首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
F Ishige  H Mori  K Yamazaki    H Imaseki 《Plant physiology》1993,101(1):193-199
Ethylene causes the accumulation of seven different proteins (each designated AZxx according to its molecular mass, xx in kD) in excised primary leaves of azuki bean (Vigna angularis) (F. Ishige, H. Mori, K. Yamazaki, H. Imaseki [1991] Plant Cell Physiol 32: 681-690). A complementary DNA encoding an ethylene-induced basic glycoprotein, AZ42, from azuki bean was cloned and its complete nucleotide sequence was determined. Characterization of the cDNA was accomplished by monitoring expression of an immunoreactive protein in Escherichia coli that harbored the cDNA and by the identification of a partial amino acid sequence that was the same as that determined from the purified protein. An open reading frame (1071 base pairs) in the cDNA encoded a protein of 357 amino acids with a molecular mass of 39.3 kD. The amino acid sequence contained three regions that are highly conserved among peroxidases from eight different plants. Purified AZ42 exhibited peroxidase activity. The basic glycoprotein induced by ethylene was identified as a cationic isozyme of peroxidase. The corresponding mRNA was not present in leaves that had not been treated with ethylene, but it appeared after 1 h of treatment with ethylene and its level increased for the next 15 h. Accumulation of the mRNA was also induced after wounding or treatment with salicylate. The wound-induced increase in the level of the mRNA was suppressed by 2,5-norbornadiene, but the salicylate-induced increase was not.  相似文献   

2.
A complementary DNA encoding an ethylene-inducible acidic chitinaseof azuki bean (Vigna angularis) was isolated, and its completenucleotide sequence was determined. The nucleotide and deducedamino-acid sequence were very similar to those of an acidicchitinase from cucumber leaves that had been infected with tobacconecrosis virus. The mRNA for the acidic chitinase was not detectedin leaves of azuki bean that had not been treated with ethylene,but it appeared 3 h after initiation of treatment with ethyleneand its level gradually increased over a period of 19 h. ThemRNA also accumulated in response to salicylate or wounding.The expression of the gene in response to wounding was suppressedby 2,5-norbornadiene, but that in response to salicylate wasnot affected by this inhibitor. (Received May 19, 1992; Accepted November 2, 1992)  相似文献   

3.
A two-dimensional gel electrophoresis system that combines a cationic polyacrylamide gel electrophoresis at pH near neutrality with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to analyze the spectrum of basic polypeptides that accumulate in bean (Phaseolus vulgaris) abscission zones after treatment with ethylene. Results showed that, as abscission progressed, at least seven basic proteins accumulated in the abscission zone prior to the accumulation of 9.5 cellulase. Six of the seven proteins correspond to pathogenesis-related (PR) proteins. Among them, two isoforms of β-1,3-glucanase and multiple isoforms of chitinase were identified. A 22 kilodalton polypeptide that accumulated to high levels was identified as a thaumatin-like protein by analysis of its N-terminal sequence (up to 20 amino acids) and its serological relationship with heterologous thaumatin antibodies. A 15 kilodalton polypeptide serologically related to PR P1 (p14) from tomato was identified as bean PR P1 (p14)-like protein. The kinetics of accumulation of glucanases, chitinases, thaumatin-like and PR P1 (p14)-like proteins during ethylene treatment were similar and they showed that PR proteins accumulated in abscission zones prior to the increase in 9.5 cellulase. Addition of indoleacetic acid, a potent inhibitor of abscission, reduced the accumulation of these proteins to a similar extent (60%). The synchronized accumulation of this set of PR proteins, early in the abscission process, may play a role in induced resistance to possible fungal attack after a plant part is shed. The seventh protein does not correspond to any previously characterized PR protein. This new 45 kilodalton polypeptide accumulated in abscission zones on exposure to ethylene concomitantly with the increase in 9.5 cellulase. Its N-terminal sequence (up to 15 amino acids) showed some homology with the amino terminal sequence of chitinase. Polyclonal antibodies against chitinase recognized the 45 kilodalton polypeptide, but polyclonal antibodies against the 45 kilodalton protein recognized chitinase weakly. When abscission was inhibited by addition of indoleacetic acid, the accumulation of the 45 kilodalton protein was strongly inhibited (80%). This result suggests that the 45 kilodalton polypeptide may play a more direct role in abscission.  相似文献   

4.
Vacuolar localization of ethylene-induced chitinase in bean leaves   总被引:19,自引:4,他引:15       下载免费PDF全文
The localization of ethylene-induced endochitinase was studied in bean (Phaseolus vulgaris L. cv Saxa) leaves. The specific activity of chitinase in mesophyll protoplasts isolated from the leaves was as high as in tissue homogenates, indicating that most of the enzyme was located intracellularly. Vacuoles isolated and purified from the protoplasts were found to contain most of the intracellular chitinase activity.  相似文献   

5.
Significant amounts of ethylene was produced by Pseudomonassolanacearum (all strains), P. syringae pv. phaseolicola (Kudzustrains isolated from Pueraria lobata) and Erwinia rhapontici(2 strains out of 22) out of 24 species, 3 subspecies and 38pathovars of plant pathogenic bacteria tested in yeast extract-peptonebroth. The bean strains of P. syringae pv. phaseolicola causinghalo blight in kindney bean plants did not produce ethylene.The Kudzu strains produced ethylene at a rate of 7 to 100?10–9nl cell–1 h–1, which was 500 to 1,000 times higherthan that of P. solanacearum and several times higher than thatof Penicillium digitatum, the most potent ethylene producerknown among microorganisms. The presence of living cells was essential for ethylene productionby the Kudzu strains. The bacterium effectively produced ethylenefrom amino acids such as glutamate, aspartate and their amides.Although glucose and succinate were also good substrates forethylene biosynthesis, the rate of ethylene production was significantlysmaller than that with glutamate. Methionine, which is knownas the precursor of ethylene in plants, had no effect on ethyleneproduction by the bacterium. 1-Aminocyclopropane-1-carboxylicacid (ACC) also had no effect on ethylene production, and therewas not enough ACC in the bacterial cells to account for thehigh rate of ethylene production. Ethylene production from glutamatewas inhibited by n-propylgallate and EDTA, but not by aminoethoxyvinylglycine.These results indicate that ACC is not involved as an intermediatein the process of ethylene biosynthesis by the bacterium, suggestingthe presence of a pathway different from that of plant tissues. (Received September 4, 1984; Accepted October 27, 1984)  相似文献   

6.
FIELD  R. J. 《Annals of botany》1981,48(1):33-39
Leaf discs cut from primary leaves of Phaseolus vulgaris L cvMasterpiece were incubated at temperatures higher than the growthtemperature of 25 °C Both basal and wound ethylene productionincreased up to temperatures of 35–37 5 °C, thereafterdeclining rapidly There was no detectable ethylene productionat temperatures above 42 5 °C Exposure of leaf discs tohigh temperature for 60 mm resulted in a large production ofwound ethylene when they were returned to 25 °C The magnitudeof ethylene production was related to the initial incubationtemperature as was the length of the lag period before maximumproduction was achieved The results are discussed in relationto the requirement for continued membrane integrity for ethyleneproduction ethylene, temperature, membrane permeability, Phaseolus vulgaris L, dwarf bean  相似文献   

7.
We isolated a cDNA for basic class I chitinase (ChitiWb1). ChitiWb1 cDNA encodes a protein that consists of 315 amino acid residues and has a signal peptide. Northern blot analysis indicated that the class I chitinase mRNA in leaves and cultured cells of winged bean was increased by treatments with NaCl, KCl, CaCl2, mannitol or saccharose, but not with abscisic acid. Thus, class I chitinase expression was shown to be up-regulated by osmotic stress.  相似文献   

8.
Tobacco ringspot virus (TRSV) induces circular, darkbrown local lesions on primary leaves of lima bean (Phaseolus lunatus cv Nemagreen) with a concomitant production of three basic and three acidic pathogenesisrelated (PR) proteins. The three basic proteins are: a 21 kDa protein related serologically to Pinto bean PR-4d and tobacco PR-5 proteins; a 36 kDa glucanase that is related to tobacco PR-2; and, a 31 kDa chitinase related serologically to ethylene-induced bean chitinase. The three acidic 18 kDa lima bean PR proteins are serologically similar and probably are charged isomers of the same protein. The 21 kDa basic protein and the 18 kDa acidic protein accumulated preferentially at the lesion center while the 31 kDa chitinase and TRSV were distributed evenly throughout the necrotic area. In green tissue immediately surrounding a lesion, the amounts of PR proteins were comparable to or lower than those in the necrotic area, and virions were not detected. This mode of spatial distribution indicates that lima bean PR proteins are not involved in TRSV localization, and is consistent with other observations that PR proteins play no direct role in restricting viral spread.  相似文献   

9.
Plants respond to an attack by potentially pathogenic organisms and to the plant stress hormone ethylene with an increased synthesis of hydrolases such as chitinase and [beta]-1,3-glucanase. We have studied the subcellular localization of these two enzymes in ethylene-treated bean leaves by immunogold cytochemistry and by biochemical fractionation techniques. Our micrographs indicate that chitinase and [beta]-1,3-glucanase accumulate in the vacuole of ethylene-treated leaf cells. Within the vacuole label was found predominantly over ethylene-induced electron dense protein aggregates. A second, minor site of accumulation of [beta]-1,3-glucanase was the cell wall, where label was present nearly exclusively over the middle lamella surrounding intercellular air spaces. Both kinds of antibodies labeled Golgi cisternae of ethylene-treated tissue, suggesting that the newly synthesized chitinase and [beta]-1,3-glucanase are processed in the Golgi apparatus. Biochemical fractionation studies confirmed the accumulation in high concentrations of both chitinase and [beta]-1,3-glucanase in isolated vacuoles, and demonstrated that only [beta]-1,3-glucanase, but not chitinase, was present in intercellular washing fluids collected from ethylene-treated leaves. Based on these results and earlier studies, we propose a model in which the vacuole-localized chitinase and [beta]-1,3-glucanase are used as a last line of defense to be released when the attacked host cells lyse. The cell wall-localized [beta]-1,3-glucanase, on the other hand, would be involved in recognition processes, releasing defense activating signaling molecules from the walls of invading pathogens.  相似文献   

10.
We isolated a cDNA for basic class I chitinase (ChitiWb1). ChitiWb1 cDNA encodes a protein that consists of 315 amino acid residues and has a signal peptide. Northern blot analysis indicated that the class I chitinase mRNA in leaves and cultured cells of winged bean was increased by treatments with NaCl, KCl, CaCl2, mannitol or saccharose, but not with abscisic acid. Thus, class I chitinase expression was shown to be up-regulated by osmotic stress.  相似文献   

11.
12.
The abscission-promoting effects of C18-unsaturated fatty acidswere studied in bean (Phaseolus vulgaris L. cv. Masterpiece)petiole explants with the junction between the petiole and thepulvinus in the primary leaves in the light. Linolenic, linoleicand oleic acids promoted the abscission of the explants in thelight. Linolenic acid was the most effective among the compoundstested and its promotive effect was evident without any accompanyingincrease in the production of ethylene from the explants, ascompared with non-treated explants. Linolenic acid is easilyconverted to its hydroperoxide during the incubation with explants,as indicated by the formation of the conjugated diene and thegeneration of ethane. The production of ethylene from the explantstreated with linolenic acid was completely inhibited by theaddition of aminoethoxyvi-nylglycine (AVG), but large amountsof ethane were still generated. The promotive effect of linolenicacid was almost eliminated by the addition of scavengers offree radicals. Hydrogen peroxide and tert-butyl hydroperoxidepromoted abscission in the light. From these results, we concludedthat the abscission-promoting effect of linolenic acid are notmediated by the effect of ethylene but by the effect of itshydroperoxide, while the well-established pathway for the biosynthesisof ethylene from S-adenosylmethionine to ethylene, via 1-aminocyclopropane-l-carboxylicacid (ACC), was apparently operative. (Received May 1, 1991; Accepted July 10, 1991)  相似文献   

13.
Osmotin-like protein (OLP) is a neutral isoform in the group5 pathogenesis-related (PR) tobacco proteins. The OLP gene,like the basic PR protein genes, is constitutively expressedin tobacco roots and cultured cells. OLP is not naturally presentin intact healthy leaves, but ethylene treatment induces a highaccumulation there. To study the mechanism of OLP gene expressionas induced by ethylene, we cloned the gene from Nicotiana sylvestris,an ancestor of N. tabacum. Sequence analysis showed that ithas no intron and that its promoter region contains two AGCCGCCsequences that are conserved in most basic PR-protein genes.The function of the AGCCGCC sequences in transgenic tobaccoplants that harbor the wild and mutated OLP promoter::GUS fusiongenes was analyzed. Mutation in the AGCCGCC sequences clearlyinhibited the GUS expression induced by ethylene, indicativethat the AGCCGCC sequence(s) is a DNA element(s) responsiveto ethylene. An EREBP2 protein, isolated as one of the proteinsbinding the AGCCGCC sequence of the tobacco rß-1,3-glucanasegene, also was found to bind to the AGCCGCC sequence(s) of OLPgene. These results suggest that the ethylene-induced expressionof OLP is regulated by trans-acting factor(s) common to basicPR-proteins. (Received November 13, 1995; Accepted January 17, 1996)  相似文献   

14.
Plants synthesize a number of antimicrobial proteins in response to pathogen invasion and environmental stresses. These proteins include two classes of chitinases that have either basic or acidic isoelectric points and that are capable of degrading fungal cell wall chitin. We have cloned and determined the nucleotide sequence of the genes encoding the acidic and basic chitinases from Arabidopsis thaliana (L.) Heynh. Columbia wild type. Both chitinases are encoded by single copy genes that contain introns, a novel feature in chitinase genes. The basic chitinase has 73% amino acid sequence similarity to the basic chitinase from tobacco, and the acidic chitinase has 60% amino acid sequence similarity to the acidic chitinase from cucumber. Expression of the basic chitinase is organ-specific and age-dependent in Arabidopsis. A high constitutive level of expression was observed in roots with lower levels in leaves and flowering shoots. Exposure of plants to ethylene induced high levels of systemic expression of basic chitinase with expression increasing with plant age. Constitutive expression of basic chitinase was observed in roots of the ethylene insensitive mutant (etr) of Arabidopsis, demonstrating that root-specific expression is ethylene independent. Expression of the acidic chitinase gene was not observed in normal, untreated Arabidopsis plants or in plants treated with ethylene or salicylate. However, a transient expression assay indicated that the acidic chitinase promoter is active in Arabidopsis leaf tissue.  相似文献   

15.
16.
17.
18.
FIELD  R. J. 《Annals of botany》1981,47(2):215-223
When leaf discs cut from primary leaves of Phaseolus vulgarisL. cv. Masterpiece plants grown at 25°C were incubated attemperatures below 25 °C, basal and wound ethylene productioncontinued at reduced rates. In both cases detectable levelsof ethylene were produced at 25 °C. When the rates of ethyleneproduction were plotted according to the Arrhenius equationa marked discontinuity was found at 11.4 °C which is consistentwith a membrane phase-transition at the critical chilling temperatureof the plant. Activation energies for the rate-limiting enzymereaction in ethylene production above and below the criticaltemperature have been calculated and the data interpreted asindicating the involvement of membrane-bound enzyme systemsin the biosynthesis of basal and wound ethylene. ethylene, temperature, Arrhenius plot, activation energy, Phaseolus vulgaris L., bean  相似文献   

19.
Among many aspects of plant defence responses to pathogenicinfection are changes in the composition of the exocellularmatrix. To study potential defences in white lupin (Lupinusalbus L.), suspension-cultured cells were treated for 24 h withone of three different elicitors: CuCl2, and two fungal elicitorpreparations from purified cell walls of yeast and ColletotrichumIindemuthianum. Two subsets of exocellular proteins: ionicallyboundwall proteins and proteins secreted into culture medium, wereisolated, and their patterns compared following electrophoreticseparation. Only a few proteins were observed in culture filtrateswith dominating bands at 27, 33, and 42 kDa. About 30 proteinswere observed in cell wall extracts. Changes in protein intensitiesevoked by elicitor treatments depended on the type of elicitorused, the age and composition of lupin cell culture, and concentrationof applied fungal elicitor. Based on these observations, tenproteins were chosen for N-terminal sequencing, and sequences5–30 amino acids long for nine proteins were obtained.Three of the major proteins sequenced were identified as acidicexocellular chitinase, polygalacturonaseinhibiting protein,and germin/oxalate oxidase. Key words: Lupinus aibus, defence response, exocellular proteins, elicitation, N-terminal amino acid sequencing, suspension culture  相似文献   

20.
The effects of differemt S and methionine regimes on growthof developing Vicia faba cotyledons in vitro were studied. Basalmedium (containing adequate S) supplemented with 05 mM methioninemarginally increased d. wt and uncombined amino acid accumulationbut adding 1–5 mM methionine inhibited both growth andprotein accumulation. Sulphur deficiency reduced both d. wtand protein accumulation but incresed accumulation of uncombinedamino acids. Adding 1 mM methionine to the S-deficient mediumrestored growth, normal protein and uncombined amino acid acnunulation.High sulphate medium (7.5 mM ) decreased d. wt, protein anduncombined amino acid accumulation. High sulphate medium or basal medium+methionine (05 mM) changedthe proportions of the seed proteins; legumin increased butvicilin decreased. Sulphur deficiency caused a relative increasein vicilin but a decrease in legumin. The different S and methionineregimes markedly changed the composition of the uncombined aminoacids, especially those derived from aspartic acid but not thecomposition of the protein fraction, except during S deficiency. The data presented indicates a flexibility in the storage proteincomposition of developing cotyledons grown in vitro, with theS and methionine status having a regulatory effect. Vicia faba L., field bean, cotyledon, growth, in vitro culture, uncombined amino acids, protein composition, legumin, vicilin, methionine, sulphur  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号