首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The molecular mechanism of ATP synthesis by F1F0-ATP synthase   总被引:4,自引:0,他引:4  
ATP synthesis by oxidative phosphorylation and photophosphorylation, catalyzed by F1F0-ATP synthase, is the fundamental means of cell energy production. Earlier mutagenesis studies had gone some way to describing the mechanism. More recently, several X-ray structures at atomic resolution have pictured the catalytic sites, and real-time video recordings of subunit rotation have left no doubt of the nature of energy coupling between the transmembrane proton gradient and the catalytic sites in this extraordinary molecular motor. Nonetheless, the molecular events that are required to accomplish the chemical synthesis of ATP remain undefined. In this review we summarize current state of knowledge and present a hypothesis for the molecular mechanism of ATP synthesis.  相似文献   

2.
The mutations in human mitochondrial DNA at nt8993 are associated with a range of neuromuscular disorders. One mutation encodes a proline in place of a leucine conserved in all animal mitochondrial ATPase-6 subunits and bacterial a subunits of F1F0 ATP synthases. This conserved site is leu-156 and leu-207 in humans and Escherichia coli, respectively. An aleu-207-->pro substitution mutation has been constructed in the E. coli F1F0 ATP synthase in order to model the biochemical basis of the human disease mutation. The phenotype of the aleu-207-->pro substitution has been compared to that of the previously studied aleu-207-->arg substitution (Hartzog and Cain, 1993, Journal of Biological Chemistry 268, 12250-12252). The leu-207-->pro mutation resulted in approximately a 35% decrease in the number of intact enzyme complexes as determined by N, N'-dicyclohexylcarbodiimide-sensitive membrane associated ATP hydrolysis activity and western analysis using an anti-a subunit antibody. A 75% reduction in the efficiency of proton translocation through F1F0 ATP synthase was observed in ATP-driven proton pumping assays. Interestingly, the loss in F1F0 ATP synthase activity resulting from the leu-207-->pro substitution was markedly less dramatic than had been observed for the leu-207-->arg mutation studied earlier. By analogy, the human enzyme may also be affected by the leu-156-->pro substitution to a lesser extent than the leu-156-->arg substitution, and this would account for the milder clinical manifestations of the human leu-156-->pro disease mutations.  相似文献   

3.
In Escherichia coli F(1)F(0) ATP synthase, the two b subunits dimerize forming the peripheral second stalk linking the membrane F(0) sector to F(1). Previously, we have demonstrated that the enzyme could accommodate relatively large deletions in the b subunits while retaining function (Sorgen, P. L., Caviston, T. L., Perry, R. C., and Cain, B. D. (1998) J. Biol. Chem. 273, 27873-27878). The manipulations of b subunit length have been extended by construction of insertion mutations into the uncF(b) gene adding amino acids to the second stalk. Mutants with insertions of seven amino acids were essentially identical to wild type strains, and mutants with insertions of up to 14 amino acids retained biologically significant levels of activity. Membranes prepared from these strains had readily detectable levels of F(1)F(0)-ATPase activity and proton pumping activity. However, the larger insertions resulted in decreasing levels of activity, and immunoblot analysis indicated that these reductions in activity correlated with reduced levels of b subunit in the membranes. Addition of 18 amino acids was sufficient to result in the loss of F(1)F(0) ATP synthase function. Assuming the predicted alpha-helical structure for this area of the b subunit, the 14-amino acid insertion would result in the addition of enough material to lengthen the b subunit by as much as 20 A. The results of both insertion and deletion experiments support a model in which the second stalk is a flexible feature of the enzyme rather than a rigid rod-like structure.  相似文献   

4.
Weber J  Senior AE 《FEBS letters》2003,545(1):61-70
Topical questions in ATP synthase research are: (1) how do protons cause subunit rotation and how does rotation generate ATP synthesis from ADP+Pi? (2) How does hydrolysis of ATP generate subunit rotation and how does rotation bring about uphill transport of protons? The finding that ATP synthase is not just an enzyme but rather a unique nanomotor is attracting a diverse group of researchers keen to find answers. Here we review the most recent work on rapidly developing areas within the field and present proposals for enzymatic and mechanoenzymatic mechanisms.  相似文献   

5.
F(1)F(0) ATP synthases are known to synthesize ATP by rotary catalysis in the F(1) sector of the enzyme. Proton translocation through the F(0) membrane sector is now proposed to drive rotation of an oligomer of c subunits, which in turn drives rotation of subunit gamma in F(1). The primary emphasis of this review will be on recent work from our laboratory on the structural organization of F(0), which proves to be consistent with the concept of a c(12) oligomeric rotor. From the NMR structure of subunit c and cross-linking studies, we can now suggest a detailed model for the organization of the c(12) oligomer in F(0) and some of the transmembrane interactions with subunits a and b. The structural model indicates that the H(+)-carrying carboxyl of subunit c is located between subunits of the c(12) oligomer and that two c subunits pack in a front-to-back manner to form the proton (cation) binding site. The proton carrying Asp61 side chain is occluded between subunits and access to it, for protonation and deprotonation via alternate entrance and exit half-channels, requires a swiveled opening of the packed c subunits and stepwise association with different transmembrane helices of subunit a. We suggest how some of the structural information can be incorporated into models of rotary movement of the c(12) oligomer during coupled synthesis of ATP in the F(1) portion of the molecule.  相似文献   

6.
Missense mutations affecting Asp-161 and Ser-163 in the delta subunit of F1F0 ATP synthase have been generated. Although most substitutions allowed substantial enzyme function, the delta Asp-161-->Pro substitution resulted in a loss of enzyme activity. The loss of activity was attributable to a structural failure altering assembly of the enzyme complex.  相似文献   

7.
The structure of the N-terminal transmembrane domain (residues 1-34) of subunit b of the Escherichia coli F0F1-ATP synthase has been solved by two-dimensional 1H NMR in a membrane mimetic solvent mixture of chloroform/methanol/H2O (4:4:1). Residues 4-22 form an alpha-helix, which is likely to span the hydrophobic domain of the lipid bilayer to anchor the largely hydrophilic subunit b in the membrane. The helical structure is interrupted by a rigid bend in the region of residues 23-26 with alpha-helical structure resuming at Pro-27 at an angle offset by 20 degrees from the transmembrane helix. In native subunit b, the hinge region and C-terminal alpha-helical segment would connect the transmembrane helix to the cytoplasmic domain. The transmembrane domains of the two subunit b in F0 were shown to be close to each other by cross-linking experiments in which single Cys were substituted for residues 2-21 of the native subunit and b-b dimer formation tested after oxidation with Cu(II)(phenanthroline)2. Cys residues that formed disulfide cross-links were found with a periodicity indicative of one face of an alpha-helix, over the span of residues 2-18, where Cys at positions 2, 6, and 10 formed dimers in highest yield. A model for the dimer is presented based upon the NMR structure and distance constraints from the cross-linking data. The transmembrane alpha-helices are positioned at a 23 degrees angle to each other with the side chains of Thr-6, Gln-10, Phe-14, and Phe-17 at the interface between subunits. The change in direction of helical packing at the hinge region may be important in the functional interaction of the cytoplasmic domains.  相似文献   

8.
In this review we discuss recent work from our laboratory concerning the structure and/or function of the F(0) subunits of the proton-translocating ATP synthase of Escherichia coli. For the topology of subunit a a brief discussion gives (i) a detailed picture of the C-terminal two-thirds of the protein with four transmembrane helices and the C terminus exposed to the cytoplasm and (ii) an evaluation of the controversial results obtained for the localization of the N-terminal region of subunit a including its consequences on the number of transmembrane helices. The structure of membrane-bound subunit b has been determined by circular dichroism spectroscopy to be at least 75% alpha-helical. For this purpose a method was developed, which allows the determination of the structure composition of membrane proteins in proteoliposomes. Subunit b was purified to homogeneity by preparative SDS gel electrophoresis, precipitated with acetone, and redissolved in cholate-containing buffer, thereby retaining its native conformation as shown by functional coreconstitution with an ac subcomplex. Monoclonal antibodies, which have their epitopes located within the hydrophilic loop region of subunit c, and the F(1) part are bound simultaneously to the F(0) complex without an effect on the function of F(0), indicating that not all c subunits are involved in F(1) interaction. Consequences on the coupling mechanism between ATP synthesis/hydrolysis and proton translocation are discussed.  相似文献   

9.
The a subunit, a membrane protein from the E. coli F1F0 ATP synthase has been examined by Fourier analysis of hydrophobicity and of amino-acid residue variation. The amino-acid sequences of homologous subunits from Vibrio alginolyticus, Saccharomyces cerevisiae, Neurospora crassa, Aspergillus nidulans, Schizosaccharomyces pombe and Candida parapsilosis were used in the variability analysis. By Fourier analysis of sequence variation, two transmembrane helices are predicted to have one face in contact with membrane lipids, while the other spans are predicted to be more shielded from the lipids by protein. By Fourier analysis of hydrophobicity, six amphipathic alpha-helical segments are predicted in extra-membrane regions, including the region from Glu-196 to Asn-214. Fourier analysis of sequence variation in the b- and the c-subunits of the Escherichia coli F1F0 ATP synthase indicates that the single transmembrane span of the b-subunit and the C-terminal span of the c subunit each have a face in contact with membrane lipids. On the basis of this analysis topographical models for the a- and c-subunits and for the F0 complex are proposed.  相似文献   

10.
U Lücken  E P Gogol  R A Capaldi 《Biochemistry》1990,29(22):5339-5343
The structural relationship of the catalytic portion (ECF1) of the Escherichia coli F1F0 ATP synthase (ECF1F0) to the intact, membrane-bound complex has been determined by cryoelectron microscopy and image analysis of single, unordered particles. ECF1F0, reconstituted into membrane structures, has been preserved and examined in its native state in a layer of amorphous ice. Side views of the ECF1F0 show the same elongated bilobed and trilobed projection of the ECF1 views shown previously to be normal to the hexagonal projection. The elongated aqueous cavity of the ECF1 is perpendicular to the membrane bilayer profile in the bilobed view. ECF1 is separated from the membrane-embedded F0 by a narrow stalk approximately 40 A long and approximately 25-30 A thick. The F0 part extends from the lipid bilayer by approximately 10 A on the side facing the ECF1. There is no clear extension of the protein on the opposite side of the membrane.  相似文献   

11.
The purified F0 part of the ATP synthase complex from Escherichia coli was incorporated into liposomes and chemically modified by various reagents. The modified F0-liposomes were assayed for H+ uptake and, after reconstitution with F1, for total and dicyclohexylcarbodiimide-sensitive ATPase activity. The water-soluble carbodiimide, 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide methiodide, (1.2 mM), inhibited H+ uptake to a great extent. Binding of F1 was almost unaffected, but the hydrolysis of ATP was uncoupled from H+ transport. This is reflected by the inhibition of dicyclohexylcarbodiimide-sensitive ATPase activity. Woodward's reagent K, N-ethyl-5-phenylisoxazolium-3'-sulfonate, inhibited both H+ uptake and total ATPase activity. Modification of arginine residues by phenylglyoxal (20 mM) was followed by inhibition of the F1 binding activity by 80% of the control. H+ translocation was reduced to 70%. Diethylpyrocarbonate (3 mM) exhibited a strong inhibiting effect on H+ uptake but not on F1 binding. Modification of tyrosine (by tetranitromethane) as well as lysine residues (by succinic anhydride) did not affect F0 functions. From the data presented we conclude that carboxyl-groups, different from the dicyclohexylcarbodiimide-binding site, are involved in H+ translocation through F0 and, in part, in the functional binding of F1. Furthermore, for the latter function, also arginine residues seem to be important. The role of histidine residues remains unclear at present.  相似文献   

12.
Rotary catalysis in F(1)F(0) ATP synthase is powered by proton translocation through the membrane-embedded F(0) sector. Proton binding and release occurs in the middle of the membrane at Asp-61 on transmembrane helix 2 of subunit c. Previously, the reactivity of cysteines substituted into F(0) subunit a revealed two regions of aqueous access, one extending from the periplasm to the middle of the membrane and a second extending from the middle of the membrane to the cytoplasm. To further characterize aqueous accessibility at the subunit a-c interface, we have substituted Cys for residues on the cytoplasmic side of transmembrane helix 2 of subunit c and probed the accessibility to these substituted positions using thiolate-reactive reagents. The Cys substitutions tested were uniformly inhibited by Ag(+) treatment, which suggested widespread aqueous access to this generally hydrophobic region. Sensitivity to N-ethylmaleimide (NEM) and methanethiosulfonate reagents was localized to a membrane-embedded pocket surrounding Asp-61. The cG58C substitution was profoundly inhibited by all the reagents tested, including membrane impermeant methanethiosulfonate reagents. Further studies of the highly reactive cG58C substitution revealed that NEM modification of a single c subunit in the oligomeric c-ring was sufficient to cause complete inhibition. In addition, NEM modification of subunit c was dependent upon the presence of subunit a. The results described here provide further evidence for an aqueous-accessible region at the interface of subunits a and c extending from the middle of the membrane to the cytoplasm.  相似文献   

13.
S B Vik  D Lee    P A Marshall 《Journal of bacteriology》1991,173(14):4544-4548
Mutations were constructed in the a subunit of the F1F0 ATP synthase from Escherichia coli. Truncated forms of this subunit showed a temperature sensitivity phenotype. We conclude that the carboxy terminus of the a subunit is not involved directly with proton translocation but that it has an important structural role.  相似文献   

14.
Two strains of Escherichia coli that lack the epsilon subunit of the F1F0 ATP synthase have been constructed. They are shown to be viable but with very low growth yields (28%). These strains can be complemented by plasmids carrying wild-type uncC, but not when epsilon is overproduced. These results indicate that epsilon is not essential for growth on minimal glucose medium and that the level of its expression affects the assembly of the ATP synthase.  相似文献   

15.
Incubation of right-side-out oriented membrane vesicles of Escherichia coli with tetranitromethane resulted in the nitration of tyrosine residues (Tyr-10 and Tyr-73) of subunit c from the ATP synthase. Cleavage of the protein with cyanogen bromide and separation of the resulting fragments, especially of the tyrosine-containing peptides, clearly demonstrated that the distribution of the nitro groups is similar at any time and at any pH value chosen for the analysis. Furthermore, the percentage of 3-nitrotyrosine present in the two peptide fragments was in good agreement with that obtained for the intact polypeptide chain. While the modification of the tyrosine residues in subunit c with the lipophilic tetranitromethane is independent of the orientation of the membrane vesicles, the subsequent partial conversion of the 3-nitrotyrosine to the amino form only occurred when membrane vesicles with right-side-out orientation were treated with the ionic, water-soluble sodium dithionite, which at certain concentrations cannot penetrate biological membranes. Cleavage of subunit c isolated from nitrated and subsequently reduced membrane vesicles and separation of the resulting fragments by high-pressure liquid chromatography showed that the 3-nitrotyrosine in the Tyr-73-containing peptides has been completely reduced, while the nitro group in peptides containing Tyr-10 remained nearly unaffected.  相似文献   

16.
A strain of Escherichia coli which was derived from a gentamicin-resistant clinical isolate was found to be cross-resistant to neomycin and streptomycin. The molecular nature of the genetic defect was found to be an insertion of two GC base pairs in the uncG gene of the mutant. The insertion led to the production of a truncated gamma subunit of 247 amino acids in length instead of the 286 amino acids that are present in the normal gamma subunit. A plasmid which carried the ATP synthase genes from the mutant produced resistance to aminoglycoside antibiotics when it was introduced into a strain with a chromosomal deletion of the ATP synthase genes. Removal of the genes coding for the beta and epsilon subunits abolished antibiotic resistance coded by the mutant plasmid. The relationship between antibiotic resistance and the gamma subunit was investigated by testing the antibiotic resistance of plasmids carrying various combinations of unc genes. The presence of genes for the F0 portion of the ATP synthase in the presence or absence of genes for the gamma subunit was not sufficient to cause antibiotic resistance. alpha, beta, and truncated gamma subunits were detected on washed membranes of the mutant by immunoblotting. The first 247 amino acid residues of the gamma subunit may be sufficient to allow its association with other F1 subunits in such a way that the proton gate of F0 is held open by the mutant F1.  相似文献   

17.
His-tagged cysteine-less F1Fo ATP synthase from Escherichia coli was purified using Ni-NTA affinity chromatography. During the purification procedure the loss of total ATPase activity did not exceed 50%, and the extent of purification was about 80-fold. The purified enzyme was essentially free of other proteins, was highly active in ATP hydrolysis (75 units/mg at pH 8 and 37 degrees C), and was sensitive to N,N'-dicyclohexylcarbodiimide (70%). Incorporation of F1Fo into soybean liposomes yielded well-coupled and highly active proteoliposomes. The entire procedure, from the disruption of cells by French press to the preparation of proteoliposomes, took only about 8 h. Some improvements in procedures for the estimation of rates of both ATP hydrolysis and ATP-dependent 9-amino-6-chloro-2-methoxyacridine (ACMA) fluorescence quenching are described.  相似文献   

18.
19.
In F1F0-ATP synthase, the subunit b2delta complex comprises the peripheral stator bound to subunit a in F0 and to the alpha3beta3 hexamer of F1. During catalysis, ATP turnover is coupled via an elastic rotary mechanism to proton translocation. Thus, the stator has to withstand the generated rotor torque, which implies tight interactions of the stator and rotor subunits. To quantitatively characterize the contribution of the F0 subunits to the binding of F1 within the assembled holoenzyme, the isolated subunit b dimer, ab2 subcomplex, and fully assembled F0 complex were specifically labeled with tetramethylrhodamine-5-maleimide at bCys64 and functionally reconstituted into liposomes. Proteoliposomes were then titrated with increasing amounts of Cy5-maleimide-labeled F1 (at gammaCys106 and analyzed by single-molecule fluorescence resonance energy transfer. The data revealed F1 dissociation constants of 2.7 nm for the binding of F0 and 9-10 nm for both the ab2 subcomplex and subunit b dimer. This indicates that both rotor and stator components of F0 contribute to F1 binding affinity in the assembled holoenzyme. The subunit c ring plays a crucial role in the binding of F1 to F0, whereas subunit a does not contribute significantly.  相似文献   

20.
Subunit b of Escherichia coli F1F0 ATP synthase contains a large hydrophilic region thought to be involved in the interaction between F1 and F0. Oligonucleotide-directed mutagenesis was used to evaluate the functional importance of a segment of this region from Glu-77 through Gln-85. The mutagenesis procedure employed a phagemid DNA template and a doped oligonucleotide primer designed to generate a predetermined collection of missense mutations in the target segment. Sixty-one mutant phagemids were identified and shown to contain nucleotide substitutions encoding 37 novel missense mutations. Mutations were isolated singly or in combinations of up to four mutations per recombinant phagemid. F1F0 ATP synthase function was studied by mutant phagemid complementation of a novel E. coli strain in which the uncF (b) gene was deleted. Complementation was assessed by observing growth on solid succinate minimal medium. Many phagemid-encoded uncF (b) gene mutations in the targeted segment resulted in growth phenotypes indistinguishable from those of strains expressing the native b subunit, suggesting abundant F1F0 ATP synthase activity. In contrast, several specific mutations were associated with a loss of enzyme function. Phagemids specifying the Ala-79----Pro, Arg-82----Pro, Arg-83----Pro, or Gln-85----Pro mutation failed to complement uncF (b) gene-deficient E. coli. F1F0 ATP synthase displayed the greatest sensitivity to mutations altering a single site in the target segment, Ala-79. The evidence suggests that Ala-79 occupies a restricted position in the enzyme complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号