首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
海南岛热带天然针叶林附生维管植物多样性和分布   总被引:2,自引:0,他引:2       下载免费PDF全文
作为热带林中一个重要的特征性组分, 附生维管植物对于维持热带森林的物种多样性及其生态系统功能均具有重要作用。该文首次系统地报道了热带天然针叶林中的附生维管植物多样性和分布特征。以海南岛霸王岭国家级自然保护区保存完好的热带天然针叶林(我国唯一较大面积分布的南亚松(Pinus latteri)天然林)中的附生维管植物为研究对象, 通过样带调查(共设置12个10 m × 50 m的样带, 记录每个样带内胸径(DBH) ≥ 5 cm树木上附生维管植物的物种名称、株数及附生高度), 分析附生维管植物的物种多样性和空间分布特征。结果表明: 1)热带针叶林0.6 hm 2面积内共有附生维管植物769株, 分属于7科17属27种, 附生兰科植物和萝摩科植物为优势类群; 2)附生维管植物在水平方向上呈现出聚集分布; 3)附生维管植物在垂直方向上, 在中等高度层次(10-20 m)分布最多, 在下层(0-5 m)也有较多的分布; 4)少数附生维管植物对南亚松表现出一定的选择性, 如华南马尾杉(Phlegmariurus fordii)、玫瑰毛兰(Eria rosea)、眼树莲(Dischidia chinensis)和铁草鞋(Hoya pottsii)等; 5)附生维管植物的物种丰富度及多度与宿主胸径均存在显著的正相关关系。  相似文献   

2.
The movement of frugivores between remnant forests and successional areas is vital for tropical forest tree species to colonize successional habitats. The response of these species to the spatial structure of pasture tree cover is largely unknown. We studied avian frugivores that were found in primary forest edges and large pastures in eastern Amazonia, Brazil. We determined how the small‐scale spatial structure of pasture trees at forest edges affects five response variables: bird presence, visitation rate, duration of visit, species richness, and an index accounting for species’ level of frugivory and abundance in forests. We used hierarchical linear models to estimate the effect of four predictor variables on response variables: (1) clustering of pasture trees; (2) percent canopy cover of pasture trees; (3) distance of pasture tree to forest edge; and (4) tree crown area. The study species, many of which are widely distributed in the Neotropics, were generally insensitive to percent cover and clustering of trees. Frugivore visitation to individual trees remained constant as cover increased. Visitation was positively correlated with focal tree distance to forest edge and crown area. The positive relationship between distance and visitation rates may be due to the increased abundance of some resource further from forests. If pastures were abandoned the distance from forest edges would not likely limit frugivore visitation and seed deposition under large pasture trees in our study (i.e., up to 200 m distant).  相似文献   

3.
Host traits partly determine the abundance and species richness of epiphytes in tropical forests. It has been proposed that older trees with rough bark and evergreens often house more individuals and more epiphytic species than those with thin, smooth, and peeling bark, which harbor few epiphytes. We hypothesize (i) that epiphytes are more abundant and species-rich in the more shaded forest, which is related to bark roughness, and (ii) that epiphytes are distributed in the middle of the host, where microenvironmental conditions are more favorable to survival. We evaluated abundance, species richness, and vertical distribution of epiphytes in two tropical dry forests, according to the deciduousness and basal area of the trees. Moreover, we selected the most abundant epiphytes to test whether their distribution is related to a specific bark type and examine their vertical distribution in two dry forests. We distinguished a high abundance and species richness of epiphytes in the deciduous forest, although basal area and host species richness were higher in the semi-deciduous forest. In both forests, we found a positive relationship between epiphyte abundance and basal area. Higher abundance of epiphytes was related to the predominance of Tillandsia schiedeana, a drought-adapted species, in both forests. Unexpectedly, epiphytes abundantly colonized Bursera simaruba, a host with peeling bark and a very branched crown, where small individuals of T. schiedeana colonized abundantly toward the top of the crown. Our results show the importance of the tropical dry forest, particularly, B. simaruba, in maintaining epiphyte diversity in terms of T. schiedeana colonization.  相似文献   

4.
Forestry managers have been searching for ways to reduce the impacts of logging on Amazonian biodiversity, but some basic factors are still not considered in native forestry operations, among them the diversity of epiphytes associated with the logged trees. Our goals in this study were to determine the floristic composition, quantify the species richness, and characterize the species diversity of the vascular epiphytic community present in three timber tree species in Acre State, Brazil. We collected and identified all epiphytes in 30 randomly selected trees ≥35 cm DBH of each of three important timber species, Tabebuia serratifolia, Manilkara inundata and Couratari macrosperma. We also documented the epiphyte diversity in 120 randomly selected trees ≥35 cm DBH of 56 other species to determine whether the three timber species have different epiphyte diversity than the tree community at large. The epiphyte samples in the three timber species showed 77 species, 13 of which were new records for the flora of Acre state. The epiphyte community in the randomly selected trees presented a total of 56 species. The timber species phorophytes hosted on average three times more epiphyte species per tree than the other 120 randomly selected trees. These results show that a substantial portion of local floristic richness can be lost during logging activity due if not properly managed by rescuing epiphytes after felling the trees. Although these epiphytes could contribute positively to forestry sustainability due to their ornamental value, increasing the economic yield per hectare, there are no local initiatives for economic use of epiphytes.  相似文献   

5.
Carrie L. Woods 《Biotropica》2017,49(4):452-460
Epiphytes are integral to tropical forests yet little is understood about how succession proceeds in these communities. As trees increase in size they create microhabitats for late‐colonizing species in both small and large branches while maintaining small tree microhabitats for early colonizing species in the small and young branches. Thus, epiphyte succession may follow different models depending on the scale: at the scale of the entire tree, epiphytes may follow a species accumulation model where species are continuously added to the tree as trees increase in size but at the scale of one zone on a branch (e.g., inner crown: 0–2 m from the trunk), they may follow the replacement model of succession seen in terrestrial ecosystems. Assuming tree size as an indicator of tree age, I surveyed 61 Virola koschnyi trees of varying size (2.5–103.3 cm diameter at breast height) in lowland wet tropical forest in Costa Rica to examine how epiphyte communities change through succession. Epiphyte communities in small trees were nested subsets of those in large trees and epiphyte communities became more similar to the largest trees as trees increased in size. Furthermore, epiphyte species in small trees were replaced by mid‐ and late‐successional species in the oldest parts of the tree crown but dispersed toward the younger branches as trees increased in size. Thus, epiphyte succession followed a replacement model in particular zones within treecrowns but a species accumulation model at the scale of the entire tree crown.  相似文献   

6.
It is debated whether slowing human population growth and intense urbanization may result in a slowdown of deforestation and an acceleration of natural forest regeneration. In a fragmented landscape the structure and composition of developing secondary forests will strongly depend on the local species pool. Thus, the understanding how organisms cope with biotic and abiotic challenges outside pristine habitats is pivotal. Structurally dependent, vascular epiphytes are an important biotic component of tropical forests. In human-modified tropical landscapes potential hosts are often still present. We aimed to assess if human-modified landscapes offer a refuge habitat in which epiphytes can form metacommunities that are ultimately viable. Eight years after an initial assessment we recensused the epiphytes in pasture trees in western Panama along a strong rainfall gradient. We document a threefold abundance increase (ca. 20,000 vs. >60,000 individuals) and an increase in species-richness (66 vs. 86 mostly drought-tolerant species). This large net increase suggests a highly dynamic system. Although absolute abundances changed dramatically, the relative contribution of major taxonomic groups to overall diversity and abundance changed little. Neither rainfall nor tree growth had a significant effect on relative annual community growth rates. At the plot level (=metacommunities), abundance increase was mostly due to the species already present in the first census, at the tree level (=communities) the contribution of new and old species was comparable. The documented long-term trend in epiphyte metacommunities in a human-modified landscape suggests that a diverse set of species sustains viable metacommunities and is likely to provide structural diversity to developing secondary forest.  相似文献   

7.
Aim Non‐vascular epiphytes have been largely ignored in studies examining the biotic and abiotic determinants of spatial variation in epiphyte diversity. Our aim was to test whether the spatial patterning of species richness, biomass and community composition across geographic regions, among trees within regions, and among branches within trees is consistent between the vascular and non‐vascular components of the temperate rain forest flora. Location Coastal lowland podocarp‐broadleaved forests on the west coast of the South Island of New Zealand. Methods We collected single samples (30 × 25 cm) from 96 epiphyte assemblages located on the inner branches of 40 northern rata (Metrosideros robusta) trees. For each sample, branch characteristics such as branch height, branch diameter, branch angle, branch aspect, and minimum and maximum epiphyte mat depth were recorded. The biomass for each individual epiphyte species was determined. Results Northern rata was host to a total of 157 species, comprising 32 vascular and 125 non‐vascular species, with liverworts representing 41% of all species. Within epiphyte mats, the average total organic biomass of 3.5 kg m?2 of branch surface area consisted largely of non‐living biomass and roots. Vascular and non‐vascular epiphytes showed strikingly different spatial patterns in species richness, biomass and composition between sites, among trees within sites, and among branches within trees, which could not be explained by the branch structural characteristics we measured. The two plant groups had no significant association in community composition (r = 0.04, P = 0.08). However, the species richness of vascular plant seedlings was strongly linked to the presence/absence of lichens. Main conclusions Non‐vascular plants contributed substantially to the high species richness and biomass recorded in this study, which was comparable to that of some tropical rain forests. High variability in community composition among epiphyte mats, and very low correlation with any of the environmental factors measured possibly indicate high levels of stochasticity in seed or spore colonization, establishment success or community assembly among branches in these canopy communities. Although we found some evidence that vascular plant seedling establishment was linked to the presence of lichens and the biomass of non‐living components in the epiphyte mats, there was no correlation in the spatial patterning or determinants of species richness between non‐vascular and vascular plants. Consequently, variation in total epiphyte biodiversity could not be predicted from the measurement of vascular plant diversity alone, which highlights the crucial importance of sampling non‐vascular plants when undertaking epiphyte community studies.  相似文献   

8.
Question: What are the qualitative and quantitative long‐term changes in the vascular epiphyte assemblage on a particular host tree species? Location: Lowland rain forest of the San Lorenzo Crane Plot, Republic of Panama. Methods: We followed the fate of the vascular epiphyte assemblage on 99 individuals of the palm Socratea exorrhiza by three censuses over the course of five years. Results: The composition of the epiphyte assemblage changed little during the course of the study. While the similarity of epiphyte vegetation decreased on individual palms through time, the similarity analysed over all palms increased. Even well established epiphyte individuals experienced high mortality with only 46% of the originally mapped individuals surviving the following five years. We found a positive correlation between host tree size and epiphyte richness and detected higher colonization rates of epiphytes per surface area on larger trees. Conclusions Epiphyte assemblages on individual S. exorrhiza trees were highly dynamic while the overall composition of the epiphyte vegetation on the host tree species in the study plot was stable. We suggest that higher recruitment rates, due to localized seed dispersal by already established epiphytes, on larger palms promote the colonization of epiphytes on larger palms. Given the known growth rates and mortality rates of the host tree species, the maximum time available for colonization and reproduction of epiphytes on a given tree is estimated to be ca. 60 years. This time frame will probably be too short to allow assemblages to be ever saturated.  相似文献   

9.
Vascular epiphytes contribute to the structural, compositional, and functional complexity of tropical montane cloud forests because of their high biomass, diversity, and ability to intercept and retain water and nutrients from atmospheric sources. However, human-caused climate change and forest-to-pasture conversion are rapidly altering tropical montane cloud forests. Epiphyte communities may be particularly vulnerable to these changes because of their dependence on direct atmospheric inputs and host trees for survival. In Monteverde, Costa Rica, we measured vascular epiphyte biomass, community composition, and richness at two spatial scales: (1) along an elevation gradient spanning premontane forests to montane cloud forests and (2) within trees along branches from inner to outer crown positions. We also compared epiphyte biomass and distribution at these scales between two different land-cover types, comparing trees in closed canopy forest to isolated trees in pastures. An ordination of epiphyte communities at the level of trees grouped forested sites above versus below the cloud base, and separated forest versus pasture trees. Species richness increased with increasing elevation and decreased from inner to outer branch positions. Although richness did not differ between land-cover types, there were significant differences in community composition. The variability in epiphyte community organization between the two spatial scales and between land-cover types underscores the potential complexity of epiphyte responses to climate and land-cover changes.  相似文献   

10.
Question: Do vascular epiphyte species have a metapopulation structure? What are the qualitative and quantitative long‐term changes of the complete vascular epiphyte vegetation in a particular host tree species? Location: Lowland forest on Barro Colorado Island (9° 10’ N, 79°51’ W), Republic of Panama. Methods: In 1994 and 2002 we conducted a census of all vascular epiphytes growing on more than 1000 Annona glabra trees (= patches). Epiphyte species abundances were recorded at the tree level in each census. Results: The number of epiphyte individuals increased from ca. 15 000 to ca. 23 700 individuals during the census interval while the species composition on Annona glabra as a whole was rather stable. There was a strong positive relationship between occurrence in patches and local abundance of the species, and between species richness and host tree stand size. The dynamics of local populations of a given species were uncorrelated to each other; small and large local populations of most species had the same probability to go extinct. The frequency distribution of species on all host trees was not bimodal, but on a subset of heavily colonized host tree stands it was. Numbers of species and individuals were correlated with tree size which was not due to a correlation of tree size and tree age. Conclusions: As far as the most abundant epiphyte species with metapopulation structures are concerned, these species belong to diverse families, e. g. Orchidaceae, Bromeliaceae and Polypodiaceae. Even ca. 80 years after the initial establishment of the host tree species in the study area epiphytes are still in the stage of initial colonization and have not reached a steady state as indicated by the strong increase in individuals and the ongoing colonization of empty trees.  相似文献   

11.
It is well known that the recovery of abandoned tropical pastures to secondary rainforest benefits from the arrival of seeds from adjacent rainforest patches. Less is known, however, about how the structural attributes of adjacent rainforest (e.g. tree density, canopy cover and tree height) impact seed rain patterns into abandoned pastures. Between 2011 and 2013, we used seed traps and ground seed surveys to track the richness and abundance of rainforest seeds entering abandoned pastures in Australia's wet tropics. We also tested how seed rain diversity is related to the distance from forest, the proportion of forest cover in the landscape and several structural attributes of adjacent forest patches, specifically average tree height, canopy cover, tree species richness and density. Almost no seeds were captured in elevated pasture seed traps, even near forest remnants. Abundant forest seeds were found in ground surveys but only within 10 m of forest edges. In ground surveys, seeds from wind‐dispersed species were more abundant, but less species rich, than animal‐dispersed species. A survey of pasture seedling recruits suggested that some forest seeds must be dispersing more than 10 m into pasture at very low frequencies, but only a few species are establishing there. Recruits were predominantly animal‐dispersed not wind‐dispersed species. In addition to distance from forest and the proportion of forest within a 100‐ to 200‐m radius of sampling sites, the richness and density of adjacent forest trees were the most important factors for explaining the probability of seed occurrence in abandoned pastures. Results suggest that without some restoration assistance, the recovery of abandoned pastures into secondary rainforest in Australia's tropical rainforests will likely be limited, at least in part, by a very low rate of seed dispersal away from forest edges and by the diversity and density of trees in adjacent remnant forests.  相似文献   

12.
Question: Disturbance effects on dry forest epiphytes are poorly known. How are epiphytic assemblages affected by different degrees of human disturbance, and what are the driving forces? Location: An inter‐Andean dry forest landscape at 2300 m elevation in northern Ecuador. Methods: We sampled epiphytic bryophytes and vascular plants on 100 trees of Acacia macracantha in five habitats: closed‐canopy mixed and pure acacia forest (old secondary), forest edge, young semi‐closed secondary woodland, and isolated trees in grassland. Results: Total species richness in forest edge habitats and on isolated trees was significantly lower than in closed forest types. Species density of vascular epiphytes (species per tree) did not differ significantly between habitat types. Species density of bryophytes, in contrast, was significantly lower in edge habitat and on isolated trees than in closed forest. Forest edge showed greater impoverishment than semi‐closed woodland and similar floristic affinity to isolated trees and to closed forest types. Assemblages were significantly nested; habitat types with major disturbance held only subsets of the closed forest assemblages, indicating a gradual reduction in niche availability. Distance to forest had no effect on species density of epiphytes on isolated trees, but species density was closely correlated with crown closure, a measure of canopy integrity. Main conclusions: Microclimatic changes but not dispersal constraints were key determinants of epiphyte assemblages following disturbance. Epiphytic cryptogams are sensitive indicators of microclimate and human disturbance in montane dry forests. The substantial impoverishment of edge habitat underlines the need for fragmentation studies on epiphytes elsewhere in the Tropics.  相似文献   

13.
Habitat isolation is one of the most important factors endangering the biodiversity, but little research has been done with vascular epiphytes. In order to understand the effect of isolation on the epiphyte community, we studied epiphyte diversity on three plots in a forest fragment, two riparian forest fragments, and in isolated pastureland trees. We found 118 vascular epiphyte species. On forest plots, both epiphyte richness per tree (Stree) and species turnover rate within trees (βtree) registered the highest values, although the lowest Stree diversity was also found there; additionally inside the forest were host species with clearly different epiphyte community. Stree and βtree diversities of riparian fragments behaved similarly to those of the forest. Isolated trees had the second highest Stree diversity, although their βtree diversity was the lowest. In the forest plots were both, the highest and lowest expected accumulated richness (α diversity); on riparian fragments it was intermediate, and the second lowest α diversity was registered for isolated trees. Species turnover rate among plots (β) was high and was associated with both, isolation and a distance gradient from permanent water sources. The epiphyte community on isolated trees was clearly different to the other habitats. Results suggest that deforestation eliminated dry areas and specific hosts that were important for the maintenance of epiphyte species richness. In pastureland trees the epiphyte βtree diversity diminished, suggesting a simplification of the environment for epiphytes and causing a low α diversity.  相似文献   

14.
The epiphyte vegetation of Annona glabra on Barro Colorado Island, Panama   总被引:1,自引:0,他引:1  
Aim Information on the community composition, structure, and dynamics of epiphyte vegetation is scarce. A survey of the epiphytes occurring on all individuals of one particular host tree species in a well-studied neotropical research site allowed us a comparison of the epiphyte flora of this tree with the local epiphyte flora, the analysis of spatial distribution patterns and the use of these patterns as indications for changes in time. In the future, our results can be used as a baseline data-set for the direct observation of the long-term dynamics in epiphyte communities. Location The study was conducted on Barro Colorado Island (BCI), Panama. Methods We recorded all individuals of the vascular epiphytes growing on Annona glabra L., a flood-tolerant, multiple-stemmed tree, which is restricted to the shoreline of BCI. Data on tree biometrics, epiphyte species, and epiphyte abundances were collected for more than 1200 trees. Results In total, we encountered almost 15,000 epiphytic individuals in sixty-eight species, corresponding to more than one third of the entire epiphyte flora of Barro Colorado Island. The component species differed strongly in abundance: the four most important species accounted for >75% of all individuals. In most cases, the same four species were also the first to colonize a tree (=phorophyte). Colonization patterns indicated no replacement of early colonizers by late arrivals. Species richness and epiphyte abundances showed a positive correlation with the size and the density of the host trees. All species showed a highly clumped distribution and the physiognomy of epiphyte communities of individual trees was dominated either by one or several of the four most common species or by a set of frequently co-occurring tank bromeliads. Other species were dominant only in exceptional cases. Most species were always rare. A distance effect on community composition was mostly confined to a local scale with an increased similarity in the species assemblage of stems of a tree v. neighbouring trees. Main conclusions The epiphytes on a single small phorophyte species may encompass a surprisingly large proportion of the local epiphyte flora. The observations that most tree crowns are inhabited by a single or only very few species, and that all epiphyte species show highly clumped distributions suggest a predominance of very local dispersal within a tree crown, which is only infrequently interrupted by successful long-distance dispersal between crowns.  相似文献   

15.
The composition and distribution of vascular epiphytes were studied in two 1‐ha plots in the KNUST Botanic garden, Ghana. One‐hectare plot each was randomly set up in secondary and cultivated forests for the identification and enumeration of trees and shrubs (≥10 cm dbh), and epiphytes. Each tree was carefully examined, noting the presence, positions and life‐forms of all epiphytes. Twenty‐nine epiphyte (29) species belonging to fourteen genera and eleven families were identified in the study. These were hosted by 48 tree species and occurred in three life‐forms: hemi‐epiphytes (45%), casual epiphytes (45%) and true epiphytes (10%). The vascular epiphyte species made up 25.7% of all the identified plant species (excluding herbs and climbers) encountered. Host species (P < 0.001), habitat (P = 0.001) and their interaction (P < 0.001) had strong effects on epiphyte composition in the forests. Moraceae was the most dominant family (44.8%), while Nephrolepis undulata J. Sm. and N. biserrata (Sw.) Scott. were the commonest species of epiphytes. In terms of vertical distribution, most epiphytes were located on the trunk, while a few occurred in the canopy.  相似文献   

16.
Secondary forests that develop following land abandonment could compensate for the losses of diversity and structure that accompany deforestation of old‐growth forests in tropical regions. Whether secondary forests can harbor similar species richness, density, and composition of old‐growth forests for vascular epiphytes remains largely unknown for secondary forests older than 50 yr. We examined community structure (species richness, density, and species composition) of vascular epiphytes in older secondary forests between 35 and 115 yr after land abandonment and nearby old‐growth forests to determine if the community structure of epiphytes in secondary forests approaches that of old‐growth forests over time. The recovery of epiphyte species richness was rapid with 55‐year‐old forests containing 65 percent of old‐growth epiphyte species richness. Secondary forest epiphyte communities were found to be statistically nested within secondary forests older in age and within old‐growth forests. Similarity of epiphyte communities to old‐growth forests increased to 75 percent, 115 yr after abandonment. This study suggests that secondary forests will likely recover old‐growth epiphyte richness and composition given enough time. Epiphyte densities did not recover quickly with 55‐year‐old forests having 14 percent and 115‐year‐old forests having only 49 percent of the density of old‐growth forest epiphytes. The low density of epiphytes in secondary forests could impact rainforest diversity and function. We conclude that in less than 115 yr, although secondary moist forests have high conservation value for some aspects of community structure, they are unlikely to compensate biologically for the loss of diversity and ecosystem function that high epiphyte densities provide.  相似文献   

17.
The impact of human disturbance on colonisation dynamics of vascular epiphytes is poorly known. We studied abundance, diversity and floristic composition of epiphyte seedling establishing on isolated and adjacent forest trees in a tropical montane landscape. All vascular epiphytes were removed from plots on the trunk bases of Piptocoma discolor. Newly established epiphyte seedlings were recorded after 2 years, and their survival after another year. Seedling density, total richness at family and genus level, and the number of families and genera per plot were significantly reduced on isolated trees relative to forest trees. Seedling assemblages on trunks of forest trees were dominated by hygrophytic understorey ferns, those on isolated trees by xerotolerant canopy taxa. Colonisation probability on isolated trees was significantly higher for plots closer to forest but not for plots with greater canopy or bryophyte cover. Seedling mortality on isolated trees was significantly higher for mesophytic than for xerotolerant taxa. Our results show that altered recruitment can explain the long-term impoverishment of post-juvenile epiphyte assemblages on isolated remnant trees. We attribute these changes to a combination of dispersal constraints and the harsher microclimate documented by measurements of temperature and humidity. Although isolated trees in anthropogenic landscapes are considered key structures for the maintenance of forest biodiversity in many aspects, our results show that their value for the conservation of epiphytes can be limited. We suggest that abiotic seedling requirements will increasingly constitute a bottleneck for the persistence of vascular epiphytes in the face of ongoing habitat alteration and atmospheric warming.  相似文献   

18.
Aim For epiphytic plants trees are habitat units, and tree size determines epiphyte species richness. While growing, trees generate vertical microhabitats that are exploited by epiphytes. One would expect to find four different types of relationship between tree size and epiphyte species richness: positive linear (young trees), neutral (old trees), negative (old decaying trees) and positive asymptotic (trees of mixed size class in a mature forest). We tested these relationships in plots of colonizing sweetgum trees in pastureland, isolated remnant trees in pastureland (old oaks) and sweetgum and oaks in a pristine forest. Location The study was carried out in a landscape shaped by the fragmentation of lower montane cloud forest in San Andrés Tlalnelhuayocan (19°30′56′′ N and 96°59′50′′ W; 1500–1600 m a.s.l.) in central Veracruz, Mexico. Methods We measured the d.b.h. of all oaks and sweetgum trees (d.b.h. ≥ 5 cm) present in pastureland and in three 100 m2 plots of a lower montane cloud forest. All trees were climbed and species richness of the epiphytes recorded. Results As expected, colonizer trees in pastureland showed a linear positive relationship. Although we found evidence that remnant oaks in pastureland had a neutral relationship between tree size and epiphyte species richness, the low power of the test did not allow us to make conclusions about the kind of relationship. Mixed size‐class pristine forest trees showed a positive linear relationship between tree size and epiphyte species richness instead of a positive asymptotic one. Main conclusions Our results suggest that in the study area epiphyte communities are unsaturated, as the number of species increases with tree size and does not reach a ceiling. This evidence supports the idea that the species–area relationship is not asymptotic. However, the epiphyte community on remnant pastureland oaks may be saturated as epiphyte species richness did not increase with tree size, but a larger sample size is needed to confirm the neutral pattern. Neutral, asymptotic and negative patterns in the relationship between tree size and epiphyte species richness depend on the saturation of the trees by epiphytes. Other studies have suggested tree saturation, but further research is necessary in order to confirm or rule out these patterns.  相似文献   

19.
We compared bird community responses to the habitat transitions of rainforest‐to‐pasture conversion, consequent habitat fragmentation, and post‐agricultural regeneration, across a landscape mosaic of about 600 km2 in the eastern Australian subtropics. Birds were surveyed in seven habitats: continuous mature rainforest; two size classes of mature rainforest fragment (4–21 ha and 1–3 ha); regrowth forest patches dominated by a non‐native tree (2–20 ha, 30–50 years old); two types of isolated mature trees in pasture; and treeless pasture, with six sites per habitat. We compared the avifauna among habitats and among sites, at the levels of species, functional guilds, and community‐wide. Community‐wide species richness and abundance of birds in pasture sites were about one‐fifth and one‐third, respectively, of their values in mature rainforest (irrespective of patch size). Many measured attributes changed progressively across a gradient of increased habitat simplification. Rainforest specialists became less common and less diverse with decreased habitat patch size and vegetation maturity. However, even rainforest fragments of 1–3 ha supported about half of these species. Forest generalist species were largely insensitive to patch size and successional stage. Few species reached their greatest abundance in either small rainforest fragments or regrowth. All pastures were dominated by bird species whose typical native habitats were grassland, wetland, and open eucalypt forest, while pasture trees modestly enhanced local bird communities. Overall, even small scattered patches of mature and regrowth forest contributed substantial bird diversity to local landscapes. Therefore, maximizing the aggregate rainforest area is a useful regional conservation strategy.  相似文献   

20.
The commensalistic interaction between vascular epiphytes and host trees is a type of biotic interaction that has been recently analysed with a network approach. This approach is useful to describe the network structure with metrics such as nestedness, specialization and interaction evenness, which can be compared with other vascular epiphyte-host tree networks from different forests of the world. However, in several cases these comparisons showed different and inconsistent patterns between these networks, and their possible ecological and evolutionary determinants have been scarcely studied. In this study, the interactions between vascular epiphytes and host trees of a subtropical forest of sierra de San Javier (Tucuman, Argentina) were analysed with a network approach. We calculated metrics to characterize the network and we analysed factors such as the abundance of species, tree size, tree bark texture, and tree wood density in order to predict interaction frequencies and network structure. The interaction network analysed exhibited a nested structure, an even distribution of interactions, and low specialization, properties shared with other obligated vascular epiphyte-host tree networks with a different assemblage structure. Interaction frequencies were predicted by the abundance of species, tree size and tree bark texture. Species abundance and tree size also predicted nestedness. Abundance indicated that abundant species interact more frequently; and tree size was an important predictor, since larger-diameter trees hosted more vascular epiphyte species than small-diameter trees. This is one of the first studies analyzing interactions between vascular epiphytes and host trees using a network approach in a subtropical forest, and taking the whole vascular epiphyte assemblage of the sampled community into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号