首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Measles virus (MV) hemagglutinin (MV-H) and fusion (MV-F) proteins induce plaque reduction neutralizing (PRN) antibodies and cell-mediated immune responses that protect against clinical measles. DNA vaccines that encode MV-H and MV-F are being investigated as a new generation of measles vaccine to protect infants too young to receive currently licensed attenuated measles vaccines. However, it is unclear whether DNA vaccines encoding both MV-H and MV-F act synergistically to induce stronger immunity than immunization with plasmids encoding MV-H or MV-F alone. To address this question, we generated Sindbis virus-based pSINCP DNA vaccines that encode either MV-H or MV-F alone or bicistronic or fusion system vectors that encode both MV-H and MV-F (to mimic MV infection where both MV-H and MV-F proteins are expressed by the same mammalian cell). Mice immunized with DNA vaccine encoding MV-H alone developed significantly greater PRN titers than mice immunized with bicistronic constructs. Interestingly, the presence of MV-F in the bicistronic constructs stimulated serum MV-specific immunoglobulin G of reduced avidity. By contrast, mice immunized with bicistronic constructs induced equivalent or higher levels of MV-specific gamma interferon responses than mice immunized with DNA vaccine encoding MV-H alone. These data will help guide the design of DNA-based MV vaccines to be used early in life in a heterologous prime-boost strategy.  相似文献   

2.
Cotton rats (Sigmodon hispidus, inbred strain COTTON/NIco) have been shown to be a good animal model to investigate measles virus (MV) immune suppression and to assess alternative vaccine candidates against MV infection. Here we demonstrate that cotton rats develop a bronchusassociated and interstitial pneumonia with necrotic lesions after intranasal infection resembling findings from fatal cases of human MV pneumonia. In the absence of superinfection restitutio ad integrum is observed and overcoming of lung infection correlates with the development of MV specific neutralizing antibodies.  相似文献   

3.
Hepatitis B virus (HBV) acute and chronic infections remain a major worldwide health problem. Towards developing an anti-HBV vaccine with single-dose scheme potential, we engineered infectious measles virus (MV) genomic cDNAs with a vaccine strain background and expression vector properties. Hepatitis B surface antigen (HBsAg) expression cassettes were inserted into this cDNA and three MVs expressing HBsAg at different levels generated. All vectored MVs, which secrete HBsAg as subviral particles, elicited humoral responses in MV-susceptible genetically modified mice. However, small differences in HBsAg expression elicited vastly different HBsAg antibody levels. The two vectors inducing the highest HBsAg antibody levels were inoculated into rhesus monkeys (Macaca mulatta). After challenge with a pathogenic MV strain (Davis87), control naive monkeys showed a classic measles rash and high viral loads. In contrast, all monkeys immunized with vaccine or a control nonvectored recombinant vaccine or HBsAg-expressing vectored MV remained healthy, with low or undetectable viral loads. After a single vaccine dose, only the vector expressing HBsAg at the highest levels elicited protective levels of HBsAg antibodies in two of four animals. These observations reveal an expression threshold for efficient induction of HBsAg humoral immune responses. This threshold is lower in mice than in macaques. Implications for the development of divalent vaccines based on live attenuated viruses are discussed.  相似文献   

4.
The anchored and secreted forms of the human immunodeficiency virus type 1 (HIV-1) 89.6 envelope glycoprotein, either complete or after deletion of the V3 loop, were expressed in a cloned attenuated measles virus (MV) vector. The recombinant viruses grew as efficiently as the parental virus and expressed high levels of the HIV protein. Expression was stable during serial passages. The immunogenicity of these recombinant vectors was tested in mice susceptible to MV and in macaques. High titers of antibodies to both MV and HIV-Env were obtained after a single injection in susceptible mice. These antibodies neutralized homologous SHIV89.6p virus, as well as several heterologous HIV-1 primary isolates. A gp160 mutant in which the V3 loop was deleted induced antibodies that neutralized heterologous viruses more efficiently than antibodies induced by the native envelope protein. A high level of CD8+ and CD4+ cells specific for HIV gp120 was also detected in MV-susceptible mice. Furthermore, recombinant MV was able to raise immune responses against HIV in mice and macaques with a preexisting anti-MV immunity. Therefore, recombinant MV vaccines inducing anti-HIV neutralizing antibodies and specific T lymphocytes responses deserve to be tested as a candidate AIDS vaccine.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) subtype C infections are on the rise in Sub-Saharan Africa and Asia. Therefore, there is a need to develop an HIV vaccine capable of eliciting broadly reactive immune responses against members of this subtype. We show here that modified HIV envelope (env) DNA vaccines derived from the South African subtype C TV1 strain are able to prime for humoral responses in rabbits and rhesus macaques. Priming rabbits with DNA plasmids encoding V2-deleted TV1 gp140 (gp140TV1DeltaV2), followed by boosting with oligomeric protein (o-gp140TV1DeltaV2) in MF59 adjuvant, elicited higher titers of env-binding and autologous neutralizing antibodies than priming with DNA vaccines encoding the full-length TV1 env (gp160) or the intact TV1 gp140. Immunization with V2-deleted subtype B SF162 env and V2-deleted TV1 env together using a multivalent vaccine approach induced high titers of oligomeric env-binding antibodies and autologous neutralizing antibodies against both the subtypes B and C vaccine strains, HIV-1 SF162 and TV1, respectively. Low-level neutralizing activity against the heterologous South African subtype C TV2 strain, as well as a small subset of viruses in a panel of 13 heterologous primary isolates, was observed in some rabbits immunized with the V2-deleted vaccines. Immunization of rhesus macaques with the V2-deleted TV1 DNA prime/protein boost also elicited high titers of env-binding antibodies and moderate titers of autologous TV1 neutralizing antibodies. The pilot-scale production of the various TV1 DNA vaccine constructs and env proteins described here should provide an initial platform upon which to improve the immunogenicity of these subtype C HIV envelope vaccines.  相似文献   

6.
A variety of vaccine platforms are under study for development of new vaccines for measles. Problems with past measles vaccines are incompletely understood and underscore the need to understand the types of immune responses induced by different types of vaccines. Detailed immune response evaluation is most easily performed in mice. Although mice are not susceptible to infection with wild type or vaccine strains of measles virus, they can be used for comparative evaluation of the immune responses to measles vaccines of other types. In this study we compared the immune responses in mice to a new protective alphavirus replicon particle vaccine expressing the measles virus hemagglutinin (VEE/SIN-H) with a non-protective formalin-inactivated, alum-precipitated measles vaccine (FI-MV). MV-specific IgG levels were similar, but VEE/SIN-H antibody was high avidity IgG2a with neutralizing activity while FI-MV antibody was low-avidity IgG1 without neutralizing activity. FI-MV antibody was primarily against the nucleoprotein with no priming to H. Germinal centers appeared, peaked and resolved later for FI-MV. Lymph node MV antibody-secreting cells were more numerous after FI-MV than VEE/SIN-H, but were similar in the bone marrow. VEE/SIN-H-induced T cells produced IFN-γ and IL-4 both spontaneously ex vivo and after stimulation, while FI-MV-induced T cells produced IL-4 only after stimulation. In summary, VEE/SIN-H induced a balanced T cell response and high avidity neutralizing IgG2a while FI-MV induced a type 2 T cell response, abundant plasmablasts, late germinal centers and low avidity non-neutralizing IgG1 against the nucleoprotein.  相似文献   

7.

Background

Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent.

Methodology/Principal Findings

We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12.

Conclusion/Significance

These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use.  相似文献   

8.
Measles virus (MV) vaccine effectively protects seronegative individuals against infection. However, inhibition of vaccine-induced seroconversion by maternal antibodies after vaccination remains a problem, as it leaves infants susceptible to MV infection. In cotton rats, passive transfer of MV-specific IgG mimics maternal antibodies and inhibits vaccine-induced seroconversion. Here, we report that immunization in the presence of passively transferred IgG inhibits the secretion of neutralizing antibodies but not the generation of MV-specific B cells. This finding suggested that MV-specific B cells require an additional stimulus to mature into antibody-secreting plasma cells. In order to provide such a stimulus, we generated a recombinant Newcastle disease virus (NDV) expressing the MV hemagglutinin (NDV-H). In contrast to MV, NDV-H induced high levels of type I interferon in plasmacytoid dendritic cells and in lung tissue. In cotton rats immunized with NDV-H, neutralizing antibodies were also generated in the presence of passively transferred antibodies. In the latter case, however, the level and kinetics of antibody generation were reduced. In vitro, alpha interferon stimulated the activation of MV-specific B cells from MV-immune spleen cells. NDV infection (which induces alpha interferon) had the same effect, and stimulation could be abrogated by antibodies neutralizing alpha interferon, but not interleukin 6 (IL-6). In vivo, coapplication of UV-inactivated MV with NDV led to increased MV-specific antibody production in the presence and absence of passively transferred antibodies. These data indicate that MV-specific B cells are being generated after immunization in the presence of maternal antibodies and that the provision of alpha interferon as an additional signal leads to antibody secretion.  相似文献   

9.
Vaccination with the current live attenuated measles vaccine is one of the most successful and cost-effective medical interventions. However, as a result of persisting maternal antibodies and immaturity of the infant immune system, this vaccine is poorly immunogenic in children <9 months old. Immunity against the live vaccine is less robust than natural immunity and protection less durable. There may also be some concern about (vaccine) virus spread during the final stage of an eventual measles eradication program. Opinions may differ with respect to the potential threat that some of these concerns may be to the World Health Organisation goal of measles elimination, but there is a consensus that the development of new measles vaccines cannot wait. Candidate vaccines are based on viral or bacterial vectors expressing recombinant viral proteins, naked DNA, immune stimulating complexes or synthetic peptides mimicking neutralising epitopes. While some of these candidate vaccines have proven their efficacy in monkey studies, aerosol formulated live attenuated measles vaccine are evaluated in clinical trials.  相似文献   

10.
The effectiveness of cationic microparticles with adsorbed DNA at inducing immune responses was investigated in mice, guinea pigs, and rhesus macaques. Plasmid DNA vaccines encoding human immunodeficiency virus (HIV) Gag and Env adsorbed onto the surface of cationic poly(lactide-coglycolide) (PLG) microparticles were shown to be substantially more potent than corresponding naked DNA vaccines. In mice immunized with HIV gag DNA, adsorption onto PLG increased CD8(+) T-cell and antibody responses by approximately 100- and approximately 1,000-fold, respectively. In guinea pigs immunized with HIV env DNA adsorbed onto PLG, antibody responses showed a more rapid onset and achieved markedly higher enzyme-linked immunosorbent assay and neutralizing titers than in animals immunized with naked DNA. Further enhancement of antibody responses was observed in animals vaccinated with PLG/DNA microparticles formulated with aluminum phosphate. The magnitude of anti-Env antibody responses induced by PLG/DNA particles was equivalent to that induced by recombinant gp120 protein formulated with a strong adjuvant, MF-59. In guinea pigs immunized with a combination vaccine containing HIV env and HIV gag DNA plasmids on PLG microparticles, substantially superior antibody responses were induced against both components, as measured by onset, duration, and titer. Furthermore, PLG formulation overcame an apparent hyporesponsiveness of the env DNA component in the combination vaccine. Finally, preliminary data in rhesus macaques demonstrated a substantial enhancement of immune responses afforded by PLG/DNA. Therefore, formulation of DNA vaccines by adsorption onto PLG microparticles is a powerful means of increasing vaccine potency.  相似文献   

11.
In humans, maternal antibodies inhibit successful immunization against measles, because they interfere with vaccine-induced seroconversion. We have investigated this problem using the cotton rat model (Sigmodon hispidus). As in humans, passively transferred antibodies inhibit the induction of measles virus (MV)-neutralizing antibodies and protection after immunization with MV. In contrast, a recombinant vesicular stomatitis virus (VSV) expressing the MV hemagglutinin (VSV-H) induces high titers of neutralizing antibodies to MV in the presence of MV-specific antibodies. The induction of neutralizing antibodies increased with increasing virus dose, and all doses gave good protection from subsequent challenge with MV. Induction of antibodies by VSV-H was observed in the presence of passively transferred human or cotton rat antibodies, which were used as the models of maternal antibodies. Because MV hemagglutinin is not a functional part of the VSV-H envelope, MV-specific antibodies only slightly inhibit VSV-H replication in vitro. This dissociation of function and antigenicity is probably key to the induction of a neutralizing antibody in the presence of a maternal antibody.  相似文献   

12.
An inactivated Japanese encephalitis virus (JEV) vaccine, which induces neutralizing antibodies, has been used for many years in Japan. In the present study, the JEV prM-E protein gene was cloned, inserted at the P/M junction of measles AIK-C cDNA, and an infectious virus was recovered. The JEV E protein was expressed in B95a cells infected with the recombinant virus. Cotton rats were inoculated with recombinant virus. Measles PA antibodies were detected three weeks after immunization. Neutralizing antibodies against JEV developed one week after inoculation, and EIA antibodies were detected three weeks after immunization. The measles AIK-C-based recombinant virus simultaneously induced measles and JEV immune responses, and may be a candidate for infant vaccines. Therefore, the present strategy of recombinant viruses based on a measles vaccine vector would be applicable to the platform for vaccine development.  相似文献   

13.
This article lists the vaccines current available for the control of both viral and bacterial infections. They may be attenuated live or inactivated whole microorganisms, or subunit preparations. Many more are in the pipeline and increasing attention is being given to establishing their safety before registration. Following the earlier eradication of smallpox, good progress is now being made toward the global eradication of poliomyelitis and a new program to eliminate measles from the Americas has begun. A variety of new approaches to vaccine development is now available. The hepatitis B virus surface antigen, made by DNA-transfected yeast or mammalian cells, is the basis of the first genetically engineered vaccine. Early in the 21st century, new vaccines based on oligopeptides, recombinant live viral or bacterial vectors (often existing live vaccines), or recombinant DNA plasmids are likely to be registered for human use. The efficacy of vaccines depends on the immune responses generated, and the recent substantial increase in our understanding of the mammalian immune system now offers great opportunities for manipulation to best obtain desired responses. These include mixing vaccine formulations to maximize immune responses, and combining vaccines to simplify their administration. Despite these advances, some persisting infections, such as those caused by HIV, plasmodia, and mycobacteria, still pose a great challenge to vaccine developers.  相似文献   

14.
West Nile virus is now distributed throughout many temperate, subtropical and tropical areas: vaccines need to be developed that are affordable for developed and developing countries. Here, we constructed and evaluated a DNA vaccine expressing the premembrane and envelope proteins of West Nile virus (pcWNME). Mice immunized twice with 100 or 10 microg of pcWNME developed high or moderate levels of neutralizing antibodies, respectively. These mice were protected from viremia and death after lethal challenge. Mice immunized with a mixture of 1 microg of pcWNME and a small amount (1/10 dose) of a commercial inactivated vaccine developed moderate levels of neutralizing antibodies, whereas immunization with pcWNME or the inactivated vaccine alone induced only low or undetectable levels: co-immunization with the DNA and protein vaccines synergistically increased their own immunogenicities. The synergism reduced the amount of DNA sufficient to induce neutralizing antibodies: a single immunization with doses as low as 0.1 microg induced a titer of 1:40 at a 90% plaque reduction 6 or 9 weeks after immunization. Both IgG1 and IgG2a antibodies were induced in mice by co-immunization with the DNA and protein vaccines.  相似文献   

15.
Measles remains a principal cause of worldwide mortality, in part because young infants cannot be immunized effectively. Development of new vaccines has been hindered by previous experience with a formalin-inactivated vaccine that predisposed to a severe form of disease (atypical measles). Here we have developed and tested potential DNA vaccines for immunogenicity, efficacy and safety in a rhesus macaque model of measles. DNA protected from challenge with wild-type measles virus. Protection correlated with levels of neutralizing antibody and not with cytotoxic T lymphocyte activity. There was no evidence in any group, including those receiving hemagglutinin-encoding DNA alone, of 'priming' for atypical measles.  相似文献   

16.
Infants younger than age 9 mo do not respond reliably to the live attenuated measles vaccine due the immaturity of their immune system and the presence of maternal Abs that interfere with successful immunization. We evaluated the immune responses elicited by Sindbis virus replicon-based DNA vaccines encoding measles virus (MV) hemagglutinin (H, pMSIN-H) or both hemagglutinin and fusion (F, pMSINH-FdU) glycoproteins in neonatal mice born to naive and measles-immune mothers. Despite the presence of high levels of maternal Abs, neonatal immunization with pMSIN-H induced long-lasting, high-avidity MV plaque reduction neutralization (PRN) Abs, mainly IgG2a, that also inhibited syncytium formation in CD150(+) B95-8 cells. IgG secreting plasma cells were detected in spleen and bone marrow. Newborns vaccinated with pMSINH-FdU elicited PRN titers that surpassed the protective level (200 mIU/ml) but were short-lived, had low syncytium inhibition capacity, and lacked avidity maturation. This vaccine failed to induce significant PRN titers in the presence of placentally transferred Abs. Both pMSIN-H and pMSINH-FdU elicited strong Th1 type cell-mediated immunity, measured by T cell proliferation and IFN-gamma production, that was unaffected by maternal Abs. Newborns responded to measles DNA vaccines with similar or even higher PRN titers and cell-mediated immunity than adult mice. This study is the first demonstration that a Sindbis virus-based measles DNA vaccine can elicit robust MV immunity in neonates bypassing maternal Abs. Such a vaccine could be followed by the current live attenuated MV vaccine in a heterologous prime-boost to protect against measles early in life.  相似文献   

17.
为了提高表达GP5的猪繁殖与呼吸综合征病毒(PRRSV)DNA疫苗的免疫效应,将具有蛋白转导功能的牛疱疹病毒1型(BHV-1)VP22基因插入到经过修饰具有更好免疫原性的PRRSV修饰型ORF5基因(ORF5M)上游,构建VP22和ORF5M融合表达的真核表达质粒pCI-VP22-ORF5M。经间接免疫荧光试验(IFA)和Westernblot检测证实体外表达后,免疫BALB/c小鼠,检测小鼠免疫后的GP5特异性ELISA抗体、抗PRRSV中和抗体和脾淋巴细胞增殖反应,并与非融合的真核表达质粒pCI-ORF5M进行比较。结果显示,融合表达VP22-GP5的DNA疫苗 pCI-VP22ORF5M诱导的体液免疫和细胞免疫反应均明显高于非融合表达的DNA疫苗pCI-ORF5M,表明蛋白转导相关蛋白BHV-1 VP22能显著增强表达GP5的PRRSV DNA 疫苗的免疫效应,有效发挥了基因免疫佐剂效应;这为研制PRRSV高效DNA疫苗奠定了基础,同时也为其它疾病的高效新型疫苗研究提供了思路。  相似文献   

18.
Hepatitis C virus (HCV) infection remains a serious public health problem worldwide. Treatments are limited, and no preventive vaccine is available. Toward developing an HCV vaccine, we engineered two recombinant measles viruses (MVs) expressing structural proteins from the prototypic HCV subtype 1a strain H77. One virus directs the synthesis of the HCV capsid (C) protein and envelope glycoproteins (E1 and E2), which fold properly and form a heterodimer. The other virus expresses the E1 and E2 glycoproteins separately, with each one fused to the cytoplasmic tail of the MV fusion protein. Although these hybrid glycoproteins were transported to the plasma membrane, they were not incorporated into MV particles. Immunization of MV-susceptible, genetically modified mice with either vector induced neutralizing antibodies to MV and HCV. A boost with soluble E2 protein enhanced titers of neutralizing antibody against the homologous HCV envelope. In animals primed with MV expressing properly folded HCV C-E1-E2, boosting also induced cross-neutralizating antibodies against two heterologous HCV strains. These results show that recombinant MVs retain the ability to induce MV-specific humoral immunity while also eliciting HCV neutralizing antibodies, and that anti-HCV immunity can be boosted with a single dose of purified E2 protein. The use of MV vectors could have advantages for pediatric HCV vaccination.  相似文献   

19.
Human metapneumovirus (hMPV) is a recently described paramyxovirus that is a major cause of upper and lower respiratory infection in children and adults worldwide. A safe and effective vaccine could decrease the burden of disease associated with this novel pathogen. We previously reported the development of the cotton rat model of hMPV infection and pathogenesis (J. V. Williams et al., J. Virol. 79:10944-10951, 2005). We report here the immunogenicity of an hMPV fusion (F) protein in this model. We constructed DNA plasmids that exhibited high levels of expression of hMPV F in mammalian cells (DNA-F). These constructs were used to develop a novel strategy to produce highly pure, soluble hMPV F protein lacking the transmembrane domain (FDeltaTM). We then immunized cotton rats at 0 and 14 days with either control vector, DNA-F alone, DNA-F followed by FDeltaTM protein, or FDeltaTM alone. All groups were challenged intranasally at 28 days with live hMPV. All three groups that received some form of hMPV F immunization mounted neutralizing antibody responses and exhibited partial protection against virus shedding in the lungs compared to controls. The FDeltaTM-immunized animals showed the greatest degree of protection (>1,500-fold reduction in lung virus titer). All three immunized groups showed a modest reduction of nasal virus shedding. Neither evidence of a Th2-type response nor increased lung pathology were present in the immunized animals. We conclude that sequence-optimized hMPV F protein protects against hMPV infection when delivered as either a DNA or a protein vaccine in cotton rats.  相似文献   

20.
Porcine transmissible gastroenteritis virus (TGEV) and porcine epidemic diarrhea virus (PDEV) can cause severe diarrhea in pigs. Development of effective vaccines against TGEV and PEDV is one of important prevention measures. The spike (S) protein is the surface glycoprotein of TGEV and PEDV, which can induce specific neutralization antibodies and is a candidate antigen for vaccination attempts. In this study, the open reading frames of the TGEV S1 protein and in addition of the S or S1 proteins of PEDV were inserted into the eukaryotic expression vector, pIRES, resulting in recombinant plasmids, pIRES-(TGEV-S1-PEDV-S1) and pIRES-(TGEV-S1-PEDV-S). Subsequently, 6–8 weeks old Kunming mice were inoculated with both DNA plasmids. Lymphocyte proliferation assay, virus neutralization assay, IFN-γ assay and CTL activity assay were performed. TGEV/PEDV specific antibody responses as well as kinetic changes of T lymphocyte subgroups of the immunized mice were analyzed. The results showed that the recombinant DNA plasmids increased the proliferation of T lymphocytes and the number of CD4+ and CD8+ T lymphocyte subgroups. In addition, the DNA vaccines induced a high level of IFN-γ in the immunized mice. The specific CTL activity in the pIRES-(TGEV-S1-PEDV-S) group became significant at 42 days post-immunization. At 35 days post-immunization, the recombinant DNA plasmids bearing full-length S genes of TGEV and PEDV stimulated higher levels of specific antibodies and neutralizing antibodies in immunized mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号