首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The activities of uptake of thirteen 14C-labeled amino acids were determined in nine cyanobacteria, including the unicellular strains Synechococcus sp. strain PCC 7942 and Synechocystis sp. strain PCC 6803; the filamentous strain Pseudanabaena sp. strain PCC 6903, and the filamentous, heterocyst-forming strains Anabaena sp. strains PCC 7120 and PCC 7937; Nostoc sp. strains PCC 7413 and PCC 7107; Calothrix sp. strain PCC 7601 (which is a mutant unable to develop heterocysts); and Fischerella muscicola UTEX 1829. Amino acid transport mutants, selected as mutants resistant to some amino acid analogs, were isolated from the Anabaena, Nostoc, Calothrix, and Pseudanabaena strains. All of the tested cyanobacteria bear at least a neutral amino acid transport system, and some strains also bear transport systems specific for basic or acidic amino acids. Two genes, natA and natB, encoding elements (conserved component, NatA, and periplasmic binding protein, NatB) of an ABC-type permease for neutral amino acids were identified by insertional mutagenesis of strain PCC 6803 open reading frames from the recently published genomic DNA sequence of this cyanobacterium. DNA sequences homologous to natA and natB from strain PCC 6803 were detected by hybridization in eight cyanobacterial strains tested. Mutants unable to transport neutral amino acids, including natA and natB insertional mutants, accumulated in the extracellular medium a set of amino acids that always included Ala, Val, Phe, Ile, and Leu. A general role for a cyanobacterial neutral amino acid permease in recapture of hydrophobic amino acids leaked from the cells is suggested.  相似文献   

2.
Certain cyanobacteria thrive in natural habitats in which light intensities can reach 2000 micromol photon m(-2) s(-1) and nutrient levels are extremely low. Recently, a family of genes designated hli was demonstrated to be important for survival of cyanobacteria during exposure to high light. In this study we have identified members of the hli gene family in seven cyanobacterial genomes, including those of a marine cyanobacterium adapted to high-light growth in surface waters of the open ocean (Prochlorococcus sp. strain Med4), three marine cyanobacteria adapted to growth in moderate- or low-light (Prochlorococcus sp. strain MIT9313, Prochlorococcus marinus SS120, and Synechococcus WH8102), and three freshwater strains (the unicellular Synechocystis sp. strain PCC6803 and the filamentous species Nostoc punctiforme strain ATCC29133 and Anabaena sp. [Nostoc] strain PCC7120). The high-light-adapted Prochlorococcus Med4 has the smallest genome (1.7 Mb), yet it has more than twice as many hli genes as any of the other six cyanobacterial species, some of which appear to have arisen from recent duplication events. Based on cluster analysis, some groups of hli genes appear to be specific to either marine or freshwater cyanobacteria. This information is discussed with respect to the role of hli genes in the acclimation of cyanobacteria to high light, and the possible relationships among members of this diverse gene family.  相似文献   

3.
The 410-kb alpha megaplasmid of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was found to bear the nucA gene that encodes a sugar-nonspecific nuclease. That gene was mutated by insertion of a cassette that confers resistance to neomycin. The resulting strain, AMP2, was mated with a streptomycin-resistant derivative of Anabaena sp. strain PCC 7118, a strain that does not form heterocysts. Cells resistant to both neomycin and streptomycin that were derived from such matings were found to bear the neomycin resistance cassette of the donor strain in a larger megaplasmid characteristic of the recipient strain and did not form heterocysts. This is the first example of transfer of a genetic marker directly between strains of cyanobacteria in which incontrovertible physical evidence of transfer has been obtained. DNA sequences homologous to the nucA gene were present in 13 heterocyst-forming cyanobacteria that were tested but in none of six diverse unicellular strains that were examined.  相似文献   

4.
Abstract Microcystis aeruginosa (Synechocystis ) is a unicellular cyanobacterium that performs oxygenic photosynthesis. We found two novel sets of repetitive sequences, A (REP-A) and B (REP-B), on the M. aeruginosa K-81 genomic DNA, which consisted of distinct motifs of tandem repeated sequences located in the up- and downstream regions of the orf1 structural gene, respectively. Genomic Southern hybridization revealed multicopies of REP-A and -B on the genome. Furthermore, genomic Southern blots of cyanobacteria species with the REP-A and -B probes revealed that different hybridization signals appeared on the genomic DNAs of all 12 Microcystis strains, but no signal appeared on those of Synechocystis sp. PCC 6803, Synechococcus sp. PCC 7942, and Anabaena sp. PCC 7120.  相似文献   

5.
Three new Anabaena sp. strain PCC 7120 genes encoding group 2 alternative sigma factors have been cloned and characterized. Insertional inactivation of sigD, sigE, and sigF genes did not affect growth on nitrate under standard laboratory conditions but did transiently impair the abilities of sigD and sigE mutant strains to establish diazotrophic growth. A sigD sigE double mutant, though proficient in growth on nitrate and still able to differentiate into distinct proheterocysts, was unable to grow diazotrophically due to extensive fragmentation of filaments upon nitrogen deprivation. This double mutant could be complemented by wild-type copies of sigD or sigE, indicating some degree of functional redundancy that can partially mask phenotypes of single gene mutants. However, the sigE gene was required for lysogenic development of the temperate cyanophage A-4L. Several other combinations of double mutations, especially sigE sigF, caused a transient defect in establishing diazotrophic growth, manifested as a strong and prolonged bleaching response to nitrogen deprivation. We found no evidence for developmental regulation of the sigma factor genes. luxAB reporter fusions with sigD, sigE, and sigF all showed slightly reduced expression after induction of heterocyst development by nitrogen stepdown. Phylogenetic analysis of cyanobacterial group 2 sigma factor sequences revealed that they fall into several subgroups. Three morphologically and physiologically distant strains, Anabaena sp. strain PCC 7120, Synechococcus sp. strain PCC 7002, and Synechocystis sp. strain PCC 6803 each contain representatives of four subgroups. Unlike unicellular strains, Anabaena sp. strain PCC 7120 has three additional group 2 sigma factors that cluster in subgroup 2.5b, which is perhaps specific for filamentous or heterocystous cyanobacteria.  相似文献   

6.
Probes carrying the Anabaena sp. strain PCC 7120 nitrogenase reductase (nifH) and nitrogenase (nifK and nifD) genes were hybridized to Southern blots of DNA from the unicellular, aerobic nitrogen-fixing cyanobacterium Gloeothece sp. strain PCC 6909 and from the filamentous cyanobacterium Calothrix sp. strain PCC 7601. These data suggest that the Gloeothece sp. nif structural proteins must be similar to those of other diazotrophs and that the ability for aerobic nitrogen fixation does not reside in the nif protein complex. We also found that the nif structural genes of Gloeothece sp. are clustered, whereas those of Calothrix sp. are arranged more like those of Anabaena sp.  相似文献   

7.
8.
Previous studies largely carried out with environmental samples or axenic and non-axenic cultures suggested that cyanobacteria may be a rich source of hitherto unexplored bioactive compounds. This has been confirmed in the present study by a screening of 146 axenic strains from the Pasteur Culture Collection (PCC) of cyanobacteria. Use of degenerate PCR primers, designed on the basis of conserved sequence motifs in the aminoacyl-adenylation domain of peptide synthetases, revealed the presence of the corresponding genes in the majority (75.3%) of the strains examined. Among unicellular cyanobacteria, only Chamaesiphon sp. strain PCC 6605, two strains of Gloeocapsa and most Microcystis isolates (22 out of 24) contained these genes; no amplicons were detected for any members of the genera Cyanothece, Gloeobacter and Gloeothece and the genetically diverse representatives of Synechococcus and Synechocystis. By contrast, eight out of ten pleurocapsalean members, 16 out of 25 oscillatorian strains, and all but two of the 63 filamentous heterocystous cyanobacteria tested gave positive amplification results. This information will be highly valuable for further exploring the corresponding cyanobacterial peptides and for elucidating the bioactivity of such non-ribosomally synthesized molecules.  相似文献   

9.
RNA polymerase purified from vegetative cells of the cyanobacterium Anabaena sp. strain PCC 7120 contains a dissociable sigma factor and a core of five subunits: the beta', beta, and two alpha subunits characteristic of all eubacteria and an additional 66,000-molecular-weight polypeptide called gamma. Fifteen of fifteen strains of unicellular and filamentous cyanobacteria tested contained a serologically related gamma protein. Antiserum to gamma reacted with Escherichia coli beta' and the A subunit of RNA polymerase of the archaebacterium Sulfolobus acidocaldarius. Thus the evolution of the RNA polymerase beta' subunit has followed different paths in three groups of procaryotes: cyanobacteria, other eubacteria, and archaebacteria.  相似文献   

10.
11.
The cellular and subcellular localization of FtsZ, a bacterial cell division protein, were investigated in vegetative cells of the filamentous cyanobacterium Nostoc/Anabaena sp. strain PCC 7120. We show by using immunogold-transmission electron microscopy that FtsZ forms a ring structure in a filamentous cyanobacterium, similar to observations in unicellular bacteria and chloroplasts. This finding, that the FtsZ in a filamentous cyanobacterium accumulates at the growing edge of the division septa leading to the formation of the typical prokaryotic Z-ring arrangement, is novel. Moreover, an apparent cytoplasmic distribution of FtsZ occurred in vegetative cells. During the transition of vegetative cells into terminally differentiated heterocysts the cytoplasmic FtsZ levels decreased substantially. These findings suggest a conserved function of FtsZ among prokaryotes, including filamentous cyanobacteria with cell differentiation capacity, and possibly a role of FtsZ as a cytoskeletal component in the cytoplasm.  相似文献   

12.
The ntcA gene from Synechococcus sp. strain PCC 7942 encodes a regulatory protein which is required for the expression of all of the genes known to be subject to repression by ammonium in that cyanobacterium. Homologs to ntcA have now been cloned by hybridization from the cyanobacteria Synechocystis sp. strain PCC 6803 and Anabaena sp. strain PCC 7120. Sequence analysis has shown that these ntcA genes would encode polypeptides strongly similar (77 to 79% identity) to the Synechococcus NtcA protein. Sequences hybridizing to ntcA have been detected in the genomes of nine other cyanobacteria that were tested, including strains of the genera Anabaena, Calothrix, Fischerella, Nostoc, Pseudoanabaena, Synechococcus, and Synechocystis.  相似文献   

13.
14.
15.
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium commonly used as a model organism for studying cyanobacterial cell differentiation and nitrogen fixation. For many decades, this cyanobacterium was considered an obligate photo-lithoautotroph. We now discovered that this strain is also capable of mixotrophic, photo-organoheterotrophic, and chemo-organoheterotrophic growth if high concentrations of fructose (at least 50 mM and up to 200 mM) are supplied. Glucose, a substrate used by some facultatively organoheterotrophic cyanobacteria, is not effective in Anabaena sp. PCC 7120. The gtr gene from Synechocystis sp. PCC 6803 encoding a glucose carrier was introduced into Anabaena sp. PCC 7120. Surprisingly, the new strain containing the gtr gene did not grow on glucose but was very sensitive to glucose, with a 5 mM concentration being lethal, whereas the wild-type strain tolerated 200 mM glucose. The Anabaena sp. PCC 7120 strain containing gtr can grow mixotrophically and photo-organoheterotrophically, but not chemo-organoheterotrophically with fructose. Anabaena sp. PCC 7120 contains five respiratory chains ending in five different respiratory terminal oxidases. One of these enzymes is a mitochondrial-type cytochrome c oxidase. As in almost all cyanobacteria, this enzyme is encoded by three adjacent genes called coxBAC1. When this locus was disrupted, the cells lost the capability for chemo-organoheterotrophic growth.  相似文献   

16.
We have sequenced and analysed the transaldolase (tal) genes from two cyanobacteria, Anabaena variabilis (ATCC 29413) and Synechocystis sp. PCC 6803, which are filamentous heterocyst-forming and unicellular organisms, respectively. The deduced amino acid sequences of the two cyanobacterial tal genes are 78% identical and are highly homologous to both eubacterial and eukaryotic transaldolases (Escherichia coli, two yeasts, and man) with values ranging from 54 to 60% amino acid identity. In contrast, the transaldolase homologous sequences from the cyanobacterium Nostoc sp. ATCC 29133, from Mycobacterium leprae, and the partial sequence from the higher plant Arabidopsis thaliana have a much lower degree of homology with each other and relative to the sequences mentioned above. These data indicate three different types of transaldolases.  相似文献   

17.
The temporal and spatial accumulation of cyanophycin was studied in two unicellular strains of cyanobacteria, the diazotrophic Cyanothece sp. strain ATCC 51142 and the non-diazotrophic Synechocystis sp. strain PCC 6803. Biochemistry and electron microscopy were used to monitor the dynamics of cyanophycin accumulation under nitrogen-sufficient and nitrogen-deficient conditions. In Cyanothece sp. ATCC 51142 grown under 12 h light/12 h dark nitrogen-fixing conditions, cyanophycin was temporally regulated relative to nitrogenase activity and accumulated in granules after nitrogenase activity commenced. Cyanophycin granules reached a maximum after the peak of nitrogenase activity and eventually were utilized completely. Knock-out mutants were constructed in Synechocystis sp. PCC 6803 cphA and cphB genes to analyze the function of these genes and cyanophycin accumulation under nitrogen-deficient growth conditions. The mutants grew under such conditions, but needed to degrade phycobilisomes as a nitrogen reserve. Granules could be seen in some wild-type cells after treatment with chloramphenicol, but were never found in Delta cphA and Delta cphB mutants. These results led to the conclusion that cyanophycin is temporally and spatially regulated in nitrogen-fixing strains such as Cyanothece sp. ATCC 51142 and represents a key nitrogen reserve in these organisms. However, cyanophycin appeared to play a less important role in the non-diazotrophic unicellular strains and phycobilisomes appeared to be the main nitrogen reserve.  相似文献   

18.
Glutamine synthetases (GSs) from two cyanobacteria, one unicellular (Synechocystis sp. strain PCC 6803) and the other filamentous (Calothrix sp. strain PCC 7601 [Fremyella diplosiphon]), were purified to homogeneity. The biosynthetic activities of both enzymes were strongly inhibited by ADP, indicating that the energy charge of the cell might regulate the GS activity. Both cyanobacteria exhibited an ammonium-mediated repression of GS synthesis. In addition, the Synechocystis sp. showed an inactivation of GS promoted by ammonium that had not been demonstrated previously in cyanobacteria.  相似文献   

19.
Abstract The region of the genome encoding the glucose-6-phosphate dehydrogenase gene zwf was analysed in a unicellular cyanobacterium, Synechococcus sp. PCC 7942, and a filamentous, heterocystous cyanobacterium, Anabaena sp. PCC 7120. Comparison of cyanobacterial zwf sequences revealed the presence of two absolutely conserved cysteine residues which may be implicated in the light/dark control of enzyme activity. The presence in both strains of a gene fbp , encoding fructose-1,6-bisphosphatase, upstream from zwf strongly suggests that the oxidative pentose phosphate pathway in these organisms may function to completely oxidize glucose 6-phosphate to CO2. The amino acid sequence of fructose-1,6-bisphosphatase does not support the idea of its light activation by a thiol/disulfide exchange mechanism. In the case of Anabaena sp. PCC 7120, the tal gene, encoding transaldolase, lies between zwf and fbp .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号