首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Variation among females in mate choice may influence evolution by sexual selection. The genetic basis of this variation is of interest because the elaboration of mating preferences requires additive genetic variation in these traits. Here we measure the repeatability and heritability of two components of female choosiness (responsiveness and discrimination) and of female preference functions for the multiple ornaments borne by male guppies (Poecilia reticulata). We show that there is significant repeatable variation in both components of choosiness and in some preference functions but not in others. There appear to be several male ornaments that females find uniformly attractive and others for which females differ in preference. One consequence is that there is no universally attractive male phenotype. Only responsiveness shows significant additive genetic variation. Variation in responsiveness appears to mask variation in discrimination and some preference functions and may be the most biologically relevant source of phenotypic and genetic variation in mate-choice behavior. To test the potential evolutionary importance of the phenotypic variation in mate choice that we report, we estimated the opportunity for and the intensity of sexual selection under models of mate choice that excluded and that incorporated individual female variation. We then compared these estimates with estimates based on measured mating success. Incorporating individual variation in mate choice generally did not predict the outcome of sexual selection any better than models that ignored such variation.  相似文献   

2.
Although females in numerous species generally prefer males with larger, brighter and more elaborate sexual traits, there is nonetheless considerable intra‐ and interpopulation variation in mating preferences amongst females that requires explanation. Such variation exists in the Trinidadian guppy, Poecilia reticulata, an important model organism for the study of sexual selection and mate choice. While female guppies tend to prefer more ornamented males as mates, particularly those with greater amounts of orange coloration, there remains variation both in male traits and female mating preferences within and between populations. Male body size is another trait that is sexually selected through female mate choice in some species, but has not been examined as extensively as body coloration in the guppy despite known intra‐ and interpopulation variation in this trait among adult males and its importance for survivorship in this species. In this study, we used a dichotomous‐choice test to quantify the mating preferences of female guppies, originating from a low‐predation population in Trinidad, for two male traits, body length and area of the body covered with orange and black pigmentation, independently of each other. We expected strong female mating preferences for both male body length and coloration in this population, given relaxation from predation and presumably relatively low cost of choice. Females indeed exhibited a strong preference for larger males as expected, but surprisingly a weaker (but nonetheless significant) preference for orange and black coloration. Interestingly, larger females demonstrated stronger preferences for larger males than did smaller females, which could potentially lead to size‐assortative mating in nature.  相似文献   

3.
Discriminating female mate preferences enhance the variance in reproductive success among males of a population and create a potential for sexual selection, which can account for trait evolution and diversification. Fish color patterns are among the prime targets of mate choice-driven sexual selection. Populations of the cichlid Tropheus from Lake Tanganyika display remarkable geographic color pattern variation, but the role of female choice in their rapid and rich phenotypic diversification is unclear. Males and females establish a pair bond prior to spawning monogamously, but as brood care is strictly maternal, female investment in reproduction is high and the operational sex ratio is male-biased. Therefore, variance in male reproductive success can accrue if individual males succeed repeatedly in securing a mate. To test this prediction in the red colored Tropheus moorii “Chimba”, four pairs of males were presented to a series of females and female mate preferences were inferred from pairwise interactions. There was a significant difference in mating success between the males of each pair (P < 0.001 over all trials), as—with one exception—females shared preferences for the same males. Male courtship activity was strongly correlated with female choice. Our experiment suggests that female choice contributes to the variance in male reproductive success in the tested population.  相似文献   

4.
Sexual selection is widely hypothesized to facilitate the evolution of reproductive isolation through divergence in sexual traits and sexual trait preferences among populations. However, direct evidence of divergent sexual selection causing intraspecific trait divergence remains limited. Using the wolf spider Schizocosa crassipes, we characterized patterns of female mate choice within and among geographic locations and related those patterns to geographic variation in male display traits to test whether divergent sexual selection caused by mate choice explains intraspecific trait variation. We found evidence of phenotypic selection on male behavior arising from female mate choice, but no evidence that selection varied among locations. Only those suites of morphological and behavioral traits that did not influence mate choice varied geographically. These results are inconsistent with ongoing divergent sexual selection underlying the observed intraspecific divergence in male display traits. These findings align with theory on the potentially restrictive conditions under which divergent sexual selection may persist, and suggest that long‐term studies capable of detecting periodic or transient divergent sexual selection will be critical to rigorously assess the relative importance of divergent sexual selection in intraspecific trait divergence.  相似文献   

5.
The well-known phenotypic diversity of male sexual displays, and the high levels of genetic variation reported for individual display traits have generated the expectation that male display traits, and consequently male mating success, are highly evolvable. It has not been shown however that selection for male mating success, exerted by female preferences in an unmanipulated population, results in evolutionary change. Here, we tested the expectation that male mating success is highly evolvable in Drosophila bunnanda using an experimental evolution approach. Female D. bunnanda exhibit a strong, consistent preference for a specific combination of male cuticular hydrocarbons (CHCs). We used female preference to select for male mating success by propagating replicate populations from either attractive or unattractive males over 10 generations. Neither the combination of CHCs under sexual selection (the sexual signal) nor male mating success itself evolved. The lack of a response to selection was consistent with previous quantitative genetic experiments in D. bunnanda that demonstrated the virtual absence of genetic variance in the combination of CHCs under sexual selection. Persistent directional selection, such as applied by female mate choice, may erode genetic variance, resulting in multitrait evolutionary limits.  相似文献   

6.
The costs of choice in sexual selection   总被引:15,自引:0,他引:15  
In Fisher's model of sexual selection female mating preferences are not subject to direct selection but evolve purely because they are genetically correlated with the favoured male trait. But when female choice is costly relative to random mating, for example in energy, time or predation risks, the evolution of female mating preference is subject also to direct selection. With costly female choice the set or line of equilibria found in models of Fisher's process no longer exists. On the line the male trait is under zero net selection, and there is no advantage for a female choosing a male with a more exaggerated character. Therefore any cost to choice causes choosiness to decline. In turn this lowers the strength of sexual selection and the male trait declines as well. So when Fisher's process is the sole force of sexual selection and female choice is costly, only transitory increases in female choice and the preferred male trait are possible. It has often been claimed that exaggerated male characters act as markers or revealers of the genetic quality of potential mates. If females choose their mates using traits that correlate with heritable viability differences then stable exaggeration of both female choice and the preferred male character is possible, even when female choice is costly. The offspring of choosy females have not only a Fisherian reproductive advantage but also greater viability. This suggests that in species with exaggerated male ornamentation, in which female choice is costly, it is likely that female mate choice will be for traits that correlate with male genetic quality.  相似文献   

7.
Processes that affect the evolution of female preferences or male display traits involved in mating decisions in different geographic areas have the potential to result in within-species divergence. This could occur via reinforcement of mate recognition in species using the same traits for species recognition and sexual selection. Sympatric individuals experience reinforcement of female preferences and male display traits, whereas allopatric individuals do not, creating the potential for divergent sexual selection in sympatric and allopatric populations. Sexual selection operates on the cuticular hydrocarbons (CHCs) of Drosophila serrata, and reinforcement on the CHCs of populations sympatric with D. birchii. Here, we manipulate sexual selection in D. serrata populations generated by hybridizing natural sympatric and allopatric populations. Under the influence of sexual selection, male CHCs evolved from an intermediate phenotype to resemble an allopatric phenotype, which was driven by female choice. Additionally, female choice resulted in evolution of an allopatric female preference, so that allopatric males were preferred to sympatric males. Allopatric CHCs and preferences represent a sexual selection optimum via female choice. Sympatric populations display suboptimal phenotypes relative to their allopatric conspecifics. The combination of reinforcement and sexual selection can therefore generate divergence in female preferences and male display traits.  相似文献   

8.
Abstract Much of the theory of sexual selection assumes that females do not generally experience difficulties getting their eggs fertilized, yet sperm limitation is occasionally documented. How often does male limitation form a selection for female traits that improve their mating rate? The question is difficult to test, because if such traits evolve to be efficient, sperm limitation will no longer appear to be a problem to females. Here, we suggest that changes in choosiness between populations, and in particular between virgin and mated females, offer an efficient way to test this hypothesis. We model the “wallflower effect,” that is, changes in female preferences due to time and mortality costs of remaining unmated (for at least some time). We show that these costs cause adaptive reductions of female choice, even if mate encounter rates appear high and females only rarely end their lives unfertilized. We also consider the population consequences of plastic or fixed mate preferences at different mate encounter rates. If mate choice is plastic, we confirm earlier verbal models that virgins should mate relatively indiscriminately, but plastic increase of choosiness in later matings can compensate and intensify sexual selection on the male trait, particularly if there is last male sperm precedence. Plastic populations will cope well with unusual conditions: eagerness of virgins leads to high reproductive output and a relaxation of sexual selection at low population densities. If females lack such plasticity, however, population‐wide reproductive output may be severely reduced, whereas sexual selection on male traits remains strong.  相似文献   

9.
The haplochromine cichlids of Lake Victoria constitute a classical example of explosive speciation. Extensive intra- and interspecific variation in male nuptial coloration and female mating preferences, in the absence of postzygotic isolation between species, has inspired the hypothesis that sexual selection has been a driving force in the origin of this species flock. This hypothesis rests on the premise that the phenotypic traits that underlie behavioural reproductive isolation between sister species diverged under sexual selection within a species. We test this premise in a Lake Victoria cichlid, by using laboratory experiments and field observations. We report that a male colour trait, which has previously been shown to be important for behavioural reproductive isolation between this species and a close relative, is under directional sexual selection by female mate choice within this species. This is consistent with the hypothesis that female choice has driven the divergence in male coloration between the two species. We also find that male territoriality is vital for male reproductive success and that multiple mating by females is common.  相似文献   

10.
Females of many species are frequently courted by promiscuous males of their own and other closely related species. Such mating interactions may impose strong selection on female mating preferences to favor trait values in conspecific males that allow females to discriminate them from their heterospecific rivals. We explore the consequences of such selection in models of the evolution of female mating preferences when females must interact with heterospecific males from which they are completely postreproductively isolated. Specifically, we allow the values of both the most preferred male trait and the tolerance of females for males that deviate from this most preferred trait to evolve. Also, we consider situations in which females base their mating decisions on multiple male traits and must interact with males of multiple species. Females will rapidly differentiate in preference when they sometimes mistake heterospecific males for suitable mates, and the differentiation of female preference will select for conspecific male traits to differentiate as well. In most circumstances, this differentiation continues indefinitely, but slows substantially once females are differentiated enough to make mistakes rare. Populations of females with broader preference functions (i.e., broader tolerance for males with trait values that deviate from females' most preferred values) will evolve further to differentiate if the shape of the function cannot evolve. Also, the magnitude of separation that evolves is larger and achieved faster when conspecific males have lower relative abundance. The direction of differentiation is also very sensitive to initial conditions if females base their mate choices on multiple male traits. We discuss how these selection pressures on female mate choice may lead to speciation by generating differentiation among populations of a progenitor species that experiences different assemblages of heterospecifics. Opportunities for differentiation increase as the number of traits involved in mate choice increase and as the number of species involved increases. We suggest that this mode of speciation may have been particularly prevalent in response to the cycles of climatic change throughout the Quaternary that forced the assembly and disassembly of entire communities on a continentwide basis.  相似文献   

11.
Acoustic signals are well established as key components of mate selection in terrestrial species, but not in aquatic species. It has long been known that damselfish (Pomacentridae) use a combined visual and acoustic display in their courtship.. This study examined several male qualities including individual size, courtship vigor, territory size and complexity, as well as components of the acoustic call including dominant frequency, pulse characteristics and repetition rate. The objective was to determine which male traits were correlated with mating success. Observations made over ten reproductive cycles revealed that female mate choices were not random and that male mating success was correlated with courtship rate (a simultaneous visual and acoustic cue) and the number of neighboring females, but not with male morphological traits, territory quality, or acoustic call structure. These results suggest that females choose mates based on a condition-dependent trait (courtship rate) that advertises quality of paternal care, which supports good parent models of sexual selection, thereby demonstrating the importance of the combined acoustic/visual display for sexual selection in fishes  相似文献   

12.
Sexual selection arising through female mate choice typically favours males with larger, brighter and louder signals. A critical challenge in sexual selection research is to determine the degree to which this pattern results from direct mate choice, where females select individual males based on variation in signalling traits, or indirect mate choice, where male competition governs access to reproductively active females. We investigated female mate choice in a lekking Lake Malawi cichlid fish, Hemitilapia oxyrhynchus, in which males build and aggressively defend sand 'bowers'. Similar to previous studies, we found that male reproductive success was positively associated with bower height and centrality on the lek. However, this pattern resulted from males holding these territories encountering more females, and thus their greater success was due to indirect mate choice. Following initial male courtship, an increase in the relative mating success of some males was observed, but this relative increase was unrelated to bower size or position. Crucially, experimentally manipulating bowers to resemble those of a co-occurring species had no appreciable effect on direct choice by females or male spawning success. Together, these results suggest indirect mate choice is the dominant force determining male-mating success in this species, and that bowers are not signals used in direct mate choice by females. We propose that, in this species, bowers have a primary function in intraspecific male competition, with the most competitive males maintaining larger and more central bowers that are favoured by sexual selection due to higher female encounter rates.  相似文献   

13.
Female mating preferences are often flexible, reflecting the social environment in which they are expressed. Associated indirect genetic effects (IGEs) can affect the rate and direction of evolutionary change, but sexual selection models do not capture these dynamics. We incorporate IGEs into quantitative genetic models to explore how variation in social environments and mate choice flexibility influence Fisherian sexual selection. The importance of IGEs is that runaway sexual selection can occur in the absence of a genetic correlation between male traits and female preferences. Social influences can facilitate the initiation of the runaway process and increase the rate of trait elaboration. Incorporating costs to choice do not alter the main findings. Our model provides testable predictions: (1) genetic covariances between male traits and female preferences may not exist, (2) social flexibility in female choice will be common in populations experiencing strong sexual selection, (3) variation in social environments should be associated with rapid sexual trait divergence, and (4) secondary sexual traits will be more elaborate than previously predicted. Allowing feedback from the social environment resolves discrepancies between theoretical predictions and empirical data, such as why indirect selection on female preferences, theoretically weak, might be sufficient for preferences to become elaborated.  相似文献   

14.
The evolution of female mate choice by sexual conflict   总被引:15,自引:0,他引:15  
Although empirical evidence has shown that many male traits have evolved via sexual selection by female mate choice, our understanding of the adaptive value of female mating preferences is still very incomplete. It has recently been suggested that female mate choice may result from females evolving resistance rather than attraction to males, but this has been disputed. Here, we develop a quantitative genetic model showing that sexual conflict over mating indeed results in the joint evolution of costly female mate choice and exaggerated male traits under a wide range of circumstances. In contrast to tradition explanations of costly female mate choice, which rely on indirect genetic benefits, our model shows that mate choice can be generated as a side-effect of females evolving to reduce the direct costs of mating.  相似文献   

15.
The last decade has witnessed considerable theoretical and empirical investigation of how male sexual ornaments evolve. This strong male-biased perspective has resulted in the relative neglect of variation in female mate preferences and its consequences for ornament evolution. As sexual selection is a co-evolutionary process between males and females, ignoring variation in females overlooks a key aspect of this process. Here, we review the empirical evidence that female mate preferences, like male ornaments, are condition dependent. We show accumulating support for the hypothesis that high quality females show the strongest mate preference. Nonetheless, this is still an infant field, and we highlight areas in need of more research, both theoretical and empirical. We also examine some of the wider implications of condition-dependent mating decisions and their effect on the strength of sexual selection.  相似文献   

16.
  • (i) To find out whether a mating preference could have initially evolved for adaptive reasons, one must determine whether the preferred trait could have provided useful information about mate quality at the time when the preference first arose.
  • (ii) One way to do so is to determine whether the preference evolved before or after the preferred trait. If the preference evolved first, then it cannot initially have served an adaptive function in mate choice, rather it must have arisen by random drift, or as a pleiotropic consequence of selection acting on other aspects of individual perceptual abilities.
  • (iii) A number of studies have shown that females exhibit a mating preference (e.g. for movement) in non-sexual contexts also, which suggests that it may have evolved for reasons unconnected to mate choice. In addition, phylogenetic analyses have revealed that in several cases, females of a certain taxon exhibit a preference for a male trait that is absent in a sister taxon and in outgroup taxa, and that this preference is shared by females of the sister taxon tacking the male trait. The principle of parsimony suggests that such a preference has been inherited from a common ancestor, while the preferred trait arose only once in the lineage exhibiting the trait, i.e. that the preference predates the attractive trait.
  • (iii) While the above evidence indicates that females may possess ‘hidden’ preferences for male traits that are not exhibited by members of their own species, and that in at least some cases males have later evolved display traits that exploit preexisting preferences of this kind, there have been too few historical studies of preference evolution to allow one to assess the frequency of such exploitation. Moreover historical studies cannot provide strong support for the adaptive origin hypothesis, because coevolution of trait and preference (as opposed to exploitation of a pre-existing bias) is compatible with Fisherian models of preference evolution as well as with honest advertisement and the handicap principle. One can conclude only that while some mating preferences did not originally evolve for adaptive reasons, others may or may not have done so.
  • (iv) To find out whether a mating preference is currently maintained by natural selection because the preferred trait provides useful information about mate quality, one must investigate the phenotypic and genotypic correlates of display, and the fitness consequences of mate choice.
  • (v) A review of the published data reveals some support for the ideas of adaptive choice and honest advertisement. In a number of species, preferred display traits are correlated with putative measures of quality, and in a small proportion of these, there is evidence that reproductive success and/or offspring performance are higher for individuals mated to attractive partners. Very few studies report a failure to find any such correlates of display or any such benefits.
  • (vi) While the above result suggests that honest advertisement does sometimes occur in extant populations (which does not necessarily imply that preferred traits originally evolved as reliable indicators of mate quality), the possibility of publication bias means that one cannot assess how widespread it is. More data is needed to remedy this problem, particularly regarding the fitness consequences of mate choice for females. Experimental rather than observational methods are the best means to gather such data. Studies that look for correlates of display, for instance, should rely on experimentally induced rather than natural variation in ‘quality’.
  • (vii) The most common correlates of male display are age and dominance. The latter observation suggests that there may often be interactions between the processes of intersexual and intrasexual selection.
  • (viii) There is considerably more evidence to support the idea of female choice for direct than for indirect benefits. At the same time, however, it is apparent that mating decisions are commonly influenced by more than one measure of quality, so that these two kinds of choice need not be independent. To assess this possibility will require more studies of the relationship between male attractiveness and offspring performance.
  • (ix) Mate choice is frequently based on more than one display trait, and each trait is frequently influenced by more than one aspect of quality. ‘One quality, one trait’ views of honest advertisement are simplistic, and must be abandoned.
  • (x) Honesty in sexual displays is sometimes maintained by cost (as in strategic handicap models) and sometimes, with approximately equal frequency, by physical necessity (as in revealing handicap models). In some cases, both mechanisms are involved in a single signalling system. To further distinguish between these possibilities will require experimental investigation of display cost, based on manipulation of display traits.
  相似文献   

17.
Mate choice and mate competition can both influence the evolution of sexual isolation between populations. Assortative mating may arise if traits and preferences diverge in step, and, alternatively, mate competition may counteract mating preferences and decrease assortative mating. Here, we examine potential assortative mating between populations of Drosophila pseudoobscura that have experimentally evolved under either increased (‘polyandry’) or decreased (‘monogamy’) sexual selection intensity for 100 generations. These populations have evolved differences in numerous traits, including a male signal and female preference traits. We use a two males: one female design, allowing both mate choice and competition to influence mating outcomes, to test for assortative mating between our populations. Mating latency shows subtle effects of male and female interactions, with females from the monogamous populations appearing reluctant to mate with males from the polyandrous populations. However, males from the polyandrous populations have a significantly higher probability of mating regardless of the female's population. Our results suggest that if populations differ in the intensity of sexual selection, effects on mate competition may overcome mate choice.  相似文献   

18.
Mate preferences are abundant throughout the animal kingdom with female preferences receiving the most empirical and theoretical attention. Although recent work has acknowledged the existence of male mate preferences, whether they have evolved and are maintained as a direct result of selection on males or indirectly as a genetically correlated response to selection for female choice remains an open question. Using the native Australian species Drosophila serrata in which mutual mate choice occurs for a suite of contact pheromones (cuticular hydrocarbons or CHCs), we empirically test key predictions of the correlated response hypothesis. First, within the context of a quantitative genetic breeding design, we estimated the degree to which the trait values favoured by male and female choice are similar both phenotypically and genetically. The direction of sexual selection on male and female CHCs differed statistically, and the trait combinations that maximized male and female mating success were not genetically correlated, suggesting that male and female preferences target genetically different signals. Second, despite detecting significant genetic variance in female preferences, we found no evidence for genetic variance in male preferences and, as a consequence, no detectable correlation between male and female mating preferences. Combined, these findings are inconsistent with the idea that male mate choice in D. serrata is simply a correlated response to female choice. Our results suggest that male and female preferences are genetically distinct traits in this species and may therefore have arisen via different evolutionary processes.  相似文献   

19.
Females often choose their mates, instead of mating at random, even when a father contributes nothing but genes to his offspring. Costly female preferences for males with exaggerated traits that reduce viability, such as the peacock's tail, are particularly puzzling. Such preferences can evolve if directly favoured by natural selection or when the exaggerated trait, although maladaptive per se, indicates high overall quality of the male's genotype. Two recent analyses suggested that the advantage to mate choice based on genetic quality is too weak to explain extreme cases of exaggeration of display traits and the corresponding preferences. We studied coevolution of a female mate-preference function and a genotype-dependent male display function where mutation supplies variation in genotype quality and mate preference is costly. Preference readily evolves, often causing extreme exaggeration of the display. Mate choice and trait expression can approach an equilibrium, or a limit cycle, or exaggeration can proceed forever, eventually causing extinction.  相似文献   

20.
Frequency-dependent mating behaviour has the potential to maintain genetic variation in characteristics of organisms. The colour patterns of guppies ( Poecilia reticulata ) provide an example of one of the most extreme genetically based polymorphisms known in nature, for which frequency-dependent mate choice could be a mechanism. Numerous studies have shown that female guppies base mating preferences on male colour patterns and there is evidence that females prefer to mate with males displaying novel or unfamiliar colour patterns. This preference could lead to frequency-dependent mating success in males. Nevertheless, the possibility that female sexual responsiveness itself may depend on the frequency of male types has not been tested systematically in guppies or any other species. This study examined the sexual responses of female guppies in experimental groups consisting of two males with similar (redundant) and two males with different (unique) colour patterns. We found that female guppies were much more likely to respond sexually to the displays of unique males than to those of redundant males. Further, there was no effect of orange colouration on female responsiveness as has been documented for this population in several previous studies, thus, discrimination against redundant male types appears to have overridden directional selection based on colour pattern characteristics. This discrimination against redundant male types could in turn lead to frequency-dependent mating success in males and maintenance of colour pattern polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号