首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nowadays, a quest for efficient greenhouse heating strategies, and their related effects on the plant’s performance, exists. In this study, the effects of a combination of warm days and cool nights in autumn and spring on the photosynthetic activity and efficiency of Phalaenopsis were evaluated; the latter, being poorly characterised in plants with crassulacean acid metabolism (CAM) and, to our knowledge, not reported before in Phalaenopsis. 24-h CO2 flux measurements and chlorophyll (Chl) fluorescence analyses were performed in both seasons on Phalaenopsis ‘Hercules’ exposed to relatively constant temperature regimes, 25.5/24.0°C (autumn) and 30/27°C (spring) respectively, and distinctive warm day/cool night temperature regimes, 27/20°C (autumn) and 36/24°C (spring), respectively. Cumulated leaf net CO2 uptake of the distinctive warm day/cool night temperature regimes declined with 10–16% as compared to the more constant temperature regimes, while the efficiency of carbon fixation revealed no substantial differences in both seasons. Nevertheless, a distinctive warm day/cool night temperature regime seemed to induce photorespiration. Although photorespiration is expected not to occur in CAM, the suppression of the leaf net CO2 exchange during Phase II and Phase IV as well as the slightly lower efficiency of carbon fixation for the distinctive warm day/cool night temperature regimes confirms the involvement of photorespiration in CAM. A seasonal effect was reflected in the leaf net CO2 exchange rate with considerably higher rates in spring. In addition, sufficiently high levels of photosynthetically active radiation (PAR) in spring led to an efficiency of carbon fixation of 1.06–1.27% which is about twice as high than in autumn. As a result, only in the case where a net energy reduction between the temperature regimes compensates for the reduction in net CO2 uptake, warm day/cool night temperature regimes may be recommended as a practical sustainable alternative.  相似文献   

2.
The capability of Phalaenopsis to acclimate its photosynthetic capacity and metabolic activity to cool night temperature conditions is crucial for improving orchid production in terms of efficient greenhouse heating. The extent to which Phalaenopsis possesses acclimation potential and the mechanistic background of the metabolic processes involved, have, however, not been studied before. Plants were subjected to a direct and gradual shift from a day to night temperature regime of 28/28–28/16°C, the cold stress and cold acclimation treatment, respectively. In comparison with the cold stress treatment, the cold acclimation treatment led to a higher malate accumulation and a reduction in leaf net CO2 uptake. Consistently, the contribution of respiratory CO2 recycling to nocturnal malate synthesis was calculated to be 23.5 and 47.0% for the cold stress and cold acclimation treatment, respectively. Moreover, the lower levels of starch measured in the cold acclimated leaves confirmed the suggested enhanced respiratory CO2 recycling, implying that Phalaenopsis CAM operation evolved towards CAM idling. It is, however, plausible that this adjustment was not an effect of the low night temperature per se but a consequence of cool-root induced drought stress. Apart from that, at the start of the photoperiod, membrane stability showed a depression which was directly counteracted by an increased generation of glucose, fructose and sucrose. From these observations, it can be concluded that the observed plasticity in CAM operation and metabolic flexibility may be recognized as important steps in the low night temperature acclimation of Phalaenopsis.  相似文献   

3.
Thermoregulation is critical to the survival of animals. Tropical environments can be particularly thermally challenging as they reach very high, even lethal, temperatures. The thermoregulatory responses of tropical freshwater turtles to these challenges are poorly known. One common thermoregulatory behaviour is diurnal basking, which, for many species, facilitates heat gain. Recently, however, a north-eastern Australian population of Krefft's river turtles (Emydura macquarii krefftii) has been observed basking nocturnally, possibly to allow cooling. To test this, we determined the thermal preference (central 50% of temperatures selected) of E. m. krefftii in an aquatic thermal gradient in the laboratory. We then conducted a manipulative experiment to test the effects of water temperatures, both lower and higher than preferred temperature, on diurnal and nocturnal basking. The preferred temperature range fell between 25.3°C (±SD: 1.5) and 27.6°C (±1.4) during the day, and 25.3°C (±2.4) and 26.8°C (±2.5) at night. Based on this, we exposed turtles to three 24 h water temperature treatments (‘cool’ [23°C], ‘preferred’ [26°C] and ‘warm’ [29°C]) while air temperature remained constant at 26°C. Turtles basked more frequently and for longer periods during both the day and night when water temperatures were above their preferred range (the ‘warm’ treatment). This population frequently encounters aquatic temperatures above the preferred thermal range, and our results support the hypothesis that nocturnal basking is a mechanism for escaping unfavourably warm water. Targeted field studies would be a valuable next step in understanding the seasonal scope of this behaviour in a natural environment.  相似文献   

4.
Chlorophyll (Chl) fluorescence of warm day/cool night temperature exposed Phalaenopsis plants was measured hourly during 48 h to study the simultaneous temperature and irradiance response of the photosynthetic physiology. The daily pattern of fluorescence kinetics showed abrupt changes of photochemical quenching (qP), non-photochemical quenching (NPQ) and quantum yield of photosystem II electron transport (ΦPSII) upon transition from day to night and vice versa. During the day, the course of ΦPSII and NPQ was related to the air temperature pattern, while maximum quantum efficiency of PSII photochemistry (Fv/Fm) revealed a rather light dependent response. Information on these daily dynamics in fluorescence kinetics is important with respect to meaningful data collection and interpretation.  相似文献   

5.
Physiological responses of Opuntia ficus-indica to growth temperature   总被引:2,自引:0,他引:2  
The influences of various day/night air temperatures on net CO2 uptake and nocturnal acid accumulation were determined for Opuntia ficus-indica, complementing previous studies on the water relations and responses to photosynthetically active radiation (PAR) for this widely cultivated cactus. As for other Crassulacean acid metabolism (CAM) plants, net nocturnal CO2 uptake had a relatively low optimal temperature, ranging from 11°C for plants grown at day/night air temperatures of 10°C/0°C to 23°C at 45°C/35°C. Stomatal opening, which occurred essentially only at night and was measured by changes in water vapor conductance, progressively decreased as the measurement temperature was raised. The CO2 residual conductance, which describes chlorenchyma properties, had a temperature optimum a few degrees higher than the optimum for net CO2 uptake at all growth temperatures. Nocturnal CO2 uptake and acid accumulation summed over the whole night were maximal for growth temperatures near 25°C/15°C, CO2 uptake decreasing more rapidly than acid accumulation as the growth temperature was raised. At day/night air temperatures that led to substantial nocturnal acid accumulation (25°C/15°C.). 90% saturation of acid accumulation required a higher total daily PAR than at non-optimal growth temperatures (10°C/0°C and 35°C/25°C). Also, the optimal temperature of net CO2 uptake shifted downward when the plants were under drought conditions at all three growth temperatures tested, possibly reflecting an increased fractional importance of respiration at the higher temperatures during drought. Thus, water status, ambient PAR, and growth temperatures must all be considered when predicting the temperature response of gas exchange for O. ficus-indica and presumably for other CAM plants.  相似文献   

6.
High CO2 and high temperature have an antagonistic interaction effect on rice yield potential and present a unique challenge to adapting rice to projected future climates. Understanding how the differences in response to these two abiotic variables are partitioned across rice germplasm accessions may be key to identifying potentially useful sources of resilient alleles for adapting rice to climate change. In this study, we evaluated eleven globally diverse rice accessions under controlled conditions at two carbon dioxide concentrations (400 and 600 ppm) and four temperature environments (29 °C day/21 °C night; 29 °C day/21 °C night with additional heat stress at anthesis; 34 °C day/26 °C night; and 34 °C day/26 °C night with additional heat stress at anthesis) for a suite of traits including five yield components, five growth characteristics, one phenological trait, and four photosynthesis‐related measurements. Multivariate analyses of mean trait data from these eight treatments divide our rice panel into two primary groups consistent with the genetic classification of INDICA/INDICA‐like and JAPONICA populations. Overall, we find that the productivity of plants grown under elevated [CO2] was more sensitive (negative response) to high temperature stress compared with that of plants grown under ambient [CO2] across this diversity panel. We report differential response to CO2 × temperature interaction for INDICA/INDICA‐like and JAPONICA rice accessions and find preliminary evidence for the beneficial introduction of exotic alleles into cultivated rice genomic background. Overall, these results support the idea of using wild or currently unadapted gene pools in rice to enhance breeding efforts to secure future climate change adaptation.  相似文献   

7.
We examined the effect of light emitting diode (LED) lighting in greenhouse facilities on growth, chlorophyll fluorescence and pigmentation in Phalaenopsis ‘Vivien’ and ‘Purple Star’ under purpose‐built LED arrays yielding c. 200 µmol m?2 s?1 at plant height for 14 h per day and 24/18°C day/night temperature, respectively, from January to April 2013. The light treatments were (1) 40% blue in 60% red (40% B/R), (2) 0% blue in 100% red (0% B/R) and (3) white LEDs with 32% blue in white (32% B/W, control), with background daylight under shade screens. The plants were harvested twice for leaf growth and pigmentation. There was no clear pattern in the spectral effect on growth since the order of leaf size differed between harvests in March and April. Fv/Fm was in the range of 0.52–0.72, but overall slightly higher in the control, which indicated a permanent downregulation of PSII in the colored treatments. The fluorescence quenching showed no acclimation to color in ‘Purple Star’, while ‘Vivien’ had lower ETR and higher NPQ in the 40% B/R, resembling low light acclimation. The pigmentation showed corresponding spectral response with increasing concentration of lutein while increasing the fraction of blue light, which increased the light absorption in the green/yellow part of the spectrum. The permanent downregulation of PSII moved a substantial part of the thermal dissipation from the light regulated NPQ to non‐regulated energy losses estimated by ΦNPQ and ΦNO and the difference found in the balance between ΦPSII and ΦNPQ in ‘Vivien’ disappeared when ΦNO was included in the thermal dissipation.  相似文献   

8.
The effects of three day/night temperatures (18/12 C, 24/18 C, and 30/24 C), and two types of containers (clay and plastic) on the seedling growth of three F1 hybrid annuals were determined after 14 days of controlled-environment treatment. A day/night temperature of 18/12 C was severely limiting to the early seedling growth of ‘Blue Blazer’ ageratum (Ageratum houstonianum Mill.), ‘Pink Cascade’ petunia (Petunia hybrida Vilm.), and ‘Double Eagle’ marigold (Tagetes erecta L.). Raising the day/night temperature to 24/18 C resulted in striking increases in growth in both clay and plastic pots. Fresh and dry weights of tops for all three species were increased four- to fivefold, and leaf areas of ageratum and petunia were increased more than fivefold irrespective of container. Height and node number were also increased significantly but to a much lesser degree. A day/night temperature of 30/24 C appeared to be optimum for early seedling growth of F1 hybrid annuals the optimum being based on dry matter accumulation, stem elongation, node development, and leaf area production. Growth of lateral shoots was greatly stimulated at 30/24 C, especially in marigold. There were no appreciable differences in fresh or dry weight of tops or in leaf area between plants in clay and plastic containers at any of the three day/night temperatures.  相似文献   

9.
Abstract Seasonal cold-acclimation patterns and the effects of photoperiod and temperature on cold-hardiness of Hibiscus rosa-sinensis L. and Hibiscus syriacus L. were determined. Field-grown H. rosasinensis consistently failed to survive freezing at - 2°C. Two genotypes of field- and container-grown H. syriacus initiated cold-acclimation in mid September, in response to decreasing daylength, and continued to an ultimate midwinter hardiness level of - 27°C in early February. Controlled environment experiments using combinations of short days (SD) and cool day/night temperatures were unable to induce even minimal cold acclimation of H. rosasinensis. In controlled environments, H. syriacus attained a moderate amount of cold tolerance at warm temperatures and long days (LD). Low night temperature combined with LD, warm day produced the same degree of cold-acclimation as the SD treatments. While not essential, SD enhanced H. syriacus cold-acclimation in controlled environments. A - 5°C frost treatment of intact plants did not enhance cold-hardiness of H. syriacus.  相似文献   

10.
This study investigates the effect of short‐ and long‐term changesin temperature on the regulation of root respiratory O2 uptakeby substrate supply, adenylate restriction and/or the capacityof the respiratory system. The species investigated were the lowland Plantagolanceolata L. and alpine Plantago euryphylla Briggs, Carolin& Pulley, which are inherently fast‐ and slow‐growing, respectively. Theplants were grown hydroponically in a controlled environment (constant23 °C). The effect of long‐term exposure to lowtemperature on regulation of respiration was also assessed in P.lanceolata using plants transferred to 15/10 °C(day/night) for 7 d. Exogenous glucose and uncoupler (CCCP)were used to assess the extent to which respiration rates were limitedby substrate supply and adenylates. The results suggest that adenylatesand/or substrate supply exert the greatest control overrespiration at moderate temperatures (e.g. 15–30 °C)in both species. At low temperatures (5–15 °C),CCCP and glucose had little effect on respiration, suggesting thatrespiration was limited by enzyme capacity alone. The Q10 (proportionalincrease of respiration per 10 °C) of respirationwas increased following the addition of CCCP and/or exogenousglucose. The degree of stimulation by CCCP was considerably lowerin P. euryphylla than P. lanceolata. This suggeststhat respiration rates operate much closer to the maximum capacity in P.euryphylla than P. lanceolata. When P. lanceolata wastransferred to 15 °C for 7 d, respirationacclimated to the lower growth temperature (as demonstrated by an increasein respiration rates measured at 25 °C). In addition,the Q10 was higher, and the stimulatory effectof exogenous glucose and CCCP lower, in the cold‐acclimated rootsin comparison with their warm‐grown counterparts. Acclimation of P.lanceolata to different day/night‐time temperatureregimes was also investigated. The low night‐time temperature wasfound to be the most important factor influencing acclimation. The Q10 valueswere also higher in plants exposed to the lowest night‐time temperature.The results demonstrate that short‐ and long‐term changes in temperaturealter the importance of substrate supply, adenylates and capacityof respiratory enzymes in regulating respiratory flux.  相似文献   

11.
The goal of this study was to investigate whether chilling tolerance of C4 photosynthesis in Miscanthus can be transferred to sugarcane by hybridization. Net leaf CO2 uptake (Asat) and the maximum operating efficiency of photosystem II (ФPSII) were measured in warm conditions (25 °C/20 °C), and then during and following a chilling treatment of 10 °C/5 °C for 11 day in controlled environment chambers. Two of three hybrids (miscanes), ‘US 84‐1058’ and ‘US 87‐1019’, did not differ significantly from the chilling tolerant M. ×giganteus ‘Illinois’ (Mxg), for Asat, and ΦPSII measured during chilling. For Mxg grown at 10 °C/5 °C for 11 days, Asat was 4.4 μmol m?2 s?1, while for miscane ‘US 84‐1058’ and ‘US 87‐1019’, Asat was 5.7 and 3.5 μmol m?2 s?1, respectively. Miscanes ‘US 84‐1058’ and ‘US 87‐1019’ and Mxg had significantly higher rates of Asat during chilling than three tested sugarcanes. A third miscane showed lower rates than Mxg during chilling, but recovered to higher rates than sugarcane upon return to warm conditions. Chilling tolerance of ‘US 84‐1058’ was further confirmed under autumn field conditions in southern Illinois. The selected chilling tolerant miscanes have particular value for biomass feedstock and biofuel production and at the same time they can be a starting point for extending sugarcane's range to colder climates.  相似文献   

12.
The mechanisms controlling the photosynthetic performance of C4 plants at low temperature were investigated using ecotypes of Bouteloua gracilis Lag. from high (3000 m) and low (1500 m) elevation sites in the Rocky Mountains of Colorado. Plants were grown in controlled‐environment cabinets at a photon flux density of 700 μ mol m?2 s?1 and day/night temperatures of 26/16 °C or 14/7 °C. The thermal response of the net CO2 assimilation rate (A) was evaluated using leaf gas‐exchange analysis and activity assays of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPCase) and pyruvate,orthophosphate dikinase (PPDK). In both ecotypes, a reduction in measurement temperature caused the CO2‐saturated rate of photosynthesis to decline to a greater degree than the initial slope of A versus the intercellular CO2 response, thereby reducing the photosynthetic CO2 saturation point. As a consequence, A in normal air was CO2‐saturated at sub‐optimal temperatures. Ecotypic variation was low when grown at 26/16 °C, with the major difference between the ecotypes being that the low‐elevation plants had higher A; however, the ecotypes responded differently when grown at cool temperature. At temperatures below the thermal optimum, A in high‐elevation plants grown at 14/7 °C was enhanced relative to plants grown at 26/16 °C, while A in low‐elevation plants grown at 14/7 °C was reduced compared to 26/16 °C‐grown plants. Photoinhibition at low growth temperature was minor in both ecotypes as indicated by small reductions in dark‐adapted Fv/Fm. In both ecotypes, the activity of Rubisco was equivalent to A below 17 °C but well in excess of A above 25 °C. Activities of PEPCase and PPDK responded to temperature in a similar proportion relative to Rubisco, and showed no evidence for dissociation that would cause them to become principal limitations at low temperature. Because of the similar temperature response of Rubisco and A, we propose that Rubisco is a major limitation on C4 photosynthesis in B. gracilis below 17 °C. Based on these results and for theoretical reasons associated with how C4 plants use Rubisco, we further suggest that Rubisco capacity may be a widespread limitation upon C4 photosynthesis at low temperature.  相似文献   

13.
In order to investigate the relative impacts of increases in day and night temperature on tree carbon relations, we measured night‐time respiration and daytime photosynthesis of leaves in canopies of 4‐m‐tall cottonwood (Populus deltoides Bartr. ex Marsh) trees experiencing three daytime temperatures (25, 28 or 31 °C) and either (i) a constant nocturnal temperature of 20 °C or (ii) increasing nocturnal temperatures (15, 20 or 25 °C). In the first (day warming only) experiment, rates of night‐time leaf dark respiration (Rdark) remained constant and leaves displayed a modest increase (11%) in light‐saturated photosynthetic capacity (Amax) during the day (1000–1300 h) over the 6 °C range. In the second (dual night and day warming) experiment, Rdark increased by 77% when nocturnal temperatures were increased from 15 °C (0·36 µmol m?2 s?1) to 25 °C (0·64 µmol m?2 s?1). Amax responded positively to the additional nocturnal warming, and increased by 38 and 64% in the 20/28 and 25/31 °C treatments, respectively, compared with the 15/25 °C treatment. These increases in photosynthetic capacity were associated with strong increases in the maximum carboxylation rate of rubisco (Vcmax) and ribulose‐1,5‐bisphosphate (RuBP) regeneration capacity mediated by maximum electron transport rate (Jmax). Leaf soluble sugar and starch concentration, measured at sunrise, declined significantly as nocturnal temperature increased. The nocturnal temperature manipulation resulted in a significant inverse relationship between Amax and pre‐dawn leaf carbohydrate status. Independent measurements of the temperature response of photosynthesis indicated that the optimum temperature (Topt) acclimated fully to the 6 °C range of temperature imposed in the daytime warming. Our findings are consistent with the hypothesis that elevated night‐time temperature increases photosynthetic capacity during the following light period through a respiratory‐driven reduction in leaf carbohydrate concentration. These responses indicate that predicted increases in night‐time minimum temperatures may have a significant influence on net plant carbon uptake.  相似文献   

14.
Effects of contrasting temperatures of an expanding leaf (source) and of remaining plant parts (sink) on diurnal export and distribution of carbon were studied in seedlings of Cucumis sativus L., cv. Farbio. The time course of the rate of export was calculated by measuring simultaneously the exchange of 14CO2 and the amount of 14C in the source leaf by means of a Geiger-Müller detector using a steady-state labelling technique. In all treatments average export rate during the night (16 h) was maximally 50% of the average rate during the 8-h day. Temperature affected the diurnal course of export via the source leaf and the sink in different ways. At a source leaf temperature of 25 or 30°C export stopped 12 h after start of the night, whereas at 20°C export continued throughout the night. However, the total amount of carbon exported during a 24 h cycle, expressed as a proportion of the amount of carbon assimilated, was the same at source leaf temperatures of 20 or 30°C. Thus source leaf temperature did not affect the distribution of assimilates between source and sink, in contrast to sink temperature. After 24 h at a sink temperature of 30°C, 20% more 14C was exported to plant parts below the source leaf than with a sink temperature of 20°C, at the expense of carbon remaining in the source. During the day less starch and more structural dry matter was formed at a source leaf temperature of 30°C than at 20°C. After a complete day/night cycle, however, there was no difference between the treatments. Starch was the primary carbon source during the night, and the decline in the rate of export coincided with the depletion of starch. Thus the decline in the rate of export at a source leaf temperature of 25 or 30°C at 12 h after the start of the night was due to the depletion of starch at that time. Similarly, at 20°C export could continue until the end of the night as the starch degradation supplied assimilates during the whole night.  相似文献   

15.
Hylocereus undatus, which is native to tropical forests experiencing moderate temperatures, would not be expected to tolerate the extremely high temperatures that can be tolerated by cacti native to deserts. Nevertheless, total daily net CO2 uptake by this hemiepiphytic cactus, which is widely cultivated for its fruits, was optimal at day/night air temperatures of 30/20°C, temperatures that are higher than those optimal for daily net CO2 uptake by cacti native to arid and semiarid areas. Exposure to 35/25°C for 30 weeks led to lower net CO2 uptake than at 10 weeks; exposure to 40/30°C led to considerable necrosis visible on the stems at 6 weeks and nearly complete browning of the stems by 19 weeks. Dry mass gain over 31 weeks was greatest for plants at 30/20°C, with root growth being especially noteworthy and root dry mass gain representing an increasing percentage of plant dry mass gain as day/night air temperatures were increased. Viability of chlorenchyma cells, assayed by the uptake of the vital stain neutral red into the central vacuoles, was decreased 50 percent by a one‐hour treatment at 55°C compared with an average of 64°C for 18 species of cacti native to deserts. The lower high‐temperature tolerance for H. undatus reflected its low high‐temperature acclimation of only 1.4°C as growth temperatures were raised by 10°C compared with an average acclimation of 5.3°C for the other 18 species of cacti. Thus, this tropical hemiepiphytic cactus is not adapted to day/night air temperatures above ca 40/30°C, although its net CO2 uptake is optimal at the relatively high day/night air temperatures of 30/20°C.  相似文献   

16.
The germination characteristics of Banksia integrifolia L.f., B. serrata L.f. and B. aemula R.Br. were investigated. No significant response was found to light exposure, seed coat and substrate treatments. The three species showed marked and differing sensitivities to the temperature regime of germination. Germination character curves allowing the interpretation of temperature maxima, minima, the span between them, and optimal conditions for minimal incubation periods are presented. These were for B. integrifolia cool day temperatures < 21°C but in excess of 14°C coupled with night temperatures between 5°C and 21°C; for B. serrata a narrow range of temperatures between 18°C and 24°C; for B. aemula warm day temperatures 25–37°C coupled with night temperatures in the range 18–28°C. The geographical distribution of these species is related to germination requirements and some aspects of the seasonality of establishment environments are discussed.  相似文献   

17.
The effect of high temperatures on cytokinin levels in Phalaenopsis hybrida leaves was investigated. Endogenous cytokinins were identified and quantified in Phalaenopsis leaves grown under high temperature conditions (30/25 °C day/night) using high performance liquid chromatography, bioassay and gas chromatography-selected ion monitoring-mass spectrometry. After 5 and 20 d of low temperature (25/20 °C day/night), zeatin, zeatin riboside and dihydrozeatin levels in the leaves were higher than that in leaves subjected to high temperature treatments. When Phalaenopsis leaves were exposed to low temperatures, about 76 % of the free cytokinins detected were of the zeatin-type. Glucoside cytokinins in the leaves increased significantly 5 d following high temperatures, and the rate of increase in glucoside cytokinins corresponded to the duration of high temperatures. At the same time, zeatin riboside and dihydrozeatin declined significantly following high temperature application. A significant accumulation of glucoside cytokinins, zeatin-9-glucoside, zeatin-O-glucoside, zeatin riboside-O-glucoside, and dihydrozeatin-O-glucoside was observed 20 d following high temperatures. These results suggest that high temperatures lead to an accumulation of glucoside cytokinins and a reduction of free base and riboside cytokinins.  相似文献   

18.
Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest that these trends are likely to continue in many regions, particularly in northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal‐night‐and‐day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night‐only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We report on the first experiment to examine ecosystem‐scale impacts of faster increases in Tmin than in Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day–night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found that the ecosystem lost more carbon at elevated than ambient temperatures, but remained unaffected by the 3 °C difference in DTR between symmetric warming (constantly ambient + 3.5 °C) and asymmetric warming (dawn Tmin = ambient + 5 °C, afternoon Tmax = ambient + 2 °C). Reducing DTR had no apparent effect on photosynthesis, probably because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.  相似文献   

19.
Orchard-grown dwarf apple (Malus domestica Borkh.) trees selected from a hybrid population were propagated by tissue culture but had a growth pattern similar to standard cv. Golden Delicious plants when grown at constant 27°C instead of the expected dwarf pattern of growth. Shoot elongation was markedly reduced, with or without gibberellin A1 (GA1) or GA4 treatment, when trees were grown in an environment where day temperature was maintained at 35°C for 2 h in a ramped regime (night 20°C day ramped to 35°C, held for 2 h and ramped down to 20°C night over a 14-h photoperiod). Application of GA1 or GA4 partially overcame growth retardation resulting from prior paclobutrazol treatment of both standard and dwarf trees grown at constant 27°C and of standard trees grown in the ramped environment. However, these GAs had no effect on paclobutrazol-treated or untreated dwarfs grown in the ramped regime. Gas chromatography-mass spectrometry with labelled internal standards was used to quantify GA1, GA3, GA8, GA19, GA20 and GA29 in extracts from standard and dwarf plants grown either at a constant 27°C or in a 20-30-20°C ramped temperature regime. Standard plants, which elongate quite rapidly in either environment, had similar levels of these GAs in both temperature regimes. The slowly growing dwarfs in the ramped temperature environment contained three times more GA19 than the rapidly elongating dwarfs grown at 27°C. The concentrations of the other GAs were reduced to ca 40% or less in plants grown in the ramped temperature regime compared with those grown at 27°C. These data suggest that shoot elongation of dwarf plants is sensitive to elevated temperatures both as a result of reduced responsiveness to GAs and because of a reduction in the concentration of GA1, apparently as a result of a lower rate of conversion of GA19 to GA20. It is possible that the altered GA metabolism may be a consequence of the change in GA sensitivity.  相似文献   

20.
The effects of each of four contrasting combinations of two day (30, 26°C) and two night (24, 19°C) temperatures were studied on four cowpea varieties and their F1 hybrids. Early vegetative development was enhanced by the higher day, higher night temperature and flowering occurred first in plants receiving this treatment. The hybrids showed marked heterosis for leaf area but not for time to flowering. The ten genotypes studied showed correlated responses to increases in night temperature and differed in the degree of their response. The extent of the response (or stability) of varieties was often determined by the character values in the environment with the highest yield and heterotic hybrids were the least stable. Grain yield was highest in the lower day temperature environments but there was variation between genotypes in whether this occurred at the lower or higher night temperature. The pattern of responses shown by hybrids agreed with those of their parents indicating that stability was an inherited character. The results confirmed and extended those in earlier studies and emphasised the importance of a greater understanding of the nature of responses to the environment in selecting new varieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号