首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The Neotropical‐native figitid Aganaspis pelleranoi (Brèthes) and the Asian braconid Diachasmimorpha longicaudata (Ashmead) are two parasitoids of Tephritidae fruit flies with long and recent, respectively, evolutionary histories in the Neotropics. Both species experienced a recent range of overlap. In Argentina, A. pelleranoi is a potential species in biological control programs against the pestiferous tephritid species, Anastrepha fraterculus (Wiedemann) and Ceratitis capitata (Wiedemann), whereas D. longicaudata is already used in open‐field releases against Medfly in central‐western Argentina. To characterize the host‐foraging strategies of A. pelleranoi and D. longicaudata, olfactometer experiments were conducted comparing responses to C. capitata and A. fraterculus larvae, in two kinds of food substrate: fruit and artificial larval medium. To control the possible influence of host larvae used for parasitoid rearing on olfactory response, two strains of both parasitoid species, reared on both tephrtid species, were studied. Volatiles directly emanating either from A. fraterculus or C. capitata larvae may be detected by both A. pelleranoi and D. longicaudata, although chemical stimuli originating from the combination of host larvae and the habitat of the host were preferred. However, olfactory cues associated with host larvae probably play a relevant role in host searching behaviour of A. pelleranoi, whereas for D. longicaudata, the host‐habitat olfactory stimuli would be highly essential in short‐range host location. The strain of the parasitoids did not affect host search ability on the two tephritid species evaluated. These evidences are relevant for mass production of both parasitoids and their impact following open‐field augmentative releases.  相似文献   

2.
In conservation biological control, diversification of the agro ecosystem with flowering vegetation is seen as an important tool to support the broad range of predators and parasitoids that require nectar and pollen sources to survive and reproduce. In order to identify flowering plants that provide suitable food sources for natural enemies without supporting the pest species, we analyzed the exploitation of 19 flowering plants by two important lepidopteran cabbage pests, Pieris rapae and Plutella xylostella, and their hymenopteran parasitoids, Cotesia glomerata and Diadegma semiclausum. The experiments were conducted at 90% r.h., while Pieris rapae was tested both at 45% r.h. and at 90% r.h. At 45 ± 5% r.h., corresponding with field conditions at which P. rapae is predominantly active, the butterfly was unable to feed on a number of exposed floral nectar sources whose nectar was successfully exploited at 90% r.h. The broader nectar exploitation by P. rapae at the high humidity is presumably explained by the resulting decrease in nectar viscosity. When comparing D. semiclausum and its herbivorous host P. xylostella, the herbivore exploited a broader range of plants. However, those plants that benefited both the parasitoid and the herbivore had a much stronger effect on the longevity of the parasitoid. The results from the accessibility bioassay suggest that flowers where nectar is not accessible can have a negative impact on insect survival presumably by stimulating foraging without providing accessible nectar. Our results underline the importance of considering species-specific environmental conditions when fine-tuning the choice of nectar sources to be used in conservation biological control programs.  相似文献   

3.
Longevity and fecundity of female wasps are two decisive factors for the effectiveness of parasitoid species as biological control agents. Accessibility and suitability of nutrient sources determine parasitoid survival and reproduction. Host, nectar and honeydew feeding are frequent adult parasitoid behaviors to cover nutritional needs. Here we postulate that especially parasitoid species of endophytic herbivores might use plant tissue as a nutrient source that becomes accessible upon herbivory. We investigated the influence of plant consumption and host feeding on longevity and fecundity of Hyssopus pallidus, a gregarious ecto-parasitoid of caterpillars of the codling moth that feed inside apple fruits. Longevity of unmated and mated ovipositing female parasitoids was highest in treatments with fruit pulp. While longevity in this treatment was not significantly different from that with honey, it was significantly higher than in treatments without food, with water or with a host alone.Reproduction was significantly increased by these sugar-rich nutrient sources compared to the control with a host alone. In contrast, host feeding did not yield any significant contribution to longevity and fecundity in a series of bioassays with different host–parasitoid ratios and with differently aged and sized hosts, compared to controls without food.We conclude that in this synovigenic species host feeding does not contribute to longevity and fecundity, but females can increase survival and reproduction in the field relying solely on the plant tissue damaged by their host caterpillar.  相似文献   

4.
Floral resources from native plants that are adapted to the local environment could be more advantageous than the use of nonnative plants. In Australia, there is a dearth of information on the benefits of native plants to natural enemies and their selectivity against pests. Accordingly, we examined the longevity of the parasitoids Diaeretiella rapae (McIntosh) and Cotesia glomerata (L.) (both Hymenoptera: Braconidae), and Diadegma semiclausum (Hellen) (Hymenoptera: Ichneumonidae) exposed to flowering shoots from Australian native plants which was compared with the nonnative buckwheat (Fagopyrum esculentum), often used in conservation biological control. Longevity of parasitoids was significantly enhanced by the Australian natives Westringia fruticosa, Mentha satureioides, Callistemon citrinus, Leptospermum cv. ‘Rudolph’, Grevillea cv. ‘Bronze Rambler’, Myoporum parvifolium, Lotus australis, and nonnative F. esculentum. The highest mean survival by native plant species was 3.4× higher for D. rapae with Leptospermum sp. and 4.3× higher for D. semiclausum with M. parvifolium. For C. glomerata, Grevillea sp. increased longevity by 6.9× compared with water only. Longevity of Plutella xylostella (L.) (Lepidoptera: Plutellidae), a major crop pest, was enhanced by all plants against which it was screened except Acacia baileyana, a species that had no effect on parasitoid longevity. Several Australian native plant species that benefit parasitoids were identified. None of the plant species provided a selective benefit to the parasitoid D. semiclausum compared with its host P. xylostella; however, the benefit of M. parvifolium and Grevillea sp. on the longevity of D. semiclausum was relatively higher compared with the pest. These results suggest the need for field studies to determine whether native Australian plants increase P. xylostella impact in nearby brassica crops.  相似文献   

5.
The parasitoid Anaphes flavipes (Foerster) (Hymenoptera: Mymaridae) is a gregarious egg parasitoid which is widely used in biological control against important crop pest beetles of the genus Oulema (Coleoptera: Chrysomelidae). Here, we present the first experimental examination of the influence of adult feeding and timing of host exposure on the longevity and fertility of this parasitoid. We confirmed a positive effect of adult feeding on longevity of both sexes. Fed parasitoids lived 3× longer than unfed ones. On the other hand, adult feeding and feeding time had no effect on female fertility. The number of hatched offspring was not increased by adult feeding, which suggests that the parasitoid emerges with already mature ovaries (proovigenic type). However, the fertility of fed females was strongly influenced by the timing of host egg exposure. By providing distinct groups of parasitoids with host eggs at different times, we were able to show lower fertility of fed females that had been offered host eggs more than 24 h after hatching. Our results thus show that the parasitoid's fertility is determined by her age at the time of parasitization rather than by feeding.  相似文献   

6.
Parasitic wasps are prominent natural enemies of crop pests. They usually feed on floral resources during the adult stage (nectar, pollen, or honeydew). Extrafloral nectar is an alternative source of sugar easily accessible to adult parasitoids. We developed an original method of nectar labelling based on the injection of labelled sugar solution into the plant stem in order to analyse the nectar uptake by parasitoids (cotton wick method). This method was used to artificially enrich extrafloral cornflower, Centaurea cyanus L. (Asteraceae), nectar with the stable isotope 13C. We analysed (1) the transfer of 13C from the sugar solution into extrafloral nectaries, (2) the uptake of labelled nectar by parasitoids under laboratory conditions, and (3) the ability of the method to discriminate, in an oilseed rape (Brassica napus L., Brassicaceae) field, between labelled parasitoids (i.e., those who have fed on labelled cornflowers located adjacent to the field) and unlabelled parasitoids to track parasitoid movements from the margin into the field. The extrafloral nectar of all test plants was 13C‐labelled. Most (66%) of the parasitoids were identified as marked after 96 h of exposure to labelled plants in the laboratory. We could also detect labelled parasitoids inside the field, but the detection rate was only 1%. The experiments clearly demonstrate that the cotton wick method is appropriate to label extrafloral nectar and parasitoids feeding on this labelled nectar. Further research is needed on the amount of labelled extrafloral nectar required to obtain a sufficient marker level to track parasitoid movements in the field.  相似文献   

7.
Resources added to agroecosystems to enhance biological control are potentially available to multiple members of the resident insect community—not only the biological control agents for which the resources are intended. Many studies have examined the effects of sugar feeding on the efficacy of biological control agents. However, such information is lacking for other, interacting species such as facultative hyperparasitoids, which may contribute to pest suppression but can also interfere with introduced biological control agents. Under greenhouse conditions, we tested the direct effects of sugar and nectar provisioning on the longevity, host‐killing impact and offspring production of two pupal parasitoids associated with leek moth, Acrolepiopsis assectella: the introduced biological control agent, Diadromus pulchellus, and the native facultative hyperparasitoid, Conura albifrons. Adding sucrose, buckwheat or a combination of buckwheat and common vetch to a sugar‐deprived system (potted leek plants in cages) increased parasitoid longevity and resulted in higher leek moth parasitism and mortality compared to water or common vetch treatments. However, the two parasitoid species exhibited a distinct temporal response to the treatments, likely influenced by differences in their life histories. This study provides insight into how integrating conservation biological control techniques could affect the success of a classical biological control programme.  相似文献   

8.
Lifetime gains of host-feeding in a synovigenic parasitic wasp   总被引:3,自引:0,他引:3  
Abstract. Understanding behavioural decisions relative to host use for feeding or reproduction by foraging parasitoids requires not only the study of metabolic pathways followed by nutrients, but also the quantification of lifetime fitness gains of each alternative behaviour. By using a combination of observational and manipulative approaches, the lifetime host‐feeding gains are measured both in terms of fecundity and longevity in the parasitoid Eupelmus vuilletti. Host‐feeding increases both egg production and longevity. The increase in fecundity is mainly determined by the amount of lipids obtained whereas the lifespan extension is mainly determined by carbohydrates. Proteins obtained through host‐feeding have been implicated previously in egg production by parasitoids but protein intake has no effect on fecundity and longevity in E. vuilletti. The amount of nutrients gained through host‐feeding and invested in eggs is variable and changes over the lifetime of the animal. Therefore, lifetime feeding gains are best understood through the construction of dynamical budgets running over the entire lifespan of an insect.  相似文献   

9.
Observed changes in mean temperature and increased frequency of extreme climate events have already impacted the distributions and phenologies of various organisms, including insects. Although some research has examined how parasitoids will respond to colder temperatures or experimental warming, we know relatively little about how increased variation in temperature and humidity could affect interactions between parasitoids and their hosts. Using a study system consisting of emerald ash borer (EAB), Agrilus planipennis, and its egg parasitoid Oobius agrili, we conducted environmentally controlled laboratory experiments to investigate how increased seasonal climate variation affected the synchrony of host–parasitoid interactions. We hypothesized that increased climate variation would lead to decreases in host and parasitoid survival, host fecundity, and percent parasitism (independent of host density), while also influencing percent diapause in parasitoids. EAB was reared in environmental chambers under four climate variation treatments (standard deviations in temperature of 1.24, 3.00, 3.60, and 4.79°C), while Oagrili experiments were conducted in the same environmental chambers using a 4 × 3 design (four climate variation treatments × 3 EAB egg densities). We found that EAB fecundity was negatively associated with temperature variation and that temperature variation altered the temporal egg laying distribution of EAB. Additionally, even moderate increases in temperature variation affected parasitoid emergence times, while decreasing percent parasitism and survival. Furthermore, percent diapause in parasitoids was positively associated with humidity variation. Our findings indicate that relatively small changes in the frequency and severity of extreme climate events have the potential to phenologically isolate emerging parasitoids from host eggs, which in the absence of alternative hosts could lead to localized extinctions. More broadly, these results indicate how climate change could affect various life history parameters in insects, and have implications for consumer–resource stability and biological control.  相似文献   

10.
Insect parasitoids and herbivores must balance the risk of egg limitation and time limitation in order to maximize reproductive success. Egg and time limitation are mediated by oviposition and egg maturation rates as well as by starvation risk and other determinants of adult lifespan. Here, we assessed egg load and nutritional state in the soybean aphid parasitoid Binodoxys communis under field conditions to estimate its risk of becoming either egg‐ or time‐limited. The majority of female B. communis showed no signs of egg limitation. Experimental field manipulations of B. communis females suggested that an average of 4–8 eggs were matured per hour over the course of a day. Regardless, egg loads remained constant over the course of the day at approximately 80 eggs, suggesting that egg maturation compensates for oviposition. This is the first case of such “egg load buffering” documented for a parasitoid in the field. Despite this buffering, egg loads dropped slightly with increasing host (aphid) density. This suggests that egg limitation could occur at very high host densities as experienced in outbreak years in some locations in the Midwestern USA. Biochemical analyses of sugar profiles showed that parasitoids fed upon sugar in the field at a remarkably high rate. Time limitation through starvation thus seems to be very low and aphid honeydew is most likely a source of dietary sugar for these parasitoids. This latter supposition is supported by the fact that body sugar levels increase with host (aphid) density. Together, these results suggest that fecundity of B. communis benefits from both dynamic egg maturation strategies and sugar‐feeding.  相似文献   

11.
In just a few years, the Asian fly Drosophila suzukii has invaded several continents and has become a very serious pest of many fruit crops worldwide. Current control methods rely on chemical insecticides or expensive and labour‐intensive cultural practices. Classical biological control through the introduction of Asian parasitoids that have co‐evolved with the pest may provide a sustainable solution on condition that they are sufficiently specific to avoid non‐target effects on local biodiversity. Here, we present the first study on the development of three larval parasitoids from China and Japan, the Braconidae Asobara japonica and the Figitidae Leptopilina japonica and Ganaspis sp., on D. suzukii. The Asian parasitoids were compared with Leptopilina heterotoma, a common parasitoid of several Drosophilidae worldwide. The three Asian species were successfully reared on D. suzukii larvae in both, blueberry and artificial diet, in contrast to L. heterotoma whose eggs and larvae were encapsulated by the host larvae. All parasitoids were able to oviposit one day after emergence. Asobara japonica laid as many eggs in larvae feeding in blueberry as in artificial diet, whereas L. heterotoma oviposited more in larvae on the artificial diet and the Asian Figitidae oviposited more in larvae feeding on blueberry. Ganaspis sp. laid very few eggs in larvae in the artificial diet, suggesting that it may be specialized in Drosophila species living in fresh fruits. These data will be used for the development of a host range testing to assess the suitability of Asian parasitoids as biological control agents in invaded regions.  相似文献   

12.
Because N is frequently the most limiting mineral macronutrient for plants in terrestrial ecosystems, modulating N input may have ecological consequences through trophic levels. Thus, in agro‐ecosystems, the success of natural enemies may depend not only from their herbivorous hosts but also from the host plant whose qualities may be modulated by N input. We manipulated foliar N concentrations by providing to Camelina sativa plants three different nitrogen rates (control, optimal, and excessive). We examined how the altered host‐plant nutritional quality influenced the performances of two aphid species, the generalist green peach aphid, Myzus persicae, and the specialist cabbage aphid, Brevicoryne brassicae, and their common parasitoid Diaeretiella rapae. Both N inputs led to increased N concentrations in the plants but induced contrasted concentrations within aphid bodies depending on the species. Compared to the control, plant biomass increased when receiving the optimal N treatment but decreased under the excessive treatment. Performances of M. persicae improved under the optimal treatment compared to the control and excessive treatments whereas B. brassicae parameters declined following the excessive N treatment. In no‐choice trials, emergence rates of D. rapae developing in M. persicae were higher on both optimum and excessive N treatments, whereas they remained stable whatever the treatment when developing in B. brassicae. Size of emerging D. rapae females was positively affected by the treatment only when it developed in M. persicae on the excessive N treatment. This work showed that contrary to an optimal N treatment, when N was delivered in excess, plant suitability was reduced and consequently affected negatively aphid parameters. Surprisingly, these negative effects resulted in no or positive consequences on parasitoid parameters, suggesting a buffered effect at the third trophic level. Host N content, host suitability, and dietary specialization appear to be major factors explaining the functioning of our studied system.  相似文献   

13.
Host defenses against parasites do not come for free. The evolution of increased resistance can be constrained by constitutive costs associated with possessing defense mechanisms, and by induced costs of deploying them. These two types of costs are typically considered with respect to resistance as a genetically determined trait, but they may also apply to resistance provided by ‘helpers’ such as bacterial endosymbionts. We investigated the costs of symbiont‐conferred resistance in the black bean aphid, Aphis fabae (Scopoli), which receives strong protection against the parasitoid Lysiphlebus fabarum from the defensive endosymbiont Hamiltonella defensa. Aphids infected with H. defensa were almost ten times more resistant to L. fabarum than genetically identical aphids without this symbiont, but in the absence of parasitoids, they had strongly reduced lifespans, resulting in lower lifetime reproduction. This is evidence for a substantial constitutive cost of harboring H. defensa. We did not observe any induced cost of symbiont‐conferred resistance. On the contrary, symbiont‐protected aphids that resisted a parasitoid attack enjoyed increased longevity and lifetime reproduction compared with unattacked controls, whereas unprotected aphids suffered a reduction of longevity and reproduction after resisting an attack. This surprising result suggests that by focusing exclusively on the protection, we might underestimate the selective advantage of infection with H. defensa in the presence of parasitoids.  相似文献   

14.
In the adult stage, many parasitoids require hosts for their offspring growth and plant-derived food for their survival and metabolic needs. In agricultural fields, nectar provisioning can enhance biological control by increasing the longevity and fecundity of many species of parasitoids. Provided in a host patch, nectar can also increase patch quality for parasitoids and affect their foraging decisions, patch time residence, patch preference or offspring allocation. The aim of this study was to investigate the impact of extrafloral nectar (EFN) provisioning close to hosts on parasitoid aggregation in patches. The aphid parasitoid Diaeretiella rapae (M’Intosh) was released inside or outside patches containing Brassica napus L. infested by Brevicoryne brassicae L. aphids and Vicia faba L. with or without EFN. When parasitoids were released outside patches, more parasitoids were observed in patches with EFN than in patches deprived of EFN. This higher recruitment could be linked to a higher attraction of a combination of host and food stimuli or a learning process. A release–recapture experiment of labeled parasitoids released within patches showed the higher retention of parasitoids in patches providing EFN and hosts, suggesting that food close to the host patch affects patch residence time. Both attractiveness and patch retention could be involved in the higher number of parasitoids foraging in host patches surrounded by nectar and for the higher parasitism recorded. Nectar provisioning in host patches also affected female offspring allocation inside the patch.  相似文献   

15.
Trophic interactions and environmental conditions determine the structure of food webs and the host expansion of parasitoids into novel insect hosts. In this study, we investigate plant–insect–parasitoid food web interactions, specifically the effect of trophic resources and environmental factors on the presence of the parasitoids expanding their host range after the invasion of Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae). We also consider potential candidates for biological control of this non‐native pest. A survey of larval stages of Plusiinae (Lepidoptera: Noctuidae) and their larval parasitoids was conducted in field and vegetable greenhouse crops in 2009 and 2010 in various locations of Essex and Chatham‐Kent counties in Ontario, Canada. Twenty‐one plant–host insect–host parasitoid associations were observed among Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), C. chalcites, and larval parasitoids in three trophic levels of interaction. Chrysodeixis chalcites, an old‐world species that had just arrived in the region, was the most common in our samples. The larval parasitoids Campoletis sonorensis (Cameron) (Hymenoptera: Ichneumonidae), Cotesia vanessae (Reinhard), Cotesia sp., Microplitis alaskensis (Ashmead), and Meteorus rubens (Nees) (all Hymenoptera: Braconidae) expanded their host range into C. chalcites changing the structure of the food web. Copidosoma floridanum (Ashmead) (Hymenoptera: Encyrtidae) was the most common parasitoid of T. ni that was not found in the invasive species. Plant species, host abundance, and agro‐ecosystem were the most common predictors for the presence of the parasitoids expanding their host range into C. chalcites. Our results indicate that C. sonorensis, C. vanessae, and C. floridanum should be evaluated for their potential use in biological control of C. chalcites and T. ni.  相似文献   

16.
Host shifts by specialist insects can lead to reproductive isolation between insect populations that use different hosts, promoting diversification. When both a phytophagous insect and its ancestrally associated parasitoid shift to the same novel host plant, they may cospeciate. However, because adult parasitoids are free living, they can also colonize novel host insects and diversify independent of their ancestral host insect. Although shifts of parasitoids to new insect hosts have been documented in ecological time, the long‐term importance of such shifts to parasitoid diversity has not been evaluated. We used a genus of flies with a history of speciation via host shifting (Rhagoletis [Diptera: Tephritidae]) and three associated hymenopteran parasitoid genera (Diachasma, Coptera and Utetes) to examine cophylogenetic relationships between parasitoids and their host insects. We inferred phylogenies of Rhagoletis, Diachasma, Coptera and Utetes and used distance‐based cophylogenetic methods (ParaFit and PACo) to assess congruence between fly and parasitoid trees. We used an event‐based method with a free‐living parasitoid cost model to reconstruct cophylogenetic histories of each parasitoid genus and Rhagoletis. We found that the current species diversity and host–parasitoid associations between the Rhagoletis flies and parasitoids are the primary result of ancient cospeciation events. Parasitoid shifts to ancestrally unrelated hosts primarily occur near the branch tips, suggesting that host shifts contribute to recent parasitoid species diversity but that these lineages may not persist over longer time periods. Our analyses also stress the importance of biologically informed cost models when investigating the coevolutionary histories of hosts and free‐living parasitoids.  相似文献   

17.
Natural enemies of herbivores function in a multitrophic context, and their performance is directly or indirectly influenced by herbivores and their host plants. Very little is known about tritrophic interactions between host plants, pests and their parasitoids, particularly when the host plants are under any stress. Herbivores and their natural enemies’ response to plants under stress are diverse and variable. Therefore, in this study we investigated how diamondback moth, Plutella xylostella (L.), reared on water‐stressed host plants (Brassica napus L. and Sinapis alba L.) influenced the development of its larval parasitoid, Diadegma insulare (Cresson). No significant differences were observed in development of Pxylostella when reared on water‐stressed host plants. However, all results indicated that water stress had a strong effect on developmental parameters of D. insulare. Development of D. insulare was delayed when the parasitoid fed on P. xylostella, reared on stressed host plants. Egg to adult development of D. insulare was faster on non‐stressed B. napus than non‐stressed S. alba followed by stressed B. napus and S. alba. Female parasitoids were heavier on non‐stressed host plants than stressed counterparts. Furthermore, the parasitoid lived significantly longer on stressed B. napus. However, body size was not affected by water treatment. Most host plant parameters measured were significantly lower for water‐stressed than non‐stressed treatments. Results suggest that development of this important and effective P. xylostella parasitoid was influenced by both water stress and host plant species.  相似文献   

18.
Ascogaster reticulata Watanabe (Hymenoptera: Braconidae) is an egg‐larval endoparasitoid of the smaller tea tortrix, Adoxophyes honmai Yasuda. Recent studies have examined tritrophic interactions among Camellia sinensis, A. honmai and A. reticulata, but the effect of non‐host insects on the induction of tea plant that may affect foraging behaviour of A. reticulata remains unclear. In this study, we selected two non‐host insects, Homona magnanima Diakonoff and Ostrinia furnacalis (Guenée), as representative species in our bioassays. Tea leaves were treated with homogenized female reproductive tissues of a non‐host insect in comparison with untreated leaves in a choice test. Residence times of parasitoids on both leaves were recorded. The parasitoids seemed to prefer walking on leaves treated with homogenates of H. magnanima over untreated leaves, but the difference in residence times was not significant. In contrast, its residence time on leaves treated with homogenates of O. furnacalis was significantly shorter than that on untreated leaves. Thus, the induction of tea leaf surface chemicals may differ among moth species, which may produce different types of elicitors. This difference may, in turn, affect the host‐searching behaviour of A. reticulata.  相似文献   

19.
Host age is an important determinant of host acceptance and suitability for egg parasitoids. As host embryonic development advances, the quality of resources available to the parasitoid offspring typically declines, usually resulting in reduced acceptance levels by foraging females and lower offspring fitness. We examined the ability of the parasitoid Telenomus podisi Ashmead (Hymenoptera: Scelionidae) to parasitize and develop in Podisus maculiventris (Say) (Hemiptera: Pentatomidae) eggs of different ages. In laboratory experiments, we measured the effect of host age (6, 24, 48, 72, 96, or 120 h old) on parasitism rate and offspring fitness parameters such as survival, development time, sex ratio, and size. Contrary to our expectations, parasitism rate did not differ between host age treatments, nor did sex ratio allocation, offspring size, or the fecundity of newly emerged female offspring. However, parasitoid offspring had a longer development time with increasing host age. This trend was stronger for males than for females, which we suggest could reduce the degree of protandry among offspring emerging from older host eggs, thus increasing the rate of virginity upon leaving the emergence patch and resulting in more frequent off‐patch mating by female offspring in nature. Overall, our results suggest that all stages of P. maculiventris embryonic development are suitable for acceptance and development of T. podisi. Unlike most species of egg parasitoids, T. podisi has evolved mechanisms to utilize host resources, regardless of host developmental stage, with relatively minor fitness consequences.  相似文献   

20.
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a significant citrus pest and the parasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae) has been released in various citrus‐producing areas in classical biological control programs targeting D. citri. We investigated the effect of host deprivation on the foraging behavior and patch utilization by T. radiata. In the laboratory, females deprived of hosts for 3 days tended to leave patches of 12 nymphs without parasitizing hosts during the ca. 30 min they spent in the patch before leaving. Moreover, half of these females failed to host feed, and those that did host feed, on average, needed more than 15 min to complete feeding. Conversely, non‐host‐deprived females parasitized on average three nymphs before leaving patches without host feeding during the ca. 39 min they spent in the patch. These laboratory observations were compared to mass‐reared female T. radiata that were released onto colonies of D. citri nymphs infesting citrus in the field. Release vials were provisioned with honey and these females had no opportunities to host feed over the 1‐ to 2‐day containment period prior to release. When introduced onto D. citri colonies, 68% T. radiata females abandoned D. citri patches prior to probing hosts, in part, because Argentine ants, Linepithema humile (Mayr) (Hymenoptera: Formicidae), tending colonies disturbed searching parasitoids. These results from laboratory and field studies are discussed in the context of classical biological control, with the aim of understanding how to manipulate host availability and ant activity so establishment rates and impact of T. radiata can be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号