首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
Bioenergetics modeling was used to estimate zooplankton prey consumption of hatchery and unmarked stocks of juvenile chum salmon (Oncorhynchus keta) migrating seaward in littoral (nearshore) and neritic (epipelagic offshore) marine habitats of southeastern Alaska. A series of model runs were completed using biophysical data collected in Icy Strait, a regional salmon migration corridor, in May, June, July, August, and September of 2001. These data included a temperature (1-m surface versus surface to 20-m average), zooplankton standing crop (surface to 20-m depth versus entire water column), chum salmon diet (percent weight of prey type consumed), energy densities, and weight. Known numbers of hatchery releases were used in a cohort reconstruction model to estimate total abundance of hatchery and wild chum salmon in the northern region of southeastern Alaska, given average survival to adults and for two different (low and high) early marine littoral mortality rate assumptions. Total prey consumption was relatively insensitive to temperature differences associated with the depths potentially utilized by juvenile chum salmon. However, the magnitudes and temporal patterns of total prey consumed differed dramatically between the low and high mortality rate assumptions. Daily consumption rates from the bioenergetics model and CPUE abundance from sampling in Icy Strait were used to estimate amount and percentage of zooplankton standing crop consumed by mixed stocks of chum salmon. We estimated that only a small percentage of the available zooplankton was consumed by juvenile chum salmon, even during peak abundances of marked hatchery and unmarked mixed stocks in July. Total daily consumption of zooplankton by all stock groups of juvenile chum salmon was estimated to be between 330 and 1764 g/km2d1 from June to September in the neritic habitat of Icy Strait. As with any modeling exercise, model outputs can be misleading if input parameters and underlying assumptions are not valid; therefore, additional studies are warranted, especially to determine physiological input parameters, and to improve abundance and mortality estimates specific to juvenile chum salmon. Future bioenergetics modeling is also needed to evaluate consumption by the highly abundant, vertically migrating planktivorous that co-occurred in our study; we suggest that these fishes have a greater impact on the zooplankton standing crop in Icy Strait than do hatchery stock groups of juvenile chum salmon.  相似文献   

2.
Increasing production of hatchery salmon over the past four decades has led to concerns about possible density-dependent effects on wild Pacific salmon populations in the North Pacific Ocean. The concern arises because salmon from distant regions overlap in the ocean, and wild salmon populations having low productivity may compete for food with abundant hatchery populations. We tested the hypothesis that adult length-at-age, age-at-maturation, productivity, and abundance of a Norton Sound, Alaska, chum salmon population were influenced by Asian hatchery chum salmon, which have become exceptionally abundant and surpassed the abundance of wild chum salmon in the North Pacific beginning in the early 1980s. We found that smaller adult length-at-age, delayed age-at-maturation, and reduced productivity and abundance of the Norton Sound salmon population were associated with greater production of Asian hatchery chum salmon since 1965. Modeling of the density-dependent relationship, while controlling for other influential variables, indicated that an increase in adult hatchery chum salmon abundance from 10 million to 80 million adult fish led to a 72% reduction in the abundance of the wild chum salmon population. These findings indicate that competition with hatchery chum salmon contributed to the low productivity and abundance of Norton Sound chum salmon, which includes several stocks that are classified as Stocks of Concern by the State of Alaska. This study provides new evidence indicating that large-scale hatchery production may influence body size, age-at-maturation, productivity and abundance of a distant wild salmon population.  相似文献   

3.
Wild stocks of chum salmon, Oncorhynchus keta, have experienced recent declines in some areas of their range. Also, the release of hatchery chum salmon has escalated to nearly three billion fish annually. The decline of wild stocks and the unknown effects of hatchery fish combined with the uncertainty of future production caused by global climate change have renewed interest in the migratory patterns of chum salmon on the high seas. We studied the composition of high-seas mixtures of maturing and immature individuals using baseline data for 20 allozyme loci from 356 populations from throughout the Pacific Rim. Composition estimates were made from three time series. Two of these time series were from important coastal migratory corridors: the Shumagin Islands south of the Alaska Peninsula and the east coast of the Kamchatka Peninsula. The third was from chum salmon captured incidentally in the Bering Sea trawl fishery for walleye pollock. We also analyzed geographically dispersed collections of chum salmon captured in the month of July. The time series show dynamic changes in stock composition. The Shumagin Island corridor was used primarily by Northwest Alaskan and Asian populations in June; by the end of July stocks from the Alaska Peninsula and southern North America dominated the composition. The composition along the Kamchatka coast changed dramatically from primarily Russian stocks in May to primarily Japanese stocks in August; the previously undocumented presence of stocks from the Alaska Peninsula and Gulf of Alaska was also demonstrated. Immature chum salmon from throughout the Pacific Rim, including large proportions of southern North American stocks, contributed to the Bering Sea bycatch during the months of September and October. The migration routes of North American stocks is far more widespread than previously observed, and the Bering Sea is an important rearing area for maturing and immature chum salmon from throughout the species' range.  相似文献   

4.
Modern salmon hatcheries in Southeast Alaska were established in the 1970s when wild runs were at record low levels. Enhancement programs were designed to help rehabilitate depressed fisheries and to protect wild salmon stocks through detailed planning and permitting processes that included focused policies on genetics, pathology, and management. Hatcheries were located away from significant wild stocks, local sources were used to develop hatchery broodstocks, and juveniles are marked so management can target fisheries on hatchery fish. Initially conceived as a state-run system, the Southeast Alaska (SEAK) program has evolved into a private, non-profit concept centered around regional aquaculture associations run by fishermen and other stakeholders that pay for hatchery operations through landing fees and sale of fish. Today there are 15 production hatcheries and 2 research hatcheries in SEAK that between 2005 and 2009 released from 474 to 580 million (average 517 million) juvenile salmon per year. During this same period commercial harvest of salmon in the region ranged from 28 to 71 million salmon per year (average 49 million). Contributions of hatchery-origin fish to this harvest respectively averaged 2%, 9%, 19%, 20%, and 78% for pink, sockeye, Chinook, coho, and chum salmon. Both hatchery and wild salmon stocks throughout much of Alaska have experienced high marine survivals since the 1980s and 1990s resulting in record harvests over the past two decades. Although some interactions between hatchery salmon and wild salmon are unavoidable including increasing concerns over straying of hatchery fish into wild salmon streams, obvious adverse impacts from hatcheries on production of wild salmon populations in this region are not readily evident.  相似文献   

5.
The straying of hatchery salmon may harm wild salmon populations through a variety of ecological and genetic mechanisms. Surveys of pink (Oncorhynchus gorbuscha), chum (O. keta) and sockeye (O. nerka) salmon in wild salmon spawning locations in Prince William Sound (PWS), Alaska since 1997 show a wide range of hatchery straying. The analysis of thermally marked otoliths collected from carcasses indicate that 0–98% of pink salmon, 0–63% of chum salmon and 0–93% of sockeye salmon in spawning areas are hatchery fish, producing an unknown number of hatchery-wild hybrids. Most spawning locations sampled (77%) had hatchery pink salmon from three or more hatcheries, and 51% had annual escapements consisting of more than 10% hatchery pink salmon during at least one of the years surveyed. An exponential decay model of the percentage of hatchery pink salmon strays with distance from hatcheries indicated that streams throughout PWS contain more than 10% hatchery pink salmon. The prevalence of hatchery pink salmon strays in streams increased throughout the spawning season, while the prevalence of hatchery chum salmon decreased. The level of hatchery salmon strays in many areas of PWS are beyond all proposed thresholds (2–10%), which confounds wild salmon escapement goals and may harm the productivity, genetic diversity and fitness of wild salmon in this region  相似文献   

6.
We review studies of interactions between hatchery and wild Pacific salmon in the Russian Far East. This includes the role of hatchery practices that result in premature migration to the sea and increased mortality, and data on feeding and territorial competition between juveniles of hatchery and wild origin. In the course of downstream migration many juvenile hatchery salmon are eliminated by wild salmon predation. During the marine period, Japanese hatchery chum salmon (Oncorhynchus keta) distribution overlaps the distribution of Russian wild salmon. Consequently, replacement of wild populations by hatchery fishes, as a result of abundant juvenile hatchery releases combined with extensive poaching in spawning grounds, is apparent in some Russian rivers. Interactions between the populations occur in all habitats. The importance of conservation of wild salmon populations requires a more detailed study of the consequences of interactions between natural and artificially reared fishes.  相似文献   

7.
Native species may show invasiveness toward a recipient ecosystem through increases in abundance as a result of artificial stocking events. Salmonid species are typical examples of native invaders whose abundance is increased after stocking with hatchery fish. This study evaluated the effects of hatchery chum salmon fry on sympatric wild masu salmon fry, benthic invertebrate prey, and algae, after a single stocking event in Mamachi stream, Hokkaido, northern Japan. The results suggested that the stocked hatchery chum salmon fry decreased the foraging efficiency and growth of the wild masu salmon fry through interspecific competition, and depressed the abundance of Ephemerellidae and total grazer invertebrates (Glossosomatidae, Heptageniidae, and Baetidae) through predation. Also, the hatchery chum salmon fry may increase algal biomass through depression of grazer abundance by predation (top-down effect). These results suggested that a single release of hatchery chum salmon fry into a stream may influence the recipient stream ecosystem.  相似文献   

8.
The Duwamish estuary is an industrialized waterway located in Seattle, WA, USA. Despite a history of habitat loss, naturally produced juvenile Chinook salmon use the estuary. In addition to experiencing degraded habitat in the estuary, wild salmon growth may be affected by competition with more than three million hatchery fish released yearly into the river. Restoring habitat to benefit salmon in the Duwamish River is a priority for trustees of public resources, and a number of wetland restoration sites have been created there. We tested the function of restored sites in the Duwamish estuary for juvenile Chinook salmon by comparing fish densities from enclosure nets or beach seines at three paired restored/un-restored sites and by applying environmental and diet data to a bioenergetics model. We also examined temporal and diet overlap of wild juvenile Chinook salmon with other salmon species and with hatchery-reared Chinook salmon using non-metric multidimensional scaling (NMDS). At a brackish upstream site with a relatively large opening to the river, we found higher densities of juvenile Chinook salmon at the restored site. NMDS results indicated that juvenile Chinook salmon fed on different taxa at the restored sites than at the reference sites. However, modeled growth was similar at restored and reference sites. Co-occurring juvenile chum and Chinook salmon fed differently, with chum eating smaller prey, and Chinook salmon eating larger prey. Co-occurring hatchery and wild juvenile Chinook salmon had similar diets, indicating that they may compete for prey. However, modeled growth was positive and did not differ between hatchery and wild fish, suggesting that food was not limiting. Bioenergetics models indicated that overall juvenile Chinook salmon growth potential at the brackish water site was consistently higher than at more saline sites. Our results suggest that restoration sites in the Duwamish estuary that have larger access openings and are located in brackish water may have increased function over other configurations.  相似文献   

9.
A harvested stock of chum salmon homing to Kurilskiy Bay, Iturup Island, consists of two genetically distinct river populations that reproduce in two rivers that drain into the bay and are characterized by limited gene flow. One of these is small and can be regarded as wild, whereas the other is much larger and, until recently, was composed of naturally reproducing components spawning in the river??s mainstem and tributaries, with almost no hatchery reproduction during the past two decades. The only human impact on reproduction of the chum salmon stock was regulation of the escapement, with officially accepted limits to avoid ??over-escapement??. Recently the hatchery began to release a large amount of chum salmon juveniles. As confirmed by data on variation in both age composition and microsatellite DNA, first-generation hatchery-origin fish that returned from the first large releases occupied spawning grounds and presumably competed directly with, and potentially displaced wild fish. The most dramatic example is a genetically distinct beach-spawning form of chum salmon that was swamped by much more numerous hatchery-origin fish of the river-spawning form. In order to restore and support naturally reproduced population components, careful estimation of the carrying capacity of natural spawning grounds is necessary with efforts to increase escapement to these habitats. We also recommend concerted efforts to restore and conserve a unique beach-spawning population of chum salmon. We further recommend development of a marking program for direct estimation of straying and evaluation of ecological and genetic impacts of hatchery fish on neighboring wild and natural populations.  相似文献   

10.
Seasonal, ontogenetic, and diel variations in the diets of chum salmon, Oncorhynchus keta, were examined by analyzing the stomach contents of 1398 fish (300–755 mm fork length) collected in the Bering Sea during summer and early autumn of 2002. Whereas mesozooplankton, including euphausiids, hyperiids, and gastropods, constituted the greatest portion of the stomach contents during the summer, forage fishes (Stenobrachius leucopsarus and Atka mackerel, Pleurogrammus monopterygius) were the most important items during early autumn. Although no apparent diel trend was found in feeding intensity, distinct diel differences in prey composition were observed. Chum salmon caught in the morning contained Stenobrachius leucopsarus, whereas those caught in the afternoon had mainly fed on euphausiids. Thus, chum salmon diets change temporally because of changes in prey availability that result from differences in the annual life cycles and diurnal vertical migrations of prey species.  相似文献   

11.
About 31% of salmon harvested in Alaska comes from the hatchery production of hundreds of millions of pink and chum salmon and smaller numbers of sockeye, Chinook, and coho salmon. The numbers of hatchery-reared juveniles released in some areas are greater than the numbers of juveniles from wild populations. However, virtually nothing is known about the effects of hatchery fish on wild populations in Alaska. Possible effects of these interactions can be inferred from studies of salmonids in other areas, from studies of other animals, and from theory. Numerous studies show a complex relationship between the genetic architecture of a population and its environment. Adaptive responses to nature and anthropogenic selection can be influenced by variation at a single gene, or more often, by the additive effects of several genes. Studies of salmonids in other areas show that hatchery practices can lead to the loss of genetic diversity, to shifts in adult run timing and earlier maturity, to increases in parasite load, to increases in straying, to altered levels of boldness and dominance, to shifts in juvenile out-migration timing, and to changes in growth. Controlled experiments across generations show, and theory predicts, that the loss of adaptive fitness in hatchery salmon, relative to fitness in wild salmon, can occur on a remarkably short time scale. All of these changes can influence survival and impose selective regimes that influence genetically based adaptive traits. The preservation of adaptive potential in wild populations is an important buffer against diseases and climate variability and, hence, should be considered in planning hatchery production levels and release locations. The protection of wild populations is the foundation for achieving sustained harvests of salmon in Alaska.  相似文献   

12.
The extent to which stray, hatchery-reared salmon affect wild populations is much debated. Although experiments show that artificial breeding and culture influence the genetics of hatchery salmon, little is known about the interaction between hatchery and wild salmon in a natural setting. Here, we estimated historical and contemporary genetic population structures of chum salmon (Oncorhynchus keta) in Prince William Sound (PWS), Alaska, with 135 single nucleotide polymorphism (SNP) markers. Historical population structure was inferred from the analysis of DNA from fish scales, which had been archived since the late 1960’s for several populations in PWS. Parallel analyses with microsatellites and a test based on Hardy-Weinberg proportions showed that about 50% of the fish-scale DNA was cross-contaminated with DNA from other fish. These samples were removed from the analysis. We used a novel application of the classical source-sink model to compare SNP allele frequencies in these archived fish-scales (1964–1982) with frequencies in contemporary samples (2008–2010) and found a temporal shift toward hatchery allele frequencies in some wild populations. Other populations showed markedly less introgression, despite moderate amounts of hatchery straying. The extent of introgression may reflect similarities in spawning time and life-history traits between hatchery and wild fish, or the degree that hybrids return to a natal spawning area. The source-sink model is a powerful means of detecting low levels of introgression over several generations.  相似文献   

13.
Aggregate hatchery production of Pacific salmon in the Kamchatka region of the Russian Federation is very low (< 0.5% of total harvest, with five hatcheries releasing approximately 41 M juvenile salmon annually), but contributions in certain rivers can be substantial. Enhancement programs in these rivers may strongly influence fitness and production of wild salmon. In this paper we document significant divergence in demographic traits in hatchery salmon populations in the Bolshaya River and we estimate the proportion of hatchery chum salmon in the total run in the Paratunka River to demonstrate the magnitude of enhancement in this system. We observed a reduction in the expression of life history types in hatchery populations (ranging from 1 to 9 types) compared to wild populations (17 types) of sockeye salmon in the Bolshaya River. We found similar trends in Chinook salmon in the same river system. This reduced life history diversity may make these fish less resilient to changes in habitat and climate. We estimate hatchery chum salmon currently contribute 17-45% to the natural spawning population in the Paratunka River. As hatchery fish increase in numbers at natural spawning sites, this hatchery production may affect wild salmon production. It is important to investigate the risk of introgression between hatchery and wild salmon that can lead to reduction in salmon fitness in Kamchatka rivers, as well as the potential of ecological interactions that can have consequences on status of wild salmon and overall salmon production in this region.  相似文献   

14.
The population dynamics of chinook salmon (Oncorhynchus tshawytscha) from the Cowichan River on Vancouver Island, British Columbia, Canada are used by the Pacific Salmon Commission as an index of the general state of chinook salmon coast wide. In recent years the production declined to very low levels despite the use of a hatchery that was intended to increase production by improving the number of smolts entering the ocean. In 2008, we carried out an extensive study of the early marine survival of the hatchery and wild juvenile chinook salmon. We found that both rearing types mostly remained within the Gulf Islands study area during the period when most of the marine mortality occurred for the hatchery fish. By mid September, approximately 1.3% of all hatchery fish survived, compared to 7.8%–31.5% for wild fish. This six to 24 times difference in survival could negate an estimated increased egg-to-smolt survival of about 13% that is theorized to result through the use of a hatchery. Estimates of the early marine survival are approximate, but sufficient to show a dramatic difference in the response of the two rearing types to the marine nursery area. If the declining trend in production continues for both rearing types, modifications to the hatchery program are needed to improve survival or an emphasis on improving the abundances of wild stocks is necessary, or both. The discovery that the juvenile Cowichan River chinook salmon remain within a relatively confined area of the Gulf Islands within the Strait of Georgia offers an excellent opportunity to research the mechanisms that cause the early marine mortalities and hopefully contribute to a management that improves the production.  相似文献   

15.
The chum and pink salmon catches in Hokkaido, Japan have increased dramatically since the 1970s and the 1990s, respectively. In contrast, masu salmon catches have been steadily decreasing. Despite intensive hatchery development in Hokkaido, naturally spawning salmon populations persist based on results from a recent river survey. This paper focuses on the challenges of maintaining hatchery salmon populations while protecting natural chum, pink and masu salmon populations in Hokkaido. Two important initiatives related to meeting this ambitious goal are managing hatcheries in a way that minimizes negative interactions between natural and hatchery salmon populations, and initiating new efforts at restoring and rehabilitating degraded freshwater habitats. In addition, in order to maintain a balance of demand and supply in the domestic market through the exportation of extra salmon, Hokkaido has decided to enter full assessment to gain Marine Stewardship Council (MSC) certification of the Hokkaido chum salmon trap net fishery. This would involve a fundamental shift in fisheries management as practiced in Japan, specifically elevating the importance of managing the fishery in a way that conserves natural salmon populations. A key component of a new salmon management strategy is the establishment of a zone management framework based on the designation of stream units to spatially separate natural salmon from hatchery salmon to minimize negative effects of hatchery fish and to utilize effectively hatchery salmon for commercial fisheries. This effort is allied with similar initiatives in other Pacific Rim countries that are focusing on management reform to restore natural ecosystem function and maintain the coexistence of wild and hatchery salmon.  相似文献   

16.
Bitterling as models for studies of sperm competition   总被引:2,自引:0,他引:2  
The plight of the world fish stocks is all too well documented. As part of an ongoing attempt to bolster fish stocks for both commercial and conservation purposes, many fish are reared in captivity and released into the wild. It is well known that hatchery‐reared fish have low post‐release survival compared with wild fish of similar age. Part of the reason for this high mortality is that hatchery fish show deficits in virtually all aspects of their behaviour, including prey selection and predator avoidance. Much behaviour requires repeated experience so that it may become fine‐tuned to prevailing circumstances via learning during development. It has been suggested that inappropriate behaviour is encouraged when fish are reared in the unnatural surroundings of the hatchery. However, hatchery fish can be taught to recognise live, novel prey items and predators and the rate of learning is increased in the presence of a more knowledgeable conspecifics. Here we present data showing how social learning protocols can be used to dramatically increase foraging success in juvenile Atlantic salmon. We also outline related aspects of our ongoing research and discuss some of the possibilities for altering hatchery practices to maximize post‐release survival.  相似文献   

17.
Since the late 20th century, the biomass of Pacific salmon Oncorhynchus spp. has increased. Hokkaido, northern Japan, is one of the main areas of chum salmon O. keta production in the North Pacific and intensive hatchery programs support the recent high abundance. However, proper management of naturally spawning populations is necessary to conserve healthy stocks of this species. In 2008, we started a program to assess the naturally spawning chum salmon populations in Hokkaido. Of the total of approximately 1,500 rivers in Hokkaido, 238 rivers with lengths of longer than 8 km (excluding those rivers used for hatchery broodstock collection) were surveyed in 2008 and 2009. The number of non-enhanced rivers found to contain naturally reproducing chum salmon was 59 (31.4% of surveyed rivers) and 50 (37.6% of surveyed rivers) rivers in 2008 and 2009, respectively. Including the rivers where hatchery broodstock were collected and rivers shorter than 8 km that contain naturally spawning chum salmon, chum salmon ascended at least 191 and 175 rivers in Hokkaido in 2008 and 2009, respectively. Repeated foot surveys indicated that the run timings of naturally spawning chum salmon may be affected by coastal commercial fisheries. This study showed that naturally spawning chum salmon remain in many rivers in Hokkaido where hatchery programs have been intensively conducted.  相似文献   

18.
Consumption choice by bears feeding on salmon   总被引:4,自引:0,他引:4  
Consumption choice by brown (Ursus arctos) and black bears (U. americanus) feeding on salmon was recorded for over 20,000 bear-killed fish from 1994 to 1999 in Bristol Bay (sockeye salmon, Oncorhynchus nerka) and southeastern Alaska (pink, O. gorbuscha and chum salmon O. keta). These data revealed striking patterns of partial and selective consumption that varied with relative availability and attributes of the fish. As the availability of salmon decreased, bears consumed a larger proportion of each fish among both years and habitats. When availability was high (absolute number and density of salmon), bears consumed less biomass per captured fish, targeting energy-rich fish (those that had not spawned) or energy-rich body parts (eggs in females; brain in males). In contrast, individual fish were consumed to a much greater extent, regardless of sex or spawning status, in habitats or years of low salmon availability. The proportion of biomass consumed per fish was similar for males and females, when spawning status was statistically controlled, but bears targeted different body parts: the body flesh, brain and dorsal hump in males and the roe in females. Bears thus appeared to maximize energy intake by modifying the amount and body parts consumed, based on availability and attributes of spawning salmon.  相似文献   

19.
In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.  相似文献   

20.
The plight of the world fish stocks is all too well documented. As part of an ongoing attempt to bolster fish stocks for both commercial and conservation purposes, many fish are reared in captivity and released into the wild. It is well known that hatchery‐reared fish have low post‐release survival compared with wild fish of similar age. Part of the reason for this high mortality is that hatchery fish show deficits in virtually all aspects of their behaviour, including prey selection and predator avoidance. Much behaviour requires repeated experience so that it may become fine‐tuned to prevailing circumstances via learning during development. It has been suggested that inappropriate behaviour is encouraged when fish are reared in the unnatural surroundings of the hatchery. However, hatchery fish can be taught to recognise live, novel prey items and predators and the rate of learning is increased in the presence of a more knowledgeable conspecifics. Here we present data showing how social learning protocols can be used to dramatically increase foraging success in juvenile Atlantic salmon. We also outline related aspects of our ongoing research and discuss some of the possibilities for altering hatchery practices to maximize post‐release survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号