicated stronger positive net effects in the high stress sites. In the seashore gradient also seedling survival gave similar interpretations. Also a temporal shift towards host–seedling competition was detected in a low stress site after two study years. In seedling–seedling interactions competition dominated, but the effects were weak, likely due to the ‘noise’ caused by genetic and environmental factors. Our results support the stress‐gradient hypothesis and its generality in subarctic environments, as the interpretations were similar for both stress gradients and several fitness‐related variables. The temporal variation in host–seedling interactions and the difference between host–seedling and seedling–seedling effects hint on size‐dependency of plant interactions: facilitation might dominate when the benefactor is substantially larger than the beneficiary, while competition may be stronger when the plants are of similar size and developmental status.  相似文献   

19.
In recent years many field studies have been conducted to assess the relative importance of facilitation and competition in structuring vegetation communities in different environments. Herein, we present a simulation model which systematically explores the relative importance of intra‐specific facilitation and competition between adult shrubs and seedlings for spatial pattern formation. A grid‐based simulation model was constructed and calibrated using data collected in the field from Sarcopoterium spinosum populations in Israel to simulate population dynamics along a rainfall gradient. A series of simulation experiments was conducted in which manipulations of seedling survival probabilities were carried out to assess the relative importance of these processes in generating spatial patterns. Increased survival probabilities of first‐year shrubs in open areas were used to simulate competition effects, while increased survival probabilities in the vicinity of shrubs were used to simulate facilitation effects. Simulation results were then compared to shrub spatial patterns observed in the field. The results indicate that facilitation is not an important process in generating intra‐specific spatial patterns. Rather, in mesic environments with high precipitation, competition is the dominant process generating spatial patterns, resulting in regular spacing of shrubs, similarly to the patterns observed in the field (L(h) values<0). In arid sites, where precipitation values are lower, and stress conditions are higher, the dominant process generating spatial patterns was random mortality due to drought conditions. The resulting spatial patterns in this case are random (L(h)~0), whereas observed field populations exhibited clumped patterns (L(h)>0). We conclude that as stress conditions increase, the importance of intraspecific neighborhood interactions decrease whereas the importance of environmental factors increase in dictating intra‐specific spatial pattern formation. Consequently in mesic environments intra‐specific competition among adults determines the emerging patterns, while intraspecific facilitation is a negligible process.  相似文献   

20.
植物邻体间的正相互作用   总被引:1,自引:0,他引:1  
张炜平  王根轩 《生态学报》2010,30(19):5371-5380
植物间的正负相互作用是构建植被群落的重要因素,也是群落生态学研究的中心内容之一。近20a来,植物间正相互作用的研究得到快速发展。综述了正相互作用的定义,不同植物群落中的直接、间接正相互作用及其发生机制,正相互作用研究的实验和模型方法,正负相互作用随胁迫梯度的变化及正相互作用对群落构建的影响。探讨了正相互作用研究前景:(1)进一步理解正负相互作用的平衡及其对群落构建的影响;(2)加深对全球变暖背景下的正相互作用的认识;(3)需把正相互作用研究同进化联系起来;(4)充分发挥正相互作用在生态系统中的推动力作用,把正相互作用应用到生态恢复中,为恢复退化生态系统服务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号