首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Oriental fruit moth (OFM) Grapholita molesta Busck (Lep., Tortricidae) is a very important pest in commercial orchards in Victoria, Australia. Pheromone‐mediated mating disruption (MD) applied in stone fruit orchards successfully controlled OFM populations for many years, but damage to shoot tips and fruit at the edge of peach blocks located adjacent to pear blocks under insecticide treatments has become problematic. To improve protection of stone fruit against edge damage and outbreaks of OFM, all orchards were treated with sex pheromone dispensers for MD on an area‐wide basis. Area‐wide MD treatment, including all pome and stone fruit orchards in a discrete area, successfully controlled edge infestations of OFM, but was expensive. To reduce the cost of OFM control, sex pheromone dispensers for MD were applied as barrier treatments to 54–60 m of neighbouring pears adjacent to peaches under MD. Detailed monitoring of the OFM population, shoot tip and fruit damage assessments indicated that application of MD barriers on pears during two consecutive seasons provided sufficient control of OFM on peaches. This MD barrier treatment was able to reduce the number of OFM caught in all experimental peach blocks, with damage to shoot tips and fruit giving similar results to MD treatment of the whole neighbouring pear block. Extending the MD treatment area for 54–60 m into the neighbouring pear block significantly reduced the edge damage in MD‐treated peaches in the first season and almost eliminated OFM damage in the second season.  相似文献   

2.
Areawide mating disruption treatments have been effective in controlling infestation of oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), in Australian pome and stone fruit orchards. Although successful, the areawide mating disruption program has been an expensive approach by using hand-applied Isomate dispensers. Sprayable microencapsulated (MEC) pheromone formulations that can be applied with standard spray equipment could substantially reduce the cost of application. Field trials conducted during two consecutive seasons (2002-2004) demonstrated that monthly applications of MEC-OFM phase V (3M Canada, London, Ontario, Canada) at a rate of 125 ml/ha (37.1 g [AI]/ha) in replicated 2-ha blocks of both peaches and pears reduced oriental fruit moth shoot tip and fruit damage as effectively as a single application of Isomate OFM Rosso hand-applied dispensers (500 dispensers per ha) and as or more effectively than standard broad-spectrum insecticide sprays. Fruit protection was achieved despite high oriental fruit moth population densities in both crops as measured by moth catches in terpinyl acetate food and pheromone traps. Similar numbers of oriental fruit moths were captured among all treatments in food traps but captures of males in pheromone traps were disrupted (96-99%) in pheromone-treated blocks relative to controls. The results of this study suggest that microencapsulated formulations of pheromone could be effectively used in areawide mating disruption programs for oriental fruit moth in Australia as a cost-saving alternative to reservoir-style dispensers requiring labor-intensive hand application.  相似文献   

3.
The effectiveness of mating disruption to control the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), in greenhouse tomato crops was evaluated in four trials carried out in winter–spring and summer–winter growing seasons in Southwestern Sardinia (Italy). Pheromone dispensers loaded with 60 mg of the natural blend of the major and minor sex pheromone component (rate 90 : 10) were applied in disrupted greenhouses at a rate of 1000/ha (60 g of active ingredient/ha). Male captures in monitoring pheromone traps, percentage of tomato plants infested by T. absoluta and damage on leaves and fruits were monitored weekly and compared in disrupted and untreated (control) greenhouses. In greenhouses disrupted with 1000 dispensers/ha, a reduction of 93–97% in male trap captures was observed, compared with control. Leaf damage was significantly lower in greenhouses disrupted with 1000 dispensers/ha than in control ones, with a reduction of infestation throughout the growing season ranging from 57% to 85%. Pheromone dispensers applied at the density of 1000/ha significantly reduced the percentage of damaged fruits by 62–89%. In control greenhouses, the highest damage on leaves and fruits was generally observed in edge plants, while leaf and fruit infestation was uniformly distributed in pheromone‐treated greenhouses, indicating an even distribution of the pheromone cloud inside the greenhouse. Mating disruption showed to be an efficient strategy to control in greenhouse the tomato leafminer and can be included in the overall tomato integrated pest management programs.  相似文献   

4.
Abstract:  Oriental fruit moth Grapholita molesta (Busck) (Lep., Tortricidae) has recently become a key pest of apples throughout the eastern USA. Pheromone-mediated mating disruption of Oriental fruit moth was successfully used in North Carolina apple orchards in the past few years. However, low levels of late-season fruit damage occurred in some orchards treated in late May with hand-applied pheromone dispensers because of inadequate dispenser longevity. To investigate alternative pheromone application schedules for extended mating disruption control, the following pheromone treatments were compared with conventional insecticides in Henderson County (NC) in 2002: late May application of hand-applied dispensers; late June application of hand-applied dispensers; late May application of hand-applied dispensers supplemented with a late August application of sprayable pheromone dispensers; late May application of hand-applied dispensers which have a longer activity period; and conventional insecticides as a control. All treatments were sprayed with an insecticide at petal fall in late April for thinning and for control of the first generation Oriental fruit moth adults. Pheromone trap catches were significantly reduced in all mating disruption blocks compared with conventional insecticide blocks. Among pheromone treatments, the highest trap captures were recorded in the delayed hand-applied dispenser treatment in June before treatment. However, the mean percentage fruit damage did not vary with timing of application of hand-applied dispensers and the type of pheromone dispenser used. Clearly, the combination of each mating disruption treatment with insecticide application against first generation Oriental fruit moth was as effective as the conventional insecticide treatment under moderate population pressure.  相似文献   

5.
The efficacy of mating disruption by using Isomate-M 100 pheromone dispensers and two formulations of microencapsulated sprayable pheromone for management of oriental fruit moth, Grapholita molesta (Busck), was compared with conventional insecticides in large plot studies in Henderson County, North Carolina, in 2000 and 2001. In addition, experiments were conducted in small and large plots to test the response of oriental fruit moth males to different application rates of sprayable pheromone. Pheromone trap catches were significantly reduced in mating disruption blocks compared with conventional and abandoned orchards. Pheromone traps placed in the upper canopy captured significantly more moths than traps placed in the lower canopy across all treatments, and lures loaded with 100 microg of pheromone caught more moths than traps with 300 microg, but the difference between doses was statistically significant at only one location in 2001. Isomate-M 100 provided excellent trap shutdown and was significantly more effective than sprayable pheromone formulations. Fruit damage by oriental fruit moth larvae was very low (< or = 1%) in mating disruption blocks and was generally lower than in conventional and nonmanaged blocks. Based on male moth response to pheromone traps in small plots, there was little difference among doses of sprayable pheromone, ranging from 12.4 to 49.1 g (AI)/ha, but efficacy declined at 2.4 g (AI)/ha. With the exception of one orchard, there was no significant difference between 12.4 and 37.1 g (AI)/ha under low and high oriental fruit moth population pressure in large plot studies. Mating disruption proved to be an alternative to organophosphate insecticides for managing oriental fruit moth populations in North Carolina apple orchards.  相似文献   

6.
The efficacy of integrated programs using a sprayable pheromone formulation or one of two hand-applied pheromone dispensers, and a conventional oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae) control program, was compared using 4-5-ha blocks of peach orchard at three Niagara Peninsula farms during 2000-2002. In the integrated programs, chlorpyrifos and mating disruption with 3M Sprayable Pheromone, Isomate OFM Rosso, or Rak 5 hand-applied dispensers were used to control first-generation larvae, and mating disruption alone was used to control second- and third-generation larvae. In the conventional program, chlorpyrifos was used to control first-generation larvae, and pyrethroid insecticides were used to control larvae of the later generations. All programs were effective at maintaining fruit infestation by G. molesta below the industry tolerance level of 1%. An integrated program using sprayable pheromone required the use of more supplementary insecticide applications to control second- and third-generation larvae than a program using hand-applied dispensers. The elimination of insecticide sprays from integrated program blocks did not result in an increase in damage by plant bugs, Lygus spp. (Hemiptera: Miridae) or by the plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae).  相似文献   

7.
Abstract:  Oriental fruit moth (OFM) Grapholita molesta Busck (Lep., Tortricidae) is one of the most important pests of commercial stone fruit orchards in the Goulburn-Murray Valley region of Victoria, Australia. OFM populations have been successfully controlled by the use of the mating disruption (MD) technique for many years, but damage to shoot tips and fruit has now started to increase. The most severe damage under MD is found at the edge of peach blocks, adjacent to the pear blocks under insecticide treatment. In 1997–98, OFM infestation levels were examined in a newly planted peach block surrounded by older peaches, pears, apples and pasture. The infestation distribution was followed up for four consecutive years. No treatments were used against OFM for the first 2 years in the newly planted peaches, but in years 3 and 4 the whole block was treated with MD. At the end of year 2, shoot tip damage was randomly distributed throughout the newly planted peach block with no 'edge effect'. After MD was applied in year 3, the damage was confined to the edges of the block adjacent to insecticide-sprayed apples and pears. No 'edge effect' was detected along the border with an older peach block treated with MD or on the border with pasture. Extending the MD treated area for 25–30 m into the neighbouring apples and pears in year 4 reduced the 'edge effect'.  相似文献   

8.
Over two growing seasons, Isomate GBM-Plus tube-type dispensers releasing the major pheromone component of grape berry moth, Paralobesia viteana (Clemens) (Lepidoptera: Tortricidae), were evaluated in vineyards (Vitis spp.) in Michigan, New York, and Pennsylvania. Dispensers were deployed in three different density-arrangement treatments: 124 dispensers per ha, 494 dispensers per ha, and a combined treatment with 124 dispensers per ha in the vineyard interior and 988 dispensers per ha at the vineyard border, equivalent to an overall density of 494 dispensers per ha. Moth captures and cluster infestation levels were compared at the perimeter and interior of vineyards receiving these different pheromone treatments and in vineyards receiving no pheromone. Orientation of male moths to pheromone-baited traps positioned at the perimeter and interior of vineyards was reduced as a result of mating disruption treatments compared with the nontreated control. These findings were consistent over both years of the study. Disruption of male moth captures in traps varied from 93 to 100% in treated vineyards, with the 494 dispensers per ha application rates providing significantly higher level of disruption than the 124 dispensers per ha rate, but only in 2007. Measurements of percentage of cluster infestation indicated much higher infestation at perimeters than in the interior of the vineyards in all three regions, but in both sample positions there was no significant effect of dispenser density on cluster infestation levels in either year. The contrasting results of high disruption of moth orientation to traps in vineyards that also had low levels of crop protection from this pheromone treatment are discussed in the context of strategies to improve mating disruption of this tortricid pest.  相似文献   

9.
Abstract A ca 0.62 ha block of 480 persimmon trees at Woombye, Queensland, was treated with the pheromone of Ichneumonoptera chrysophanes emitted from polyethylene dispensers placed at a rate equivalent to 1480/ha early in September 2000. A second block of 219 trees was left untreated and served as the control. The technique was assessed using traps to measure the ability of I. chrysophanes males to locate synthetic pheromone baits, and by the incidence of fresh damage detected during December and June surveys of a minimum of 67 trees in each block. Pheromone release rates were determined approximately weekly by measuring the amount of pheromone remaining in a sample of 10 dispensers suspended within the treated block. A second orchard at Amamoor, Queensland, was partly treated with pheromone applied at a similar rate, but was monitored only in terms of trap catch. No assessments were made of damage levels. Mean pheromone-release rates ranged from 15.8 to 1.6 mg/ha/h. Over the entire period of the trial, from 8 September 2000 to 27 June 2001, no males were caught in any of the 12 traps in the pheromone-treated block of the Woombye orchard, while 944 were caught in the five traps in the untreated block. The proportion of trees with fresh damage was significantly higher in the untreated block (0.188 and 0.567; December and June surveys, respectively) than in the treated block (0.027 and 0.205), although there was no significant difference between treatments in the mean number of strikes/infested tree in either survey. In the Amamoor orchard no moths were caught in any of the 32 traps in the treated blocks, compared with a total of 303 in the 13 traps in the untreated block.  相似文献   

10.
Polyethylene dispensers (Shin Etsu) containing 172 ml of the sex pheromone, (E, E)-8,10-dodecadien-1-ol (63%), dodecenol (31%) and tetradecenol (6%), of codling moth (CM),Cydia pomonella (L.), were placed in apple orchards in Virginia. Two blocks of about 2 ha each were treated in 1989, and three in 1990. Dispensers were placed in trees at a density of 1000/ha shortly after apple bloom. Male orientation to pheromone traps was almost totally disrupted (a few males were captured at high population densities). In 1989, the Daleville pheromone-treated block had 0.9% and 0.8% CM-injured fruit in the center and edge, respectively; 0% and 39.5% injured fruit were found in the conventional control and abandoned blocks, respectively. The Criglersville orchard (‘organically’ managed, with high CM density) CM harvest injury was 16.0%, 16.5%, 34.5%, and 26.5% in the pheromone-treated center and edge, organic control and abandoned blocks, respectively. In 1990, the Daleville CM harvest injury was 4.7%, 7.3%, 1.1%, 0.3% and 58%, in the pheromone-treated center and edge, control center and edge, and abandoned blocks, respectively (possible reasons for the high injury in this block are discussed). Harvest injury in the Fincastle pheromone-treated and control blocks were 0.7% and 0%, respectively. The Criglersville orchard yielded 17%, 19% and 20% CM-injured fruit at harvest in the pheromone-treated, organic control and abandoned blocks, respectively. Pheromone release rate was calculated as 37 mg/ha/h in 1989.  相似文献   

11.
We appraised mating disruption (MD) to control pea moth, Cydia nigricana (Fabricius) (Lepidoptera: Tortricidae), by assessing male attraction to monitor traps, larval pod infestation, and larval age structure in pheromone‐treated and untreated grain pea fields [Pisum sativum L. (Fabaceae)], over a 5‐year period. Cellulose pheromone dispensers were manually attached to the top shoots of pea plants and released 540 mg ha?1 day?1 synthetic pheromone E8,E10‐dodecadien‐1‐yl acetate in a first test series (2000–2001) and ca. 4 200 mg pheromone ha?1 day?1 in a second series (2004–2006). The dispensers had a half‐life of about 30 days. Although male attraction to pheromone monitoring traps was largely suppressed at the edges and within MD fields in both test series, MD treatments did not reduce pod infestation in the open field in 2000 and 2001. In the 2004–2006 series, larval damage reduction was achieved in the majority of the trials but overall MD efficacy in the open field was only 61% and not significant. In contrast, in field cages placed within the experimental sites and supplied with unmated pea moths, MD control was consistently high and significant. There were no obvious differences in the larval age distribution in all MD and control treatments, suggesting that infestations started and developed further similarly. As a univoltine species, C. nigricana larvae stay in the soil of pea fields for hibernation and pupate. The following year, emerging adults disperse and fly to the closest pea crop. Combined emergence site and pea crop treatments were conducted over 2 years to include this early migration phase of C. nigricana adults. However, the emergence site treatments did not enhance MD‐control efficacy. We conclude that mating activity was only prevented in cage tests, whereas substantial mating occurred during the transit phase outside the pheromone‐treated fields either within non‐crop vegetation and/or at the edges of pheromone‐treated pea fields orientated upwind. Thus, resulting gravid female entry can be regarded as the major constraint to reliable MD control.  相似文献   

12.
Capture of male lesser peachtree borer, Synanthedon pictipes (Grote & Robinson), and peachtree borer, S. exitiosa (Say) (Lepidoptera: Sesiidae), in pheromone traps positioned from 0 m to 6 m above ground was affected by surrounding tree height. In a peach orchard with a 3 m canopy height, more S. pictipes were captured within the canopy zone at 1.8 m than above at 5.5 m. Trap capture was similar for S. pictipes in a mating disruption orchard with more caught at 2 m than at 4 m or 6 m. Capture at 1.8–5.5 m in mixed deciduous woods, with an average canopy height of 22 m, was not significantly different. In orchards, more S. exitiosa were captured at 1.8 m rather than at 5.5 m but no difference was detected in numbers captured from 0 m to 5.5 m in mixed deciduous woods. In a peach-pecan interplanted orchard, where pecan trees were three times taller but only one-ninth the density of peach, capture of both species was similar to capture in peach orchards when traps were entirely surrounded by peach. However, when traps were adjacent to a single, taller non-host pecan tree, capture was similar to mixed deciduous woods. These data suggest that habitat structure supersedes presence/absence of host plants affecting vertical flight activity of male S. pictipes and S. exitiosa.  相似文献   

13.
Abstract Field trials were conducted in China in 2008 and 2009 to evaluate the efficacy of mating disruption (MD) on diamondback moth, Plutella xylostella, in cabbage, Brassica oleracea var. capitata. Effectiveness was positively correlated with the MD dispenser density in the field. A density of 167 MD dispensers per ha produced an average population decrease of about 50% compared to the conventional‐practice field. Significant fewer males were captured in pheromone‐treated and conventional‐practice fields than in the blank control field, but the difference was not significant between the pheromone‐treated and conventional‐practice fields. In addition, fewer eggs and larvae were observed in pheromone‐treated fields. Our results suggest mating disruption coupled with minimal insecticidal supplements is a promising solution for resistance management and control of diamondback moth infestation.  相似文献   

14.
Large-plot studies were used to compare pheromone-mediated mating disruption and conventional insecticide applications for management of tufted apple bud moth, Platynota idaeusalis (Walker), in North Carolina in 1993 and 1994. Pheromone trap catches were reduced in mating disruption blocks, and traps placed in the lower stratum of the canopy had a higher level of trap capture reduction compared with traps placed in the upper stratum. First-generation tufted apple bud moth exposure to either pheromones for mating disruption or insecticides affected second generation pheromone trap catches in the lower and upper canopy. More second generation male moths were caught in pheromone traps placed in the upper compared with the lower canopy in blocks treated with pheromones for mating disruption during the first generation, whereas the opposite was true in blocks treated with insecticides during the first generation. Despite reduced trap catches in pheromone-treated blocks, egg mass densities were not reduced in these blocks compared with insecticide-treated blocks. Furthermore, fruit damage was not significantly different between mating disruption blocks and conventionally treated blocks in orchards with relatively low populations of tufted apple bud moth, but damage was greater in mating disruption blocks in orchards with higher moth densities.  相似文献   

15.
Sex-pheromone traps baited with a rubber-septum containing 14-methyl-1-octadecene are used to monitor the emergence of adult peach leafminer moths, Lyonetia clerkella (L.) (Lepidoptera: Lyonetiidae), in peach orchards. This compound is also used as a mating disrupter; large amounts of synthetic 14-methyl-1-octadecene can successfully interfere with the mate-finding behavior of the male moths. In peach orchards treated with mating disrupters, however, conventional rubber-septum lures are ineffective, because mating disrupters interfere with male orientation. In this work we demonstrated that a commercially-available mating disrupter, Confuser® MM, can be used as an attractant in orchards treated with mating disrupters. In an indoor flight tunnel experiment, 33–42 % of males pre-exposed to a mating disrupter responded to one to ten Confuser® MM dispensers whereas only 8 % responded to a conventional lure made from a rubber-septum impregnated with a relatively small amount of the sex pheromone. The number of male moths captured by traps baited with five dispensers of Confuser® MM in orchards treated with mating disrupters was positively correlated with the number of males trapped by use of a conventional rubber-septum lure in untreated orchards. This suggests that Confuser® MM can be used as an attractant for monitoring emergence time and relative abundance in an orchard being treated with a mating disrupter.  相似文献   

16.
The efficacy of 3M Sprayable Pheromone for Grape Berry Moth, BASF RAK 1R pheromone dispensers, Isomate GBM pheromone dispensers, and an insecticide program were compared during two seasons for controlling grape berry moth, Endopiza viteana (Clemens), in Niagara peninsula, Ontario, Canada, vineyards. The average number of E. viteana captured in pheromone-baited traps in plots treated with BASF RAK 1R and Isomate GBM dispensers was reduced by 90-100% compared with the average number captured in insecticide-treated plots, indicating a high level of mating disruption. By contrast, there was no difference in the number of moths captured in plots treated with sprayable pheromone and in plots treated with insecticide during the second flight of 1999, suggesting that the sprayable pheromone did not affect the mate-seeking ability of male moths. During the third flight of 1999, and the three flights of 2000, however, the average number of E. viteana captured in plots treated with sprayable pheromone was reduced by 50-99% compared with the average number captured in insecticide-treated blocks, indicating a moderate-to-high level of mating disruption. There was no detectable difference in feeding injury to grape clusters when E. viteana was controlled using two application rates of a sprayable pheromone formulation, two hand-applied pheromone dispensers, or a conventional, insecticide-control program. The disparity between estimated disruption and crop damage in plots treated with sprayable pheromone during the second flight of 1999 suggests that pheromone-baited traps may not provide a reliable estimate of the level of mating disruption when using sprayable pheromone.  相似文献   

17.
Abstract:  The white pine cone beetle, Conophthorus coniperda (Schwarz), is a common and destructive pest of eastern white pine cones. The potential of mating disruption as a pest management tool against C. coniperda was tested during this experiment. The 5.5 ha white pine seed orchard used in this study was separated in three equal sections and different blocks were treated with pityol over 2-year experiments. Ten and 20 pityol dispensers (bubble caps) were hung per treated block in 2001 (east block) and 2002 (centre block), respectively, to evaluate their impact on cone protection. During both seasons, the percentage of damaged cones at permanent stations was evaluated at monthly intervals in the middle of the treated block and at different places in the control area. For both years, the mean reduction in cone damage was 63.7% in the pheromone-treated blocks. With this study, we have been able to demonstrate that mating disruption could be used as a biological pest management tool for the control of C. coniperda in white pine seed orchards.  相似文献   

18.
Mating disruption and mass trapping for control of lepidopteran pests use synthetic sex pheromone to prevent males from finding and mating with females. Here, we identify the behavioral mechanism underlying mating disruption and mass trapping of American plum borer, Euzophera semifuneralis (Walker) (Lepidoptera: Pyralidae), peachtree borer, Synanthedon exitiosa Say, and lesser peachtree borer, Synanthedon pictipes (Groeten) (Lepidoptera: Sesiidae). In addition, we derive relative dispenser activity (Relative Da) from the competitive attraction equation to compare the disruptive activity of the devices used in mating disruption and mass trapping. Dispensers and traps were deployed in replicated 0.14‐ha cherry or peach plots with E. semifuneralis or the Synanthedon moths, respectively. Dispenser densities were 0, 10, 20, 59, 185, and 371 per ha, whereas trap densities were 0, 10, 20, 40, 79, and 158 per ha. Moth catch in a centrally placed, pheromone‐baited monitoring trap in each plot was used to evaluate the treatments. The profile of moth captures in mating disruption and mass trapping with the three species indicates that competitive attraction is the behavioral mechanism responsible for trap disruption. Relative Da is 0.27, 0.23, and 0.53 with American plum borer, peachtree borer, and lesser peachtree borer, respectively, which indicates that the traps are 1.9–4.4 times more effective in reducing moth catch than the dispensers. Relative Da can be used to compare devices for pheromone‐based behavioral manipulation of these and other species that are competitively attracted to artificial pheromone sources. When the same type of trap is employed for monitoring and mass trapping, Relative Da is the same as dispenser activity Da.  相似文献   

19.
Three large-scale mating disruption (MD) trials were conducted from 2001 to 2004 in an organic citrus orchard in inland southeastern Australia to evaluate the effectiveness of the MD dispenser Isomate LBAM Plus in controlling lightbrown apple moth, Epiphyas postvittana (Walker), in citrus. At the application rate of 364-728 dispensers per ha, the dispensers reduced pheromone trapping of E. postvittana to almost undetectable levels for approximately 6 mo in the treated area. During this period, most sentinel females in the treated area failed to mate. Infestation by E. postvittana in the treated area was reduced by >50%. If distributed in citrus orchards in late winter (August), the dispensers can be expected to remain effective until next February in southeastern Australia, covering the period when most fruit scarring caused by its larvae occurs.  相似文献   

20.
The moth Tecia (Scrobipalpopsis) solanivora Povolny (Lepidoptera: Gelechiidae) is the most important pest of potato, Solanum spp., in Central America and adjacent South American countries. Insecticide treatments are not sufficiently effective; therefore, we investigated the feasibility of pheromone-mediated mating disruption for control of T. solanivora. Pheromone dispensers were formulated with 70 mg of the three sex pheromone compounds (E)-3-dodecenyl acetate, (Z)-3-dodecenyl acetate, and dodecyl acetate, in a ratio of 100:56:100, respectively. Male attraction to these compounds is optimal at a ratio of 100:1:20, thus the mating disruption dispensers contained an off-blend, which attracted only a few males. Nonetheless, one mating disruption dispenser suppressed male attraction to calling females in a flight tunnel and reduced male activation in response to female pheromone. Communication disruption is accordingly due to camouflage of the female signal and possibly due to a reduction of male responsiveness by sensory imbalance. Only a few males were observed in a 3-ha potato field treated with 84 g pheromone/ha, compared with an untreated control field. During 2 mo, male attraction to traps baited with calling females or synthetic pheromone was strongly reduced. This reduction confirms the potential of mating disruption for management of T. solanivora. The efficacy of the pheromone treatment can be further improved by earlier dispenser application, by increased dispenser load, and by treatment of larger fields to reduce immigration of mated females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号