首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper aims at the general mathematical framework for the equilibrium theory of two-component lipid bilayer vesicles. To take into account the influences of the local compositions together with the mean curvature and Gaussian curvature of the membrane surface, a general potential functional is constructed. We introduce two kinds of virtual displacement modes: the normal one and the tangential one. By minimizing the potential functional, the equilibrium differential equations and the boundary conditions of two-component lipid vesicles are derived. Additionally, the geometrical constraint equation and geometrically permissible condition for the two-component lipid vesicles are presented. The physical, mathematical, and biological meanings of the equilibrium differential equations and the geometrical constraint equations are discussed. The influences of physical parameters on the geometrically permissible phase diagrams are predicted. Numerical results can be used to explain recent experiments.  相似文献   

2.
Highly curved cell membrane structures, such as plasmalemmal vesicles (caveolae) and clathrin-coated pits, facilitate many cell functions, including the clustering of membrane receptors and transport of specific extracellular macromolecules by endothelial cells. These structures are subject to large mechanical deformations when the plasma membrane is stretched and subject to a change of its curvature. To enhance our understanding of plasmalemmal vesicles we need to improve the understanding of the mechanics in regions of high membrane curvatures. We examine here, theoretically, the shapes of plasmalemmal vesicles assuming that they consist of three membrane domains: an inner domain with high curvature, an outer domain with moderate curvature, and an outermost flat domain, all in the unstressed state. We assume the membrane properties are the same in these domains with membrane bending elasticity as well as in-plane shear elasticity. Special emphasis is placed on the effects of membrane curvature and in-plane shear elasticity on the mechanics of vesicle during unfolding by application of membrane tension. The vesicle shapes were computed by minimization of bending and in-plane shear strain energy. Mechanically stable vesicles were identified with characteristic membrane necks. Upon stretch of the membrane, the vesicle necks disappeared relatively abruptly leading to membrane shapes that consist of curved indentations. While the resting shape of vesicles is predominantly affected by the membrane spontaneous curvatures, the membrane shear elasticity (for a range of values recorded in the red cell membrane) makes a significant contribution as the vesicle is subject to stretch and unfolding. The membrane tension required to unfold the vesicle is sensitive with respect to its shape, especially as the vesicle becomes fully unfolded and approaches a relative flat shape.  相似文献   

3.
Diffusion is a fundamental mechanism for protein distribution in cell membranes. These membranes often exhibit complex shapes, which range from shallow domes to elongated tubular or pearl-like structures. Shape complexity of the membrane influences the diffusive spreading of proteins and molecules. Despite the importance membrane geometry plays in these diffusive processes, it is challenging to establish the dependence between diffusion and membrane morphology. We solve the diffusion equation numerically on various static curved shapes representative for experimentally observed membrane shapes. Our results show that membrane necks become diffusion barriers. We determine the diffusive half-time, i.e., the time that is required to reduce the amount of protein in the budded region by one half, and find a quadratic relation between the diffusive half-time and the averaged mean curvature of the membrane shape, which we rationalize by a scaling law. Our findings thus help estimate the characteristic diffusive timescale based on the simple measure of membrane mean curvature.  相似文献   

4.
流体相磷脂双分子层在水溶液中能自组织的形成球形拓扑的膜泡,膜泡的平衡形状是由其弯曲弹性能决定的.Budding是流体相磷脂双分子膜泡的一个显著的形状.从自发曲率(SC)模型的弯曲能量和双层(BC)模型的弯曲能量在参数替换情况下,我们看到自发曲率(SC)和双层(BC)模型具有相同的形状方程.本文从双层(BC)模型的相图出发,在双层(BC)模型下,通过建立一些与目标形状相近似的初始形状,在面积A,体积V和平均曲率的积分M的约束条件和使用约化量的情况下,经Surface Evolver软件的逐次细分并长时间演化,得到了一些budding和multi-budding型的生物膜泡形状.  相似文献   

5.
The steric repulsion between proteins on biological membranes is one of the most generic mechanisms that cause membrane shape changes. We present a minimal model in which a spontaneous curvature is induced by asymmetric protein crowding. Our results show that the interplay between the induced spontaneous curvature and the membrane tension determines the energy-minimizing shapes, which describes the wide range of experimentally observed membrane shapes, i.e., flat membranes, spherical vesicles, elongated tubular protrusions, and pearling structures. Moreover, the model gives precise predictions on how membrane shape changes by protein crowding can be tuned by controlling the protein size, the density of proteins, and the size of the crowded domain.  相似文献   

6.
This paper proposes a biologically plausible matching method to recognize general shapes based on contour curvature information. The human visual system recognizes general shapes flexibly in real-world scenes through the ventral pathway. The pathway is typically modeled using artificial neural networks. These network models, however, do not construct a shape representation that satisfies the following required constraints: (1) The original shape should be represented by a group of partitioned contours in order to retrieve the whole shape (global information) from the partial contours (local information). (2) Coarse and fine structures of the original shapes should be individually represented in order for the visual system to respond to shapes as quickly as possible based on the least number of their features, and to discriminate between shapes based on detailed information. (3) The shape recognition realized with an artificial visual system should be invariant to geometric transformation such as expansion, rotation, or shear. In this paper, we propose a visual shape representation with geometrically characterized contour partitions described on multiple spatial scales.  相似文献   

7.
Electron micrographs of tips of growing and shrinking microtubules are analyzed and interpreted. The many shapes observed are all consistent with a simple mechanical model, a flexible tube with competing intrinsic curvatures. Observations are also consistent with growing and shrinking microtubules having the same intrinsic curvature for protofilaments, the one observed in oligomers peeling off shrinking microtubules. If this is so, the lateral bonds between protofilaments are responsible for the difference between shapes of tips on growing and shrinking microtubules. Received: 26 January 1998 / Accepted: 26 March 1998  相似文献   

8.
9.
A model approach is developed to study intermediate steps and transientstructures in a course of the membrane self-assembly. The approach isbased on investigation of mixed lipid/protein-detergent systems capable ofthe temperature induced transformation from a solubilized micellar stateto closed membrane vesicles. We performed a theoretical analysis ofself-assembling molecular structures formed in binary mixtures ofdimyristoylphosphatidylcholine (DMPC) and sodium cholate (NaC). Thetheoretical model is based on the Helfrich theory of curvature elasticity,which relates geometrical shapes of the structures to their free energy inthe Ginzburg-Landau approximation. The driving force for the shapetransformation is spontaneous curvature of amphiphilic aggregates which isnonlinearly dependent on the lipid/detergent composition. An analysis ofthe free energy in the regular solution approximation shows that theformation of mixed structures of different shapes (discoidal micelles,rod-like micelles, multilayer membrane structures and vesicles) ispossible in a certain range of detergent/lipid ratios. A transition fromthe flat discoidal micelles to the rod-like cylindrical micelles isinduced by curvature instabilities resulting from acyl chain melting andinsertion of detergent molecules into the lipid phase. Nonideal mixing ofthe NaC and DMPC molecules results in formation of nonideal cylindricalaggregates with elliptical cross section. Further dissolution of NaCmolecules in DMPC may be accompanied with a change of their orientation inthe lipid phase and leads to temperature-induced curvature instabilitiesin the highly curved cylindrical geometry. As a result the rod-likemicelles fuse into less curved bilayer structures which transformeventually to the unilamellar and multilamellar membrane vesicles. Thetheoretical analysis performed shows that a sequence of shapetransformations in the DMPC/NaC mixed systems is determined by thesynergism of four major factors: detergent/lipid ratio, temperature (acylchain melting), DMPC and NaC mixing, and reorientation of NaC molecules inmixed aggregates.  相似文献   

10.
Autophagy is a cellular degradation pathway involving the shape transformation of lipid bilayers. During the onset of autophagy, the water-soluble protein Atg8 binds covalently to phosphatdylethanolamines (PEs) in the membrane in an ubiquitin-like reaction coupled to ATP hydrolysis. We reconstituted the Atg8 conjugation system in giant and nm-sized vesicles with a minimal set of enzymes and observed that formation of Atg8-PE on giant vesicles can cause substantial tubulation of membranes even in the absence of Atg12-Atg5-Atg16. Our findings show that ubiquitin-like processes can actively change properties of lipid membranes and that membrane crowding by proteins can be dynamically regulated in cells. Furthermore we provide evidence for curvature sorting of Atg8-PE. Curvature generation and sorting are directly linked to organelle shapes and, thus, to biological function. Our results suggest that a positive feedback exists between the ubiquitin-like reaction and the membrane curvature, which is important for dynamic shape changes of cell membranes, such as those involved in the formation of autophagosomes.  相似文献   

11.
The properties of isotropy, smoothness, minimum curvature and locality suggest the shape of filled-in contours between two boundary edges. The contours are composed of the arcs of two circles tangent to the given edges, meeting smoothly, and minimizing the total curvature. It is shown that shapes meeting all the above requirement can be generated by a network which performs simple, local computations. It is suggested that the filling-in process plays an important role in the early processing of visual information.  相似文献   

12.
There is extensive ultrastructural evidence in endothelium for the presence of chained vesicles or clusters of attached vesicles, and they are considered to be involved in specific transport mechanisms, such as the formation of trans-endothelial channels. However, few details are known about their mechanical characteristics. In this study, the formation mechanism and mechanical aspects of vascular endothelial chained vesicles are investigated theoretically, based on membrane bending strain energy analysis. The shape of the axisymmetric vesicles was computed on the assumption that the cytoplasmic side of the vesicle has a molecular layer or cytoskeleton attached to the lipid bilayer, which induces a spontaneous curvature in the resting state. The bending strain energy is the only elasticity involved, while the shear elasticity is assumed to be negligible. The surface area of the membrane is assumed to be constant due to constant lipid bilayer thickness. Mechanically stable shapes of chained vesicles are revealed, in addition to a cylindrical tube shape. Unfolding of vesicles into a more flattened shape is associated with increase in bending energy without a significant increase in membrane tension. These results provide insights into the formation mechanism and mechanics of the chained vesicle.  相似文献   

13.
We have investigated shape deformations of binary giant unilamellar vesicles (GUVs) composed of cone- and cylinder-shaped lipids. By coupling the spontaneous curvature of lipids with the phase separation, we demonstrated pore opening and closing in GUVs. When the temperature was set below the chain melting transition temperature of the cylinder-shaped lipid, the GUVs burst and then formed a single large pore, where the cone shape lipids form a cap at the edge of the bilayer to stabilize the pore. The pore closed when we increased the temperature above the transition temperature. The pore showed three types of shapes depending on the cone-shaped lipid concentration: simple circular, rolled-rim, and wrinkled-rim pores. These pore shape changes indicate that the distribution of the cone- and cylinder-shaped lipids is asymmetric between the inner and outer leaflets in the bilayer. We have proposed a theoretical model for a two-component membrane with an edge of bilayer where lipids can transfer between two leaflets. Using this model, we have reproduced numerically the observed shape deformations at the rim of pore.  相似文献   

14.
《Biophysical journal》2021,120(20):4418-4428
It is known that giant vesicles undergo dynamic morphological changes when exposed to a detergent. The solubilization process may take multiple pathways. In this work, we identify lipid vesicle shape dynamics before the solubilization of 1,2-dioleoyl-sn-glycero-3-phosphocholine giant vesicles with Triton X-100 (TR) detergent. The violent lipid vesicle dynamics was observed with laser confocal scanning microscopy and was qualitatively explained via a numerical simulation. A three-dimensional Monte Carlo scheme was constructed that emulated the nonequilibrium conditions at the beginning stages of solubilization, accounting for a gradual addition of TR detergent molecules into the lipid bilayers. We suggest that the main driving factor for morphology change in lipid vesicles is the associative tendency of the TR molecules, which induces spontaneous curvature of the detergent inclusions, an intrinsic consequence of their molecular shape. The majority of the observed lipid vesicle shapes in the experiments were found to correspond very well to the numerically calculated shapes in the phase space of possible solutions. The results give an insight into the early stages of lipid vesicle solubilization by amphiphilic molecules, which is nonequilibrium in nature and very difficult to study.  相似文献   

15.
We studied spontaneous shape transformations and burst of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) vesicles with exogeneously added non-ionic detergent octaethylene-glycol dodecylether C(12)E(8). The addition of C(12)E(8) increased the speed of the vesicle shape transformation, so that we were able to study for the first time the complete sequence of POPC vesicle shapes starting from initial spherical vesicle with long thin tubular protrusion to final shape with invagination(s). The average mean curvature of the vesicle membrane continuously decreases during this process. The shape of the invaginations is usually spherical, however also non-spherical shapes of invaginations were observed. C(12)E(8) increases amplitudes of the fluctuations of the vesicle membrane. At higher concentrations in the membrane, C(12)E(8) induces the membrane leakage and burst of the vesicles.  相似文献   

16.
Derganc J  Božič B  Romih R 《PloS one》2011,6(11):e26824
A prominent feature of many intracellular compartments is a large membrane surface area relative to their luminal volume, i.e., the small relative volume. In this study we present a theoretical analysis of discoid membrane compartments with a small relative volume and then compare the theoretical results to quantitative morphological assessment of fusiform vesicles in urinary bladder umbrella cells. Specifically, we employ three established extensions of the standard approach to lipid membrane shape calculation and determine the shapes that could be expected according to three scenarios of membrane shaping: membrane adhesion in the central discoid part, curvature driven lateral segregation of membrane constituents, and existence of stiffer membrane regions, e.g., support by protein scaffolds. The main characteristics of each scenario are analyzed. The results indicate that even though all three scenarios can lead to similar shapes, there are values of model parameters that yield qualitatively distinctive shapes. Consequently, a distinctive shape of an intracellular compartment may reveal its membrane shaping mechanism and the membrane structure. The observed shapes of fusiform vesicles fall into two qualitatively different classes, yet they are all consistent with the theoretical results and the current understanding of their structure and function.  相似文献   

17.
Parkinson's disease is characterized by the presence of intracellular aggregates composed primarily of the neuronal protein α-synuclein (αS). Interactions between αS and various cellular membranes are thought to be important to its native function as well as relevant to its role in disease. We use fluorescence correlation spectroscopy to investigate binding of αS to lipid vesicles as a function of the lipid composition and membrane curvature. We determine how these parameters affect the molar partition coefficient of αS, providing a quantitative measure of the binding energy, and calculate the number of lipids required to bind a single protein. Specific anionic lipids have a large effect on the free energy of binding. Lipid chain saturation influences the binding interaction to a lesser extent, with larger partition coefficients measured for gel-phase vesicles than for fluid-phase vesicles, even in the absence of anionic lipid components. Although we observe variability in the binding of the mutant proteins, differences in the free energies of partitioning are less dramatic than with varied lipid compositions. Vesicle curvature has a strong effect on the binding affinity, with a >15-fold increase in affinity for small unilamellar vesicles over large unilamellar vesicles, suggesting that αS may be a curvature-sensing protein. Our findings provide insight into how physical properties of the membrane may modulate interactions of αS with cellular membranes.  相似文献   

18.
Vesicle shape transformations caused by decreasing the difference between the equilibrium areas of membrane monolayers were studied on phospholipid vesicles with small volume to membrane area ratios. Slow transformations of the vesicle shape were induced by lowering of the concentration of lipid monomers in the solution outside the vesicle. The complete sequence of shapes consisted of a string of pearls, and wormlike, starfish, discocyte and stomatocyte shapes. The transformation from discocyte to stomatocyte vesicle shapes was analyzed theoretically to see whether these observations accord with the area difference elasticity (ADE) model. The membrane shape equation and boundary conditions were derived for axisymmetrical shapes for low volume vesicles, part of whose membranes are in contact. Calculated shapes were arranged into a phase diagram. The theory predicts that the transition between discocyte and stomatocyte shapes is discontinuous for relatively high volumes and continuous for low volumes. The calculated shape sequences matched well with the observed ones. By assuming a linear decrease of the equilibrium area difference with time, the ratio between the nonlocal and local bending constants is in agreement with reported values.  相似文献   

19.
Vesicle shape transformations caused by decreasing the difference between the equilibrium areas of membrane monolayers were studied on phospholipid vesicles with small volume to membrane area ratios. Slow transformations of the vesicle shape were induced by lowering of the concentration of lipid monomers in the solution outside the vesicle. The complete sequence of shapes consisted of a string of pearls, and wormlike, starfish, discocyte and stomatocyte shapes. The transformation from discocyte to stomatocyte vesicle shapes was analyzed theoretically to see whether these observations accord with the area difference elasticity (ADE) model. The membrane shape equation and boundary conditions were derived for axisymmetrical shapes for low volume vesicles, part of whose membranes are in contact. Calculated shapes were arranged into a phase diagram. The theory predicts that the transition between discocyte and stomatocyte shapes is discontinuous for relatively high volumes and continuous for low volumes. The calculated shape sequences matched well with the observed ones. By assuming a linear decrease of the equilibrium area difference with time, the ratio between the nonlocal and local bending constants is in agreement with reported values.  相似文献   

20.
Zhen Zhang 《Biophysical journal》2010,98(11):2524-2534
A fusion pore composed of lipid is an obligatory kinetic intermediate of membrane fusion, and its formation requires energy to bend membranes into highly curved shapes. The energetics of such deformations in viral fusion is well established, but the role of membrane bending in Ca2+-triggered exocytosis remains largely untested. Amperometry recording showed that during exocytosis in chromaffin and PC12 cells, fusion pores formed by smaller vesicles dilated more rapidly than fusion pores formed by larger vesicles. The logarithm of 1/(fusion pore lifetime) varied linearly with vesicle curvature. The vesicle size dependence of fusion pore lifetime quantitatively accounted for the nonexponential fusion pore lifetime distribution. Experimentally manipulating vesicle size failed to alter the size dependence of fusion pore lifetime. Manipulations of membrane spontaneous curvature altered this dependence, and applying the curvature perturbants to the opposite side of the membrane reversed their effects. These effects of curvature perturbants were opposite to those seen in viral fusion. These results indicate that during Ca2+-triggered exocytosis membrane bending opposes fusion pore dilation rather than fusion pore formation. Ca2+-triggered exocytosis begins with a proteinaceous fusion pore with less stressed membrane, and becomes lipidic as it dilates, bending membrane into a highly curved shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号